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1. INTRODUCTION

Complemented congruences on pseudocomplemented semilattices, p-algebras, and
double p-algebras were described in [3] and applied to characterize those pseudo-
complemented semilattices, p-algebras, and double p-algebras whose congruence
lattices are Boolean. The characterization of those pseudocomplemented semilattices
having Boolean congruence lattices was also obtained by H. P. Sankappanavar in
[10] who gave, in addition, a characterization of those pseudocomplemented semi-
lattices whose congruence lattices are Stone lattices. In [9], T. Katrifidk and S.
El-Assar obtained a characterization of those quasi-modular p-algebras whose
congruence lattices are Stone in terms of their congruence-pair representation of
congruence relations on such algebras. A more elegant and useful solution to the
problem was also obtained in the special case of distributive p-algebras. Congruence
regular double p-algebras whose congruence lattices are Stone lattices are described
in [4]. (See also [6] for a refinement and solution to a related problem.) The purpose
of this paper is to characterize those distributive double p-algebras whose con-
gruence lattices are Stone lattices in such a way as to generalize the known result
for regular double p-algebras. Furthermore, we will sharpen a result obtained in [1]
by showing that every distributive double p-algebra whose congruence lattice is
Stone is congruence permutable and that every distributive double p-algebra can
be embedded into one whose congruence lattice is Stone.

2. PRELIMINARIES

An algebra (L; v, A, *, *,0,1) of type (2,2, 1,1,0,0) is called a (distributive)
double p-algebra if (L; v, A, 0, 1) is a bounded (distributive) lattice in which, for
any a € L, a* is characterized by a A x = 0iff x £ a* and a* is characterized dually.

For the standard rules of computation in double p-algebras the reader is refered
to [2].

If, in any double p-algebra L, we write B(L) = {x € L: x = x**} and, for a,be
€ B(L), define au b = (a v b)** then (B(L); U, A, *,0,1) is a Boolean algebra.
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The centre of Lis the set of all complemented neutral elements of L, is a Boolean
sublattice of L, and will be denoted Cen (L). In the event that L is distributive,
Cen(L)={xeL: x=x*"}={xeL x=x**. If we also write D*(L) =
= {xeL: x* = 0} then D*(L) is a filter in Land D*(L) = {x v x*: x € L}. The set
D*(L) is defined dually, is an ideal in L, and D*(L) = {x A x*: x e L}. The core of
Lis the set K(L) = D*(L) n D*(L).

If Lis a double p-algebra then 0(a, b) will denote the principal double p-algebra
congruence on L collapsing the pair a, be L and 0y,(a, b) will denote the cor-
responding principal lattice congruence on the lattice reduct of L. The relation ¢
defined on a double p-algebra L by

a=b(®) iff a*=>b* and a* = b*

is a congruence, called the determination congruence on L, the congruence classes
of which will be called the determination classes of L. The lattice of congruence
relations of L will be denoted Con (L). If 0, € Con (L) then [a] 0 will denote the
class of 6 containing a € Land 0 . will denote the relational product of 6 and .
A double p-algebra Lis congruence permutableif 0 o y = - 0, for all 0, y € Con (L),
and congruence regular if 0 =  whenever 0 and ¥ have a class in common. For all
other unexplained notation and terminology the reader is refered to [7].

3. STONE CONGRUENCE LATTICES

We begin with a sequence of lemmas, the first three of which (or their duals) have
appeared in the literature, are the key tools of our investigation and lead to Lemma
3.5 which may be thought of as the linchpin on which the proof of the main theorem
rests.

Lemma 3.1. ([1]) (i) A congruence on a double p-algebra L is principal iff it is
of the form 0(0, a) v 0(c, d). for some a € B(L)and ¢, d € L withc < d and ¢ = d(P).

(ii) If L is distributive and has non-empty core K(L), then a congruence 0 < &
is principal iff it is of the form 0(k, 1), for some k,le K(L) with k < 1. g

Lemma 3.2. ([5]) Let L be a double p-algebra, a,c,de L, ¢ < d and ¢ = d(®).
Then
(i) O(c, d) = 0.,(c, d)
and
(i) if L is distributive, then x = y(0(0,a)) iff x v a"*") =y v a"* ") for
some n < w. m

Lemma 3.3. ([3]) 4 congruence on a double p-algebra Lis complemented iff it is
of the form 0(0,z), for some ze Cen(L). Furthermore, for ze Cen(L), x =
=y(0(0,z))iff x vz=y v zand 0(0,z) = 0(0,2'). m
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Our next lemma will be applied to the congruence lattices of double p-algebras
and its proof is straightforward.

Lemma 3.4. Let L be a complete lattice satisfying the join infinite distributive
law: x A V(x;:iel) =V(x A x;:i€l). Then L is pseudocomplemented and, for
any {x;iel} < L, (V(xziel)* = A(x{:i€l). m

With these in hand we prove the following crude approximation to a satisfactory
solution of our problem.

Lemma 3.5. Let L be a distributive double p-algebra. Then Con (L) is a Stone
lattice iff, for any xeL, aeB(L), {z;:iel} = Cen (L) and ¢, d e L satisfying
¢ < d and ¢ = d(®), the following conditions hold:

(i) Alx v z;riel) exists and equals x v N(z;i€l);

(ii) 6*%(0, a) = 0(0, z), for some z € Cen (L);

(iii) 0*(c, d) = 0(0, w), for some w e Cen (L).

Proof. Suppose that Con (L) is a Stone lattice, a € B(L), ¢,de L, ¢ < d and
¢ = d(®). Then 0%(0, a) and 6*(c, d) are complemented and so conditions (ii) and
(iii) hold, by Lemma 3.3. Moreover, if {z;: ie I} < Cen (L) then (V(0(0, z}): i e I))*
is complemented and so there is a z € Cen (L) such that (V(0(0, z}): i e I))* = 6(0, z),
by Lemma 3.3 again. However, by Lemmas 3.3 and 3.4 applied to Con (L),
(V(0(0, z)): i e I))* = A(6%(0, z}):iel) = A(0°(0,z): iel) = A(0(0, z;): i € I).
Therefore, A(0(0, z;): i € I) = 0(0, z). In particular, we have [0] A(0(0, z;): iel) =
= [0] 0(0, z) from which it follows that (\((z;]: ieI) = (z] and therefore that
A(z;: i €l) exists (and is z). Now, let xe L. Clearly, x v A(z;:iel) is a lower
bound for {x v z;:iel}. Furthermore, if | < x v z;, for all i e[, then (I'vx)v
v z;=xv z, forall iel, so that I v xe[x] A(0(0, z;): iel) = [x] 0(0, z) and
therefore (I v x) v z = x v z, by Lemma 3.3. In other words, | < x v z =
= x v A(z;zi€el). Thus, A(x v z;: iel) exists and equals x v A(z;: i €l).

Suppose, now, that conditions (i) —(iii) hold. Let x, y € L. Then 6(x, y) = 0(0, a) v
v 0(c, d), for some a € B(L), ¢, d e L satisfying ¢ < d and ¢ = d(®), by Lemma 3.1 (i).
Therefore 0%(x, y) = 0*(0, a) A 0*(c, d) which, by conditions (ii), (iii) and Lemma
3.3, is complemented. However, if 6 € Con (L) then 0 = V(0(x, y): x = y(0)) and
so 0% = A(0*(x, y): x = y(0)), by Lemma 3.4 applied to Con (L). Consequently,
0* = A(0(0, z,): i€el), for some {z;:iel} = Cen(L), by Lemma 3.3. Now, let
= A(z;: i eI) whose existence is guaranteed by condition (i). Observe that
€ Cen (L). Indeed, z** < z}* = z,, for all iel, so that z** < z and therefore
= z** since z £ z** holds for any z e L. We claim that 6* = 6(0, z). Clearly,
it is enough to show that 6* < 0(0, z). So, suppose that x = y(6*); in other words
xVvz;=yv z,forall iel. Then

N NN

xvz=xvVv Az:iel)= Alx v z;:iel), by condition (i),
Ay v ziiel),

I
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Il

y v A(z;: i eI), by condition (i),
=yvz

Thus, x = y(0(0, z)) and so 6* < 0(0, z). It follows that 6* is complemented, by
Lemma 3.3. We conclude that Con (L) is a Stone lattice. g

In order to pave the way for a more refined characterization of those distributive
double p-algebras whose congruence lattices are Stone, we need the following
sequence of technical lemmas.

Lemma 3.6. Let L be a double p-algebra and a € L.

(i) If 1is a lower bound for {a"**): n < w} then so is I**.

(it) If Lis distributive and A(a"*%): n < w) exists then it is central.

Proof. To see (i), let n < w be given. Then I £ a”*DG% and so I* >
2 gt DRk — g+ tkx > gn(+0+ Therefore ¥+ < a"F®++ < g"*%) and so
** < ¢"*%)_ for all n < w.

To verify (ii), let I = A(a"**: n < w). By (i), I** is a lower bound for {a"**):
n < w} and so [** < I. Therefore | = [** and so € Cen (L). o

Lemma 3.7. Let Lbe a distributive double p-algebra satisfying condition (i) in the
statement of Lemma 3.5, for any x € Land any {z;: i eI} < Cen (L). Then, for any
xeLandany{z;: iel} < Cen(L),V(x A z;: i eI)existsand equalsx A V(z;:i€l).

Proof. Let {z;:iel} = Cen(L). Then A(zj: iel) exists and is central. Now,
x is an upper bound for {z;: i eI} iff x* is a lower bound for {z}: i € I}. Furthermore,
x* S AEiiel)iff x 2 (A(zi: i el)), since A(z: i €I) is central. Thus, V(z;: i€ l)
exists and equals (A(z;: i €1))".

Next, observe that, for any xe L, x A V(z;: i ) is an upper bound for {x A z;:
i eI}; we claim that it is the least upper bound for {x A z;: i eI}. With this as our
target, let | = x A z;, foralliel, then I v z; 2 x, for all iel, and so I v A(z}:
iel)= A(l v zj: iel) 2 x from which it follows that I > I A (A(zj:i€l)) =
> x A (A(zi:i€l)) = x A V(z;: i €l). Therefore V(x A z;: i €I) exists and equals
xAV(ziiel). m

Lemma 3.8. ([1]) Let L be a distributive double p-algebra, c¢,de L and ¢ < d.
Then

(i) if ¢c* = d*, then 0(c,d) = 0(c A d*, d A d¥)
and

(i) if ¢* = d*, then 0(c,d) = 0((c* A x) v ¢, (c* A x) v d), for any xe L. o

Lemma 3.9. Let L be a distributive double p-algebra, c,d,e,feL,c < d, e < f,
¢ = d(®) and e = f(P). Then there exist cy, do, €9, fo, € L with ¢y < d,, €0 < fo,
{do, €0, fo} S [co] @ and coe D*(L) such that 0(c, d) = 0(cy, do) and 0(e, f) =
= o(eO’fO)‘

Proof. By Lemma 3.8 (i), we may assume, without loss of generality, that
c,d,e,fe D*(L). Letcy = (c* Ae) v c,dy=(c*Ae)vd,e =(e* Ac)vV e and
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fo=(e* A ¢) v f. By Lemma 3.8 (ii), 0(c, d) = 0(co, do) and 0(e, f) = 6(eo, fo)-
Observe that {c,, dy, €y, fo} = D*(L), since D*(L) is an ideal in L. Furthermore,
¢o = eo(®P). Indeed, it suffices to observe that cg* = ((c v c*) A (e v ¢))** =
=(cvec*)*A(eve)*=(evc)*™* and e;* = (e v ¢)**, by symmetry, so
cg® = eg*. It follows that c,, dy, e, f, all belong to the same determination class

and the proof is complete. g

Lemma 3.10. Let L be a distributive double p-algebra, c,de L, c < d, ¢ = d(®)
and ¢ A z =d A z, for some z € Cen (L), then (0, z) A 0(c,d) = w.

Proof. Suppose that x = y(0(0,z) A 6(c,d)). Then x vz=y vz, x Ac=
=yAacand x vd=yvd by Lemmas 3.2 (i) and 3.3. Now, the first and third
of these equations combine togivex v (d A z) = y v (d A z)andsox v (¢ A z)=
=y v (¢ A z). However, the second of the three equations implies that x A
A(c A z)=1y A(c A z). Therefore x = y, by distributivity. u

Without further ado, we proceed with the main result.

Theorem 3.11. Let L be a distributive double p-algebra. Then Con (L) is a Stone
lattice iff the following conditions hold, for any x € L, a € B(L), {z;: i e I} < Cen(L)
and {d,e,f} < [c] ® withce D*(L),c < dande < f:

(i) A(x v z;:iel) exists and equals x v A(z;:iel);
(ii) (a) A(a"**:n < w) exists
and
(b) ifc v a*® =d v a"*®, foralln < w,thenc v A(@"*%:n < o) =
=d v AN@"*®:n < o);
(iii) there exists we Cen (L) such that
@ caw=daw
and
(b)if(ernd)v(fac)=dnfthenevw=fvw.

Proof. Suppose that Con (L) is a Stone lattice and a € B(L). Condition (i) holds
by virtue of Lemma 3.5 (i) and 6*(0, a*) = 6(0, z), for some z € Cen (L), by Lemma
3.5(ii). In particular, we have 0(0, a*) A 0(0,z) =  and so z A a* = 0, since
z A a* = 0(0(0, a*) A 6(0, z)). Therefore, z < a** =a and so z = z"+® <
< a"*% for all n < w; in other words z is a lower bound for {a"%): n < w}. We
claim that z = A(a"**: n < ). To see this, let | < a™**), for all n < w. Then
") < @"* %), for all m,n < w, by Lemma 3.6 (i). We use this to show that
0(0,1) A 6(0, a*) = w. Indeed, if x = y(6(0, I) A 0(0, a*)) then there exist m, n < o
such that

x v mx+) — y v mx+)  and x v g*xt) — y v a¥n(x+)

by Lemma 3.2 (ii). Therefore,
XV (l"'(*“ A a*"(*”) =yv (l’"("‘+) A a*"(*“).

However, [m(¥%) < gn(+#) = gh*n(+%) — gkl )k gnd g0 [+ A g*n(x+) —
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Consequently, x = y, as required. It follows now that 6(0, I) < 0*(0, a*) = 0(0, z)
and so I < z. Thus, A(a"**: n < w) exists and equals z. Suppose now that ¢, d € L,
c<dand ¢ v a"** =d v ¢"*% for all n < w. We have just shown that
0%(0, a*) = 0(0, A(a"**: n < w)). Our objective is to show that 8(c, d) A 0(0, a*) =
= o from which it follows that ¢ = d(6*(0, a*)) and therefore

cev AN@**in<w)=dv A@**:n <o),

by Lemma 3.3. So suppose that x = y(0(c, d) A 0(0, a*)). Then x A c =y A ¢,
xvd=yvd, and x v @a*"*t) = y v g*"") for some m < w, by Lemma
3.2.  However, c¢ v a*"*P)x — ¢y g*km(+5) — o\, gm%) = g gm(+e) o
=d v a**m*%) = g v g**D* and so ¢ A a*") = d A a*"* ) It follows
that

x V(e A a**P) = x v (d A a*mxD)

=(x vd) A (x v a*m®)
(y v d) Ay v armet)
y v (d A a*mxh)

=y Vv (c A a¥mxh)

If

Il

However, x A (¢ A a*"*P)) = y A (¢ A a*"*P) and so x = y, by distributivity.
We conclude that condition (ii) also holds.

With the intention of establishing condition (iii), let ¢, d € L, ¢ < d and ¢ = d(®).
Lemma 3.5 (iii) guarantees the existence of w e Cen (L) such that 0*(c, d) = 0(0, w)
and, in particular, 60(c,d) A 0(0,w) = @. But ¢ A w=d A w(l(c,d) A 0(0,w))
and so ¢ A w=d A w. Moreover, if e,feL, e <f, e=f(®) and (e A d) v
v (f A c)=d A f then

0(c, d) A 0(e,f) = 0p(c, d) A Op,(e, f), by Lemma 3.2 (i),
Olle Ad) v (f Ac), dnAf)

=w.
Therefore O(e, f) < 0*(c, d) = 6(0,w)and so e v w = f v w, by Lemma 3.3. Thus,
condition (iii) holds.
Suppose, now, that conditions (i)—(iii) hold in Land a € B(L). Let z = A(a*"(**):
n < ). Then z exists, by condition (ii), and is central, by Lemma 3.6 (ii). Our aim
is to show that 0%(0, a) = 0(0, z). First, observe that 0(0, z) A 6(0, a) = w. Indeed,
if x = p(0(0, z) A 6(0, a)) then, by Lemmas 3.2 and 3.3,

xvz=yvz and xv g"*t) =y v ")

Il

for some m < @, so that x v (z A @"*%)) = y v (z A a"*%)). However, z <
< @) = g% and so z A @"*+) = 0. Therefore x = y, as required. We
must now show that, for 6 € Con (L),

0 A 0(0,a) =w implies ¢ < 0(0, z) .
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In fact, it is enough to show that this implication holds for every congruence 0 of the
form 0(0, b), with b € B(L), and every congruence 6 of the form 0(c, d), with ¢, d € L,
¢ £ d and ¢ = d(®P), because every congruence 0 on Lis a join of congruences of
this form, by Lemma 3.1, and the join-infinite distributive law holds in Con (L).
So, in the first instance, suppose that b € B(L) and

0(0, b) A 0(0,a) = .
Then b A a"**) =0, for all n < w, since b A a"**) = 0(0(0, b) A 0(0, a)).

Consequently, b < a"*"* = g*(+%)_for all n < w, so that b < z and, therefore,
0(0, b) < 0(0, z), as required. Next suppose that ¢,de L, ¢ < d, ¢ = d(®) and
0(c,d) A 0(0,a) = o.

Lemma 3.8 (i) assures us of the existence of ¢,, dy € D*(L) such that ¢, < d, and
0(c, d) = 0(co, d,). Thus, 6(0, a) < 0%(c,, d,) so that a = 0(0*(c,, dy)) and therefore
a*" % = 1(0%(c,, do)), for all n < w; in other words 0(a*"“*¥), 1) < 0*(co, d,),
for all n < w. It follows that 8(a*"**) 1) A 0(c,, dy) = o, for all n < w. However,
(co v a*"*®) A dy = do(0(co, do)), since (co v a***) A d, € [co. do] and
0(co. do) collapses [co. do], and (co v a*"**) A dy = do(0(a*"**), 1)). Therefore,
(co v a*"*®) A d, = dy, for all n < ; in other words, dy < ¢y v a*" %) for
all n < w, and so ¢o v @*" " =d, v a*"*¥  for all n < w. Consequently,
¢o vV z =d, v z, by condition (ii), and so

0(c. d) = 0(co, do) = 0(0, 2) ,

by Lemma 3.3, as required. We conclude that 6*(0, a) = 6(0, z). In order to complete
the proof, it is enough, by lemma 3.5 (iii), to show thatif ¢, d e L, ¢ < dand ¢ = d(®)
then

0*(c, d) = 0(0, w),

for some w € Cen (L). We begin by defining Z(c, d) = {zeCen(L):c A z = d A z}.
Then Z(c, d) is obviously an ideal in Cen (L). In fact, Z(c, d) is a principal ideal
in Cen (L); in other words, Z(c, d) has a largest element. To see this, let w = VZ(c, d).
By condition (i) and Lemma 3.7, w exists, is easily verified to be central and

cAw=V(AzzeZle,d)=VdArz:zeZ(c,d) =d nw.

Thus, w e Z(c, d) and is obviously the largest element in Z(c, d). Our next step is to
show that [0] 0%(c, d) = (w]. That we[0] 0%(c,d) is an immediate consequence
of Lemma 3.10. Now suppose that x € [0] 6*(c,d). We will show that x < w.
Clearly, b = x**€[0] 6*(c, d) and so it is enough to show that b < w. Observe
first that b™**) & [0] 9%(c, ), for all m < @, so that 0(0, 5™**) A 0(c, d) = w, for
all m < o, and second that ¢ A p"(**) = d A b™*+)(9(0, b™*)) A 0(c, d)), for
all m < . Therefore ¢ A pmix+) _ d A B™*Y) for all ;n < w, from ’whi(;h it

follows that ¢ v pm(x+)+ _
Then ¢ v pertemes = d v p"*H)* for allm < w. Now, let n < w be given.
=c v b+nHxt)+ _ g v b+ D(x+)+ _ d v b¥n(+%)++ 504
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soc v b¥H¥) — 4 v b*"“’*’, since b*n(+#)++ < pnER), Therefore ¢ V/\(b*"(+*);
n<w)=dv Ab**¥:n < w), by condition (ii). Let z = A(B*"**:n < ).
Then z exists and is central, by Lemma 3.6 (ii). Furthermore, ¢ A 2’ =d A 2’ so
that z’ € Z(c, d) and therefore z’ < w. But z < b* so that b < z’ and therefore
b < w, as required. We conclude that [0] 0*(c, d) = (w]. Finally, we show that
0*(c, d) = 0(0, w). First, observe that 0(0, w) A 0(c, d) = w, since w € [0] 0%(c, d),
and so it remains to show that, for 0 € Con (L),

0 A 0O(c,d) = implies 0 < 0(0,w).

Arguing as before, we need only verify that this implication holds for every con-
gruence 0 of the form 0(0, b), with b e B(L), and every congruence 0 of the form
O(e,f), with e,fe L, e < f and e = f(®). So, suppose, in the first instance, that
beB(L) and

0(0,b) A 0(c, d) = .

Then 0(0, b) < 0%(c, d) so that be[0] 0%(c,d) = (w] and therefore b < w from
which it follows that 0(0, b) < 0(0, w), as required. Next, suppose that e, f€ L,
e <f, e=f(#) and

Ole,f) A O(c,d) = w .

Lemma 3.9 guarantees the existence of ¢, do, €0, fo in L with ¢, < d,, ey < fo,
{do, e, fo} < [co] @ and ¢, e D*(L) such that 0(c, d) = 0(co, dy) and 0(e,f) =
= 0(ey, fo)- Thus,

o = O(CO’ do) A (eO’fO) = oLut(CO’ dO) A OLal(eO’fO)
= Or.l(eo A do) v (fo A co)s do A fo)

and so (e A do) v (fo A ¢) = dy A fo. It follows, by condition (iii), that ¢, A
A wo=dy A wyand e, vV wy = fo V W, for some w, € Cen (L). By Lemma 3.10,
we have

0(0,wo) A 0(co,do) = o,

so that wy € [0] 0*%(co, do) = [0] 0*(c, d) = (w] and therefore w, < w. Consequently,
eo vV w=Ff, vwand so 0e,f) = 0(ey f,) < 0(0, w), by Lemma 3.3, as required.
We conclude that 0*(c, d) = 0(0, w). In summary, Con (L) is a Stone lattice, by
Lemma 3.5. g

Corollary 3.12. The congruence lattice of a regular double p-algebra is a Stone
lattice iff, for any a € B(L) and Z < Cen (L), AZ and A(a"*®: n < o) exist.

Proof. It is well known (see [8]) that any regular double p-algebra Lis a dual
Heyting algebra and in such algebras if AS exists, for some non-empty S < L, then
so does A(x v s:seS), for any xe L, and x v AS = A(x v s: se S). Moreover,
& = o in any regular double p-algebra (see [8] for example) and so the remaining
conditions in the statement of Theorem 3.11 are all trivially satisfied. g
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Corollary 3.13. Let L be a distributive double p-algebra having non-empty core
K(L). Then Con (L) is a Stone lattice iff, for any xe L, ae B(L), {z;:iel}
c Cen (L) and {c,d, e, f} = K(L) with ¢ £ d, e < f, conditions (i)—(iii) in the
statement of Theorem 3.11 hold.

Proof. This follows on examination of the proof of Theorem 3.11 bearing Lemma
3.1 in mind. g

Corollary 3.14. Any distributive double p-algebra can be embedded into one
having a Stone congruence lattice.

Proof. Every subdirectly irreducible distributive double p-algebra obviously has
a Stone congruence lattice. Furthermore, conditions (i)—(iii) in the statement of
Theorem 3.11 are preserved under the formation of direct products. The subdirect
product theorem now yields the desired result. g

In [1] it is shown that any distributive double p-algebra can be embedded into
one having permutable congruences. As will now be shown, Corollary 3.14 is
a sharpening of that result.

Corollary 3.15. Any distributive double p-algebra L whose congruence lattice is
a Stone lattice is congruence permutable.

Proof. It is enough, by Theorem 3.7 in [1], to show that every determination
class of Lis relatively complemented. Let ¢, d, e € Lall lie in a single determination
class of Land satisfy ¢ < d < e. In the proof of Theorem 3.11, we saw that if Con (L)
is a Stone lattice then, forany ¢, d, e, fe Lwithc < d, e < f, ¢ = d(®) and e = f(P),
condition (iii) holds. Now, note that (d A d) v (e A ¢)=d A e (=d) and so
caw=dAawanddv w=ev w, for some we Con(L). Let § = ¢ v (w A e).
Then defc,e], dnd=cv(daw)y=cv(caw=cand dvd=dv
v(wae)=(dvw)ae=(ev w)A e=eso that J is the relative complement
ofdin[c,e] m
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