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1. INTRODUCTION AND PRELIMINARIES

Consider the nonlinear Dirichlet b.v.p.
(1.1) Y (=1)*D%a(x,0u) = f on Q,
lal =k
(1.2) u=0 on 0Q,
where S,u = {D’u: ]x| < k}. One of the common approaches to the weak solvability
of the problem (1.1),(1.2) is based on the Browder theorem and assumes that the
coefficients satisfy both the growth conditions

(1.3) la (x. 2)] < g(x) + > [
a[<k
with g € I7'(Q) and the coercivity condition
(1.4) Yoafe Lz Y |G -
lal =k lal <k

with some p e (1, o0). It is then natural to look for a weak solution in the Sobolev
space W, ?(Q).

Consider a more general situation, when Q = Q, U Q,, 1 < p, < p, < o, and
the conditions (1.3), (1.4) are satisfied with p; on Q,. If we simply use the above scheme
to find the weak solution of (1.1), (1.2) in W*?(Q), we see that the validity of conditions
(1.3) and (1.4) requires p = max {p,, p,} and p = min {p,, p,}, respectively. Even
more difficult situation occurs when p is a function of x € Q.

The aim of this paper is to suggest appropriate analogues of the Lebesgue spaces L”
and of the Sobolev spaces W*?, It is clear that we cannot simply replace p by p(x)
in the usual definition of the norm in L. However, the Lebesgue spaces can be con-
sidered as particular cases of the Orlicz spaces belonging to a larger family of so
called modular spaces. This approach enables to define corresponding counterparts
of the Luxemburg and Orlicz norms in I7®™, If the function p is finite a.e. in Q, then
I is a particular case of the so called Orlicz-Musielak spaces treated by J. Musielak
in [6] where some details for the spaces IF® and further references can be found.
We extend the definition of IP*® for functions p taking the values from [1, o].
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Our paper is organized in the following way. In Section 2 we define the spaces
I’ and investigate their properties interesting from the point of view of the above
b.v.p. It appears that spaces I’™™ and I have many common properties except a very
important one: the p-mean continuity. In Section 3 we introduce the generalized
Sobolev spaces W*P*) and prove some theorems on continuous and compact
embeddings and on equivalent norms. In the last section we deal with the Nemyckii
operators in IP®™) and W*?*) and use the results of the previous sections to establish
an existence theorem for a weak solution to the b.v.p. (1.1), (1.2) with coefficients
of variable growth.

Throughout the paper the terms measure, measurable etc. will mean the Lebesgue
measure, Lebesgue measurable etc. All sets and functions are supposed measurable.
The Lebesgue measure and the characteristic function of a set A = R" will be denoted
by }A] and y,,, respectively. The symbol Q will stand for a set in R" with |Q] > 0.

By 2(Q) we denote the family of all (measurable) functions p: Q — [1, oo].

Notation 1.1. For pe 2(Q) we put Qf = Q, = {xeQ: p(x) =1}, @, =Q, =

={xeQ: p(x)=w}, Q) =0Q,=0\(Q uUQ,), pe=essinfp(x) and p* =
20
= ess sup p(x) if |Qo] > 0, py = p* = L if |Q] =0, ¢, = |xa,[lw + [xa0]~ +

P
Q0
+ |xaul» and r, = ¢, + 1/p, — 1/p*. We use the convention 1/oo = 0.

i

2. GENERALIZED LEBESGUE SPACES

Let p e Z(Q). On the set of all functions on Q we define the functionals ¢, and
I1, by
p

(2.1 2,(f) = a0, |f(x)[P& dx + esrs2 sup | f(x)],

(2.2) If], = inf{2 > 0:0,(f]4) < 1}.

It is easy to see that ¢, has the following properties:

(23) 0,(f) =2 0 for every function f .

(2.4) 0,(f) =0 ifandonlyif f=0.

(2.5) 0,(=1) = e,(f) for every f.

(2.6) 0, is convex .

(2.7) If |f(x)] 2 |g(x)| forae xeQ andif o,f)< o, then
0,(f) = 0,(9); the last inequality is strict if If] * |g| .

(2.8) If 0<g,(f) < o, then the function i g,(f|A) is continuous

and decreasing on the interval [1, ).

The properties (2.3)—(2.6) characterize ¢, as the convex modular in the sense
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of [6].

(2.9) o, (flIflp) S 1 for every f with 0 < £, < oo

Indeed, taking 7, | |f], we use the Fatou lemma, (2.8) and (2.2) to obtain
o, (fIIf]l,) < timinfe,(f/) < 1. m

(210) - If p* < oo, then o (f[|f],) =1 for every fwith 0 < |f], <.

For0 < A < |f|, we have 0,(f]7) = (ﬂf”p//l)”' 0,(f]|lf],)- Hence, ifg,,(f/”f”p) <1,
we can find 2 < | f||, such that ¢,(f/2) < 1, which contradicts (2.2).

As a consequence of (2.6), (2.4) and (2.9) we have:
(2.11) If |fl, =1, then of) = 1715 -

The generalized Lebesgue space I?*)(Q) is the class of all functions f such that
0,(Af) < oo for some A = A(f) > 0. The properties (2.3)—(2.6) and (2.9) yield
that I?®(Q) is a normed linear space if endowed with the norm (2.2) which cor-
responds to the well-known Luxemburg norm in Orlicz spaces. If p(x) = p is
a constant function, then the norm (2.2) coincides with the usual IP-norm and so the
notation is not confusional.

Let M: Q x R — [0, ] be a non-negative measurable function such that for
a.e. x € Q the function M(x, +) is lower semicontinuous, convex, even and satisfies
lim M(x, u) = M(x,0) = 0. The so called Orlicz-Musielak space L'(Q) consists
x=0 .

of all functions f on Q such that [, M(x, 2 f(x)) dx < oo for some 4 > 0 (cf. [6]).
If the function p is finite a.e. in Q then I7®(Q) = [(Q), where

(2.12) M(x, u) = |ul™.
Given p € 2(Q) we define the conjugate function p’ € 2(Q),

o for xeQf,
p(x)=<1 for xeQf,
p(x)/(p(x) — 1) for other xe Q.

Theorem 2.1 (generalized Holder inequality). Let p € 2#(Q). Then the inequality

fa |f(x) g(x)! dx = rp”f”p ”g"p’

holds for every f € I'™(Q) and g € I"®(Q) with the constant r, defined in 1.1.
Proof. Obviously, we can suppose that | f], + 0, |g[|, + 0 and |[Q,| > 0. For
ae. xeQ, we have 1< p(x) < o, |[f(x)] < oo and |g(x)| < co. Putting a =
= f(X)/ifl,» b = 9(x)/|9l,» p = p(x), p’ = p'(x) in the well-known inequality .
P P’
ab < al + é— 5

’

p P
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integrating over Q, and using (2.9) we obtain
/(x) g x)[ ess su . ess su !
ol 2 5P )@p(f I71) + ess sup —— s o,(9/l9],) =

=1+ /P*—l-/P .
Thus,

folf(x)g(x)[dx = (1 + t/ps = 1p*) [ f], l9], lxe0l +
+ ﬂf%nlun “glrz.”u Hf)(nao ”gXQ “1 = V,,”f”,, ”g"p" =

Corollary 2.2. Let p,r, qe 2(Q) be such that p(x) < r(x) < g(x) < o for a.e.
x € Qand p + q. Then there exists a constant ¢ > 0 such that for every f € ’®(Q) n
N I%(Q) the inequality
AR I R

holds, where

(214) = T ;((x): Z((xi :;(x)) I, > 1.
) o ;%3 it |7, =1,

(215) v = T z(?): tr{(fc))) ‘p‘gx; it [/l >1
eSsﬂinfr( );();) pg fflast

(here we consider 0/0 = 1).

Proof. It suffices to consider f # 0. At first, assume that r(x) < g(x) for a.e.
x € Q. Define functions s, t € 2(Q),

o) = 4 =) v a(x) = p(x)
i S R S

Then 1 < s(x), t(x) < o0 and 1/s(x) + 1/t(x) = 1 for a.e. x € Q and so, by Theorem
2.1,

19 o () =

According to (2.14) and (2.9) we have

em () e s

Similarly,

(218) (%HM>S“QA)§‘

MMIUrw

Il
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Since r; 2 1, we can use the convexity of g, and estimates (2.16) —(2.18) to obtain

@ o (i) = ne () =

i.e. the inequality (2.13) holds with ¢ = r,.
Now, assume that |G| > 0 where G = {x € Q: r(x) = q(x)}. Then

ess inf - p(x) a(x) = r(x) _ =0, esssup a(x) r(x) = p(x) _
@ 1) a(x) = plx) a " r(x) g(x) = plx)

and so |5 = 1. 713 2 /], Henee,

(i)~ (i) = () = ) =

Since r{x) < g(x) for a.e. x € @\ G, by the first part of the proof (cf. (2.19)) we have

(i)
i) = Ao * =) <~

and, similarly as in the first part of the proof, we conclude the inequality (2.13) with
c=ry+ 1. »

Thus,

For functions f on Q we define
(2200 llAlll, = sup_jas(x)g(x)dx.
op’(g) =

This is an analogue of the Orlicz norm in Orlicz spaces (cf. [5], chap. 9) and it is
easy to see that it is a norm on the class of functions f with |||f]||, < co.

(221) Let |||f]||, < o and ¢,(g) < . Then
ol ¥ s,
o OIS ) o )1

The first case follows from (2.20). Assume g,.(g) > 1. The convexity of g, yields
0,(0,(9)"" 9) < ¢,(9)" 0,(9) = 1 and so

[faf(x) g(x) dx| = 0,(9)|fa f(x) 0,(9) " g(x) dx| < o,9) ||| £]]l, -

(222) If |Q)] = |Q.] = 0 and if o,(f) < o, |||f|||, S L. theno,(f) < 1.
Suppose, to the contrary, that ¢,(f) > 1. According to (2.8) there exists A > 1
such that g,(f/4) = 1. Putting

(x) = |f(x)/A|P@~ " sign f(x), xeQ,
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we have 0,(g) = ¢,(f/*) = 1 and so
A1ll, = faf(x) g(x) dx = Ag,(f]2) = 2 > 1,

which is a contradiction. g

(23) 17 Al = 1. then ) 5 el
First, suppose that ¢,(f) < oo. We have
(224) Qp(f) = ”Xﬂl”“' gp(fl) + ”xﬂo“m Qp(fo) + ”Z!I,,, Qp(for,) )
where f; = fyqo,, j = 1,0, 0. Put
g,(x = signf,(x) go(x) = Ifo(x |p(x)—l sign fo(x), xeQ.

Then 0,/(g,) = esssup |g,(x)| = 1 and, according to (2.22),

XeQ,

0 .(go) = _[QU ]f x)["(” dx £ 1.
Hence, (2.21) yields
(2.25) o,(f;) = faf(x) gi(x)dx < |||f]ll,» j=1.0.

Ir|Q,] > 0. then forevery § € (0, 1) there exists a set 4 = Q,, such that 0 < |A| < oo
and |f(x)| = d ess sup |f(y)| for x € A. Then for

yeN .

= |A|"" xqsignf wehave o,(g,) = [4]A]"" |sign f(x)| dx

IIA

and so

171 = faf(x) g.(x) dx =
= A7 [ |f(x)] dx = 5ess sup [f(x)] = S 0,(f.) -
Letting & —» 1 — we obtain
(226) o) = [[Ill,-

Relations (2.24)—(2.26) yield the desired inequality (2.23).
To avoid the assumption ¢,(f) < oo we use the truncations

) = min ) ). e,
where {G,,} is a sequence of sets such that G, = G,,; = Q, |[G,|] < o for ne N

and Q = U G,. Then o,(f,) < o, [[|£lll, £ |Iflll, < 1 and, according to the first

n=1

,- Itsufficestoletn > 0. o

part of the proof, 0,(f,) < ¢

Theorem 2.3 (on equivalent norms). L’®(Q) = {f: |||f]||, < o} and for every
1€ IP™(Q) the inequalities
@21y & Il = Al = ol /1

hold, where ¢, and r, are constants defined in 1.1.
Proof. Let fe I’*(Q). If ¢,(g) < 1, then [g[,- £ 1 and the Hoider inequality
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yields [, f(x) g(x)dx < r | /], |9], < r,|f],- This gives the second inequality
(2:27) and, consequently, |||f]||, < .

On the contrary, tet 0 < |||f]||, < o. Since |||f/(c,|||f|[|)I|l, = ¢, ' < 1. we use
(2.23) to get g, (f/(c,|||/]Il,) = ey, ! = 1. The first inequality (2.27) follows and
yields fe IX(Q). o

We shall say that functions f, € L”("’(Q) converge modularly to a function fe
€ PX(Q), if lim g,(f — f,) = 0.

n— o
In [5] it is shown that in Orlicz spaces there is a substantial difference between
the norm convergence and the modular convergence. We shall show that a similar
difference is in the space IP®)(Q). According to (2.11) the norm convergence is
stronger that the modular one.

(2.28) If p* < o, then g,(f,) = 0 if and only if ||f,|, = 0.

Suppose, that g,(f,) = 0.and take ¢ € (0, 1]. For sufficiently large n we have o,(f,) <
< ¢ < 1and so

Qp(f" Qp(fn)_”p‘) é Qp(fn)_1 jﬂ\ﬂm ,f"(x)lp(x) dx +
+ (/)77 ess sup |£,(x)] = e, (fa) " @S = 1.
ie.,
”fn”l’ g Qp(fn)l/p. < 6‘/‘7‘ .
Hence, |f,[, 2 0. m
Theorem 2.4. The topology of the normed linear space [’ (Q) given by the norm
(2.2) or (2.20) coincides with the topology of modular convergence if and only if
p* < oo.
Proof. Suppose that p* = oo. Then there exist sets G,+; < G, = 2\ Q,, such
that |G,| < oo and

(2.29) |G| =0,
(2.30) p(x)>n on G,, neN,
(2.31) sup {n: |G,\ G,y >0} = 0.

Fix 2€(0,1), put ®, = |G,\G,,,| and a, = Y0, ! if v, > 0, a, = 0 otherwise.
Consider the functions f(x) = ( Y. a,46.6,.,(x))"/?®, x € @, and f, = fxg,. Then
n=1
0 o]
(232) 2)(f) = Joe, )PP dx = Y a,0, £ 3 2" < .
n=1 n=1

On the other hand, (2.30) yields
(233)  o(fuld) = [, [/(x)[aP*" dx =

o
= Z J.Gk\Gk+l
k=n

fx)[AP&dx 2 Y ayod ™ = 0,
k=n
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because, according to (2.31), the last series of non-negative numbers contains an
infinite number of members a,w,A~* = 1. Now, (2.32) and (2.29) yield ¢,(f,) = 0,
but (2.33) gives |£,], = 2.

The sufficiency of condition p* < oo is proved in (2.28). u

(2.34) If p* < o and if f, > 0 in I’*Y(Q), then f, — 0 in measure.

If, to the contrary, there are & 6€(0,1] and a subsequence {n,} such that
inf |{x € Q: |f,(x)] > &}| = 6, then o,(f,,) = ¢”". This, by (2.28), contradicts the
k

assumption f, - 0.

Theorem 2.5. The space [P*)(Q) is complete.

Proof. Let {f,} be a Cauchy sequence of functions from I’*(Q) and let ¢ > 0.
There exists n, € N such that

(2.35) lo lfm(x) - fn(x)| Ig(x)] dx < ¢

for every m, n = n, and for every function g such that gp»(g) < 1. We decompose Q2

into pairwise disjoint subsets G, of finite measure and define functions g, =
= (1 + |G|)"" %6 ke€N. Then

2,(9) £ Jo (1 + |G)"@dx + (1 + |G)" = 1,
and inserting g, for g in (2.35) we get
[0 [fu(x) = fu(x)|dx S e(1 + [Gy]), m,n = n,, keN.

This means that the sequence {f,} is Cauchy — and so convergent — in each L'(G,).
By induction we find subsequences {fi*}, and functions f® e L'(G,) such that

0

f9(x) - f®(x) for a.e. x€G,, keN. Thus, fi"(x) = Y f®(x) 16.(x) = f(x) for

k=1
a.e. x € Q, and replacing f,, by f\" in (2.35) and using the Fatou lemma we obtain

fa|f(x) = £,(x)]|g(x)] dx < sup fq [fi"(x) — £,(x)| |g(x)] dx < &

for every n = n, and every g with gl,»(g) < 1. Hence, “If —fllly e m

According to (2.2) and (2.11) f satisfies g,(f) < 1 if and only if ||f]|, < 1. Hence,
Theorem 2.3 yields: If g € I”’*)(Q), then G given by
(2.26) G(f) = [of(x)g9(x)dx, feI’*(Q),
is a linear continuous functional on I’*)(Q) with the norm satisfying c, '|g], <

< 6] = r,loll- =

Theorem 2.6. The following conditions are equivalent:

(i) pe L(Q).

(i) For every linear continuous functional G on IP*™)(Q) there exists a unique
function g € I7"®(Q) such that (2.36) holds.

Proof. Assume that (ii) holds. Then, obviously, |2,,| = 0and 7*(Q) is the Orlicz-
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Musielak space LY(Q) with M satisfying (2.12). A. Kozek [3] proved that if (ii)
holds then the function M satisfies the Zz-condition: there exists K = 1 and a function
h e L'(Q) such that for every u e R and a.e. x e Q the inequality M(2u, x) <
< KM(u, x) + h(x), i.e.
(2:37) (27 — K) |u]P™ < h(x)
holds.

Suppose that p* = oo. Then the set E = {x € Q: p(x) = L + log, K} has a positive
measure and for x € E we have

(2.38) 2000z 2K
From (2.37) and (2.38) we obtain the estimate

h(x) = sup (27 — K) [u|"™) = Ksupu' """ = 0, xeE,

ux1

which contradicts the integrability of i. Thus, p* < co and (i) holds.

If p e L”(2), then the function M from (2.12) satisfies the 4,-condition and so,
according to H. Hudzik [2], the condition (ii) holds. Let us note that this part of the
proof can be made also directly by the usual method for the classical Lebesgue
spaces based on the approximation by step function and on the use of the Radon-
Nikodym theorem. g

Corollary 2.7. The dual space to [*)(Q) is [”'*)(Q) if and only if pe L*(Q).
The space I’™)(Q) is reflexive if and only if

(2.39) 1 < essinf p(x) < esssup p(x) < oo .
Q Q
Given two Banach spaces X and Ythe symbol X (Q Ymeans that X is (continuously)
embedded in'Y.

Theorem 2.8. Let 0 < |Q| < o and p, g € #(Q). Then
(2.40) 9 QG IX(Q)
if and only if
(2.41) p(x) £ q(x) forae xeQ.

The norm of the embedding operator (2.40) does not exceed |Q| + L.
Proof. First, assume (2.41). Then

Q< QY
(cf. Notation 1.1). It suffices to prove that
242) |/, = el +1
for every f e I#(Q) with ||, £ 1. By (2.11) we have

2(f) = Javans [F(X)"® dx + ess sup lfx)l =1,

600



in particular, |f(x)| < 1 for a.e. x € 2%. So, we can write

o(f) £ {xe@~Q%: |f(x)] £ 1}] + [a0. |f(x)] dx +
+ QU NQ| + esssup [f(x)] S |Q| + o(f) S @] + 1.
2.9

We use the convexity of ¢, to obtain

o(f(je+ ) s(e + 1) Telf) 1.

The inequality (2.42) follows. '
Suppose, on the contrary, that (2.41) does not hold, i.e. there exists a subset Q*
of Q such that |Q*| > 0 and

p(x) > g(x), xeQ*.
In contradistinction with (2.40), we shall construct a function f e [¥®(Q) \ '®(Q).
If
(2.43) |20~ Q* >0,
then there exists a set 4 = Q7 N Q* 0 < ]AI < o0, and a number re(l, oo) such
that 1 < g(x) £ r < oo = p(x) for all x € A. We find sets A4, such that

(2.44) A=U A, AnA;=0 for k=*j, |4]=27%4| for keN,
1

k=

and define the function f = Y (3/2)"" x,, on Q. Then
k=1

”f”p 2 ”fXA”'f = 0,
) = Ll as = 3 £ a2y =

< Y (32 4] = 4] T (3f4)" = 34| < 0,

ie., fe I¥(Q).

If (2.43) does not hold, then 1 < g(x) < p(x) < oo for a.e. xe Q* and there
exists a set A < Q* 0 < |4] < oo, and numbers a > 0, r e (1, o) such that g(x) +
+ a =< p(x) < r for x € A. We find sets A4, satisfying (2.44) and define the function

f(x) =Y (2%~ 214y, (x), x € Q. Then
K=

but

0, (f) =Y 2% 2|4 = 4| Yk < o0,
k=1 k=1
i.e. f€ I#¥(Q). On the other hand, for every 2 € (0, 1] we have
Q,,(/’»f) >N 2 J’Ak (zkk-l)p(x)/q(x) dx = A Z(zkk—2)1+u/r|Akl —
k=1 k=1

2ak/rk-2(1+a/r) = o0,

M8

= 74

k=1

and so, f¢ '(Q). u

I
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One very important property of the Lebesgue and Orlicz spaces is the mean con-
tinuity of their elements. We shall show that this is the point in which the spaces
F™(Q) differ from the classical Lebesgue spaces. Further on, we shall assume the
functions to be extended by zero outside Q.

We shall say that a function fe I?®(Q) is p(x)-mean continuous if for every
¢ > 0 there exists = 8(¢) > 0 such that ¢,(f, — f) < & for he R, |h| < &, where

fulx) = f(x + h), xe R".

Example 2.9. Let N = 1, Q@ = (=1, )andlet L £ r < s < c. Put

_fr for xe[0,1), _x7s for xe[01),
p(x)—{s for xe(-1,0) and f(x)’{o for xe(—1,0).

Then pe 2(Q) and, obviously, fe [F*)(Q). However, given he(0, 1), o,(f,/4) =
227" 2, (x + h)"'dx = oo for every 1 > 0, and so f, ¢ [”*)(Q). We shall work
on the principle of the previous example to show that for a rather wide class of func-
tions p e 2(Q) we cannot expect the p(x)-mean continuity for all functions from
9(Q).

Theorem 2.10. Let Q contain a ball B(x,, r) = {x e R": Ix - xol < r} on which
the function p is continuous and non-constant. Then there exists a function fe
€ P'™(Q) which is not p(x)-mean continuous.

Proof. According to the assumptions, there exists a point z € B(x,, r) in which p
does not attend its local extremum. Then there exist sequences of points x,, ¥, €
€ B(x,, r) such that lim x, = lim y, = z and p(x,) < p(z) < p(y,) for ne N. The

n—oo n—w

continuity of p yields the existence of such numbers r, > 0 that
(2.45) p(x) < ¥(p(z) + p(x,)) < p(z) for xeB(x,r,),

(2.46) p(x) > p(z) for xeB(y,r,) .

Put g, = 4(p(z) + p(x,)) and let f, be functions on @ such that

supp f, < B(x, 1a), fo € L(B(x,, 1))\ P®(B(x,, r,)) and [f,[, =1,
and define the function f by

16 = X277 £
By the use of (2.45) and of Theorem 2.8 we obtain
1710 = 3271l < 32Ul (1Bxs 7] + 1) =
<1+ sup|B(x,, r,)| < .
On the other hand, we put h, = y, - x, and, according to (2.46) and to Theorem
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2.8, we have
1fnlls 2 [ futaomenlle Z (1 + [Bas 2D ™" [ faiBismim

= (1 + B r))™" | fitaenrnl

Thus, f,, — f¢ ["*(Q) and since h, — 0, the function f is not p(x)-mean con-
tinuous. g

p(z) =

p(z) = 00 .

(2.47) If p* < oo, then the set of all bounded functions on Q is dense in
L”(“"(Q), .
Indeed, if G, = {xe @\ Q,: |
f(x), if |f(x))<n and xeG,uQ,,
flx) = <nsignf(x), if |[f(x))>n and xeG,uQ,,
0 in other points of Q,

x| < n}, then the functions f,,

are bounded on Q and the Lebesgue Dominated Convergence Theorem yields
o,(f — f,) = 0 as n - . Hence, by Theorem 24, f, > f. =

Theorem 2.11. Let pe 2(Q)n L*(Q). Then the set C(Q) n I’(Q) is dense in
LPY(Q). If, moreover, Q is open, then the set C3(Q) is dense in [’(Q).

Proof. Let fe I’*(Q) and ¢ > 0. By (2.47), there exists a bounded function
g € X¥(Q) such that

(248)  |f—gl, <.

By the Luzin theorem there exists a function h € C(Q) and an open set U such that

WI<mm{L<ﬂiEY}’

g(x) = h(x) for all xe @\ U and sup |h(x)| = 21\15) [9(x)] < ||9]»- Hence,

2,((9 — h)fe) < max {1, (2[g]./e)""} U] = 1,
ie. |g — h|, < e which together with (2.48) gives
(2.49) |f—=h|, < 2.

Assume, moreover, that Q is open. Since p e L*(Q), we have CJ(Q2) = IPX(Q)
and g,(h/e) < oo, and so there exists a bounded open set G = Q such that

op(hxale) £ 1, ie.

(2.50) [h = hxel, < €.

Let m be a polynomial satisfying sup |h(x) — m(x)| < e min {1, |G|™'}. Then
0,((hxe — myg)le) < min {1, |G|™'} |G| Gg 1, ie.

(2.51) lhxe — mxe|, < &

Finally, considerations similar to those leading to (2.50) yield that for a sufficiently
small positive number a the compact set K, = {x € G: dist (x, dG) = a} satisfies
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[mxe¢ — mxx,|, £ & Taking @ e C3(G) such that 0 < ¢(x) < 1 for xe G and
¢(x) = 1 for x € K, we obtain the estimate

<eg,

Imxe — mol, < [myg — myx,|l, <

which together with (2.49)—(2.51) gives

“f - m(p”,, < 4e.
Obviously, mp € CJ(2). m
Corollary 2.12. If p e 2(Q2) 0 L*(Q), then IP**(Q) is separable.
Proof. Let G, be bounded sets such that G, = G, = Qforne Nand Q = ) G,.
Using the same considerations as in the proof of Theorem 2.11 we obtain thant the

set of all functions myg,, where n € N and m is a polynomial on BV with rational
coefficients, is dense in [’*(Q). g

3. GENERALIZED SOBOLEV SPACES

In this section we shall always assume that @ = R" is a non-empty open set,
pe?(Q) and k is a given natural number. To avoid anyway rather complicated
assumptions we shall consider only bounded domains Q.

Given a multi-index a = (a,, ..., ay) € Ny, we set || = oy + ... + oy and D* =
= D}'... DY¥, where D; = a/ax,. is the generalized derivative operator.

The generalized Sobolev space W*P™)(Q) is the class of all functions f on Q such
that D*f € [™(Q) for every multi-index o with Ioz[ < k, endowed with the norm

60 Vo= 3 107l

By W;"™(Q) we denote the subspace of W*P*)(Q) which is the closure of C3(Q)
with respect to the norm (3.1).

We can use the standard arguments to derive the following statement from Theorem
2.5 and Corollaries 2.7 and 2.12.

Theorem 3.1. The spaces W*)(Q) and Wy "*(Q) are Banach spaces, which are
separable if p e L*(Q) and reflexive if p satisfies (2.39).
As a consequence of Theorem 2.8 we have:

(3-2) If q(x) < p(x) forae xeQ, then W:PO(Q)Q WHI™(Q).

Besides this trivial embedding, it would be useful to know finer estimates of the
type of Sobolev inequality. We may ask whether there exists the embedding

Wh(0) G 59(@),
with
1/q(x) = 1/p(x) = 1N, xeQ.
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The following example shows that, in general, this we cannot expect.

Example 3.2. Let N =2, Q ={xeR:|x| <1}, l<r<s<2 and o =
= 2(s — r)[r. Denote by A the set of those points x € Q, whose polar coordinates
t = ]xl, ¢ = arccos x,, satisfy the inequalities 0 < ¢ < t” and define

r if xeQ\4,
p(x):{s if xed.
The Sobolev conjugate is
=187 4 1o
The function f(x) = |x|* with = (s — 2)/r belongs to W'?*)(Q), because
0,(f) = Ja|x|* dx + fouq X" dx < [§ st de 4 2m [ 0 de
o (grad f) = |u* [ [x|%7 " dx + |u|" fouu x| Prdx <
< [yt st gy 4 2 f gD gy
and us + o +1>0, ur+1>0, (p—1)s+o+1> =1, (u—=1)r+1>—1.

However,
(1) > 2 J3 HCT T r = oo,

because 2sp/(2 — s) + 6 + 1 = — 1, and so, f ¢ W"4)(Q).

The idea of the example lies in combination of two unfavourable properties of the
function p: Its discontinuity and the non-regularity of the set of points of discontinuity.
We shall show that for some classes of functions p it is possible to get the embedding
WHP(Q) G [I™)(Q) with functions q approximating the Sobolev conjugate.

We shall say that the function p e 2(Q) is *-continuous on Q if lim p(y) = p(x)

for every x € Q (i.e. even if p(x) = o). e
Given ke N, k < N, we define the function S,
Nt
33 S(t) = — , 1=t<NJk,
6y s=- /

which associates the Sobolev conjugate g = Np/(N — kp) with a number pe
e [1, N/k).
Theorem 3.3. Let k < N and let the function p e 2(Q) be continuous on Q and

such that p(x) < N[k for every x € Q. Then for every number ¢ (0, k/(N — k))
there exists a constant ¢ > 0 such that

(3.4) e < elfle> SeWs™™(2),
where
(3.5) 1 < g(x) < S(p(x)) — &, xeQ.

Proof. Without loss of generality we can suppose that p is continuous on R" and
that sup p(x) = sup p(x) = p* < N/k.
Q
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Let 0 < ¢ < k(N — k). The function S defined in (3.3) is continuous, increasing
and S([1,N/k)) = [N/(N — k), ©). Hence, for every te[l,NJk) there exists
a unique s € (f, 00) such that S(s) = S(¢) + ¢ and we can find numbers

(3.6) Pr=1<p,<r <p3;<r;<...<pmy<rFm_1<Fr,=Dp*

such that

(3.7) S(pyz S(r)—¢, i=1..m.

Put G, = p '([l,ry)), Gi=p ' ((pir;)) for i=2,...,m~—1 and G, =

= p~'((pm P*])- The sets G,are openand |J G; = R. Let ¢, € C3(G,),i = 1,....m,
iz

be such that 0 < ¢(x) < 1 forxe R and ) ¢(x) = 1 for x e Q.
i<

Let fe C5 () and set f; = fo;, i = 1,...,m. Then f; € C3'(G; n Q) and, according
to (3.5)—(3.7), for x € G; we have

(3.8) pi < p(x) =i, q(x) = S(p).
The usual Sobolev embedding theorem yields
(3.9) Wy (G, n Q)Q L"(G,nQ), i=1,...,m.

Using Theorem 2.8 and inequalities (3.8) we successively obtain

1710 = 3 15ke < (4 12D 3 Uil < e0(t + 12D 5 [fill, S

i=1
< cieom(l + Q) ZJU-’“k.w

where ¢, is the greatest of the constants of embeddings (3.9), ¢, = sup {|D* ¢,(x)|:
aeNG, |o] £k i=1,...,m xeQ}and » = #{xeNj: |o| < k}.

Similar considerations lead to the following extended assertion.

Theorem 3.4. Let k < N and let function p e P(Q) be *-continuous on Q. Then
Sor every ¢€ (0, k/(N — k)) and ne(0,(N — k)/k) there exists a constant ¢ > 0
such that (3.4) holds with q satisfying

< {S(P(x)) . s(i_v - ,,)} if ,,(x)<g+ .

o for other xeQ.

(3.10) 1<
Moreover, every function f € Wy'"*(Q) is after a possible change on a set of zero

measure continuous on {x € Q: p(x) > N[k}.

Theorem 3.5. Let the functions p, q € P(Q) be »-continuous on Q. If
(3.11) WhP(Q) G I9(Q),
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then

G312 !

Lk forae xeQ.
q(x) — p(x)
(Recall that we set 1/o0 = 0.)
Proof. Note that 1/p and 1/q are continuous functions on Q with values in [0, 1].
Suppose, that

v

for some z € Q. Then p(z) < N/k and there exist numbers s e (1, ), re (L, N/k),
and a ball B = {y: |y — z| < 1} such that

, l -
Gy Lelllik ko,

a(y) s r N p(y) N
Then, by Theorem 2.8, W3"(B) Q Wy "¥(B), **'(B) G L(B), and since the second
inequality (3.13) yields Wy"(B)\ L(B) + 0, we have Wy "'(B)\ L'®(B) + 0, which
contradicts (3.11). m

There is a gap between the necessary condition (3.12) and the sufficient condition
(3.5) for the embzdding W, 7™(Q2) G L*(Q). We could not fill it up and estimate
the behaviour of the constant ¢ from (3.4) (i.e. of the norm of the embedding operator)
when ¢ = 0 or n — 0. Of course, the constants obtained in the proofs of Theorems
3.3 and 3.4 tend to infinity when ¢ —» 0 or y — 0 because, in general, the number
of intervals (p;, r;) and so the number of members of the partition of unity increases
to infinity.

The idea of the proof of Theorem 3.3 indicates that ‘‘reasonable™ functions p
need not necessarily be continuous.

Theorem 3.6. (i) If k > N, then W;"(Q)Q C(Q).

(i) If k = N and if there exists a number p, € (1, 00) and open sets G|, G, = R"
such that @ = Gy U G, and p(x) 2 p, for a.e. xe G, N Q, then the embedding
(3.4) holds where q is an arbitrary function from #(Q) such that q, =

= ess sup g(x) < .
GyinQ
(iii) If k < N and if there exists ¢ > 0, open sets G; = R" and numbers p;, r;,

m

i=1,...,m,such that @ = J G,,
i=1

(3.14) l=p, <py,<r, <p3y<ryy<...
e < Pt <Pz <Nk < p, <rp_y <rp,= 0,
(3.15) S(p)=S(r)—e, i=1,...m—1
and
(3.16) pi < p(x)Sr; for i=1,...,m andforae xeG,nQ,
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then there exists the embedding (3.4), where
m—1
min {S(p(x)) — ¢, S(p,.- or xeQn{ G,;,
(3.17) q(x) :__{ {5(p(x)) (Pm-1)} S ig]

oo for other xeQ.

Moreover, every function fe Wy ?*(Q) is after a possible change on a set of
zero measure continuous on the interior of the set {x € Q: p(x) > N/k}.

Proof. (i) We use Theorem 2.8 and the Sobolev embedding theorem to obtain
Wo PA(Q) G Wy ' (R) Q C().

(if) We use a partition of unity on @ subordinated to the covering G, G,, Theorem
2.8 and the embeddings W' (2 n G,) Q L(Q 1 G,), Wo"'(2 0 G,) G L (2 N G,)
which follow from the Sobolev embedding theorem.

(iil) The proof of this assertion is similar to that of Theorems 3.3 and 3.4. g

Theorem 3.7. (i) If the sets Q and Q2 G,, QN G,, and QN G, i =1,...,m,
consist of a finite number of components with Lipschitz boundary, then the as-
sertions (i), (ii) and (iii), respectively, in Theorem 3.6 hold with W*P®(Q) in place
of Wi (Q).

(i) If k = N and if there exists a number p, € (1, ©) and open sets G,, G, = Q
consisting of a finite number of components with Lipschitz boundaries and such
that |2\(G, U G,)| =0 and p(x) = p, for a.e. xeG,n Q. then WEP(Q))
O BX(Q), where g € P(Q) is such that ess sup g(x) < oo.

(iii) If k < N and if there exist numbers ¢ > 0, p;, r, and open sets G; = Q,
i =1,..., m, consisting of a finite number of components with Lipschitz boundaries

m

and such that |Q \ U G,| = 0and the relations (3.14)—(3.16) hold, then W**™(Q)Q
i=1

QG L9(Q), where q is defined in (3.17).

Theorem 3.7 extends the class of functions p e 2(Q) for which a Sobolev type
embedding theorem holds and allows to consider even the spaces W*"™)(Q). We
shall omit the proof because it is analogous to the previous one. The difference
consists in that we need not use a partition of unity. The assumption that the
corresponding domains have Lipschitz boundaries enables us to use the Sobolev
embedding theorem for W*7.,

Given two Banach spaces X and Y the symbol X C QQ Y means that there is
a compact embedding of X in Y.

Theorem 3.8. (i) If k > N, then W;"™(Q)Q QG C(Q).

(il) If the assumptions of Theorem 3.6(ii) are fulfilled, thenWy " (Q) Q Q L*(Q)

where q satisfies q, = ess sup g(x) < oo.
G1nQ

(iti) If the assumptions of Theorem 3.6(iii) are fulfilled, then W3 ()G Q
QC G LY(Q) for every function r e 2(Q) such that r(x) < g(x) — n for ae. xe Q,
where n > 0 and q satisfies (3.17).

(iv) If, moreover, the assumptions of Theorem 3.7 concerning the components
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with Lipschitz boundaries are satisfied, the assertions (i)—(iii) hold with Whr(x)(Q)
in place of Wy"™(Q).

Proof. (i) Using Theorem 2.8 and the compact embedding theorem for usual
Sobolev spaces we obtain

W(;"‘”(")(Q) Q W(;"I(Q) C Q C(Q) .

(i) Let ;€ C3(G;), i = 1,2, be such that 0 < ¢;(x) < 1 for x € RY and ¢ ,(x) +
+ ¢y(x) =1 for xe Q. Let {f,} be a bounded sequence in W;"*(Q). Then the
sequences of functions f," = f,¢, and f*’ = f,¢, are bounded in Wy'"*(Q n G,)
and W,"™(Q n G,), respectively. Since there is a compact embedding
Wy Q2 G,) QG (2~ G,), we can find a subsequence {f;’} such that

(3.18) fiD > M in QA G,).

According to the compact embedding Wy "(2 n G,) Q Q L*(2 n G,) we can find
a subsequence {f,.'} of {f;?’} such that
(3.19) L) =2 in L(QnG,).

We extend the functions f(') and £ by zero into B" and put f = f") + f) Then,
by Theorem 2.8,

If = falle = (12 + ) (1Y = £l + 172 = £2]2)
which together with (3.18) and (3.19) yields £, — f in L'*(Q).

m—1

(iii) Set G = @ n |J G;. It suffices to prove that
i=1

WET(6) G Q E9(G).

Then the proof can be finished in a similar way as in the case (ii), because p(x) =
= p, > N/k for a.e. x€G,, and so W;'""(G,,n Q)G Q L*(G,, n Q).

Let {f,} be a bounded sequence in W "*(Q). By Theorem 3.6(iii). there is the
embedding Wy "'(Q) Q 4*(Q), and so

(320 Ifl <K

for some K > 0. Since Wy '(G) G Q L'(G) and W3 "(G)Q Ws''(G), we have
W "™(G) Q Q L'(G). Hence, the sequence {f,} contains a subsequence which is
Cauchy in L'(G). We shall denote it again with {f,}. By Corollary 2.2,

G21) e =Ll S = Ll = 1l

where the numbers y, v satisfy the estimates
£=nS(pu-1)"2>0, 0SvL.

Hence, from (3.20), (3.21) we obtain
[f = £l £ e max {1,2K} | f,, = £}

and since {f,} is Cauchy in L'(G), it is also Cauchy in L®(G). u
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The proof of the following theorem is similar.

Theorem 3.9. If the assumptions of Theorem 3.3 are satisfied, then for every
e€(0, k/(N — k)) the compact embedding Wy"™(Q)Q Q LI*(Q) holds with q
satisfying (3.5). If the assumptions of Thoerem 3.4 are satisfied, then for every
e€(0, k/(N — k)) and ne(0,(N — k)/k) the compact embedding Wy " (Q)Q C
C Q E9(Q) holds with q satisfying (3.10).

Theorem 3.10. Let Q, p and k satisfy some of the following assumptions:

(i) k > N;

(ii) k = N and there exists a number p, € (1, c0) and open sets G,,G, = R"
such that @ < G, L G, and p(x) = p, for a.e. xe G, N Q;

(iti) k = N and there exists p, € (1, ©) and open sets G,, G, = Q consisting of
finite number of components with Lipschitz boundaries and such that
|2\(G, U G,)| = 0 and p(x) = p, for a.e. xe G, N Q;

(iv) k < N and there exist numbers p,, q; and open sets G, i = 1, ..., m, satis-

m

fying (3.14), (3.16) and such that @ = ) G; and
i=1

(3.22) ri<S(p), i=1,...m~—1;

(v) k < N and there exist numbers p;, q; and open sets G, = Q, i = 1,...,m,
consisting of finite number of components with Lipschitz boundaries and such that

|2\ U G| = 0 and the inequalities (3.14), (3.16) and (3.22) hold;
i=1

(vi) p is x-continuous on Q.
Then WyP™(Q)Q Q IP'*(Q) and

62 V= I 1071,

is an equivalent norm in W§"*™)(Q).
Proof. The compact embedding W;"™(Q) G G IF*(Q) can be proved in the
same way as Theorem 3.8. Note that in cases (iv) and (v) we have the inequalities

(3.24) pi < p(x) < r; < S(p;) forae. xeG,,

which play the role of (3.8) in the proof of Theorem 3.3. Since the last inequality
(3.24) is strict, we obtain the compact embedding (cf. the proof of Theorem 3.8(ii)). -
If p e 2(2) n C(Q), then some of the assumptions (i), (ii), (iv) is satisfied.

Obviously, (3.23) is a seminorm in Wy "*(Q) satisfying [f[c., < |f[l.,- The
converse inequality ||f [, < c[f[«., can be proved in a standard way with use of
the compact embedding W3 "™(2)Q Q I'(Q). w

Since the equivalent norm (3.23) plays an important role in applications, we shall
prove yet another assertion of that type which extends the class of admissible
functions p € 2(Q).
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Theorem 3.11. Let Q and G be domains in RY, |Q| < oo and let pe 2(Q) n L*(Q).
Put G' = {teR""':(t',1)eG for some teR} and G(t') = {reR:(t,7)e G}
for t € R¥™'. Suppose that |G(1')] £ A < o for t' € G’ and that there exists a one-
to-one mapping ®: G — Q satisfying the conditions for the change of variables
in Lebesgue integral and such that

(3.25) 0 < inf|Jo(t)| < sup |Jo(t)| < 0,
G G
where Jg, is the Jacobian of @,
(3.26) Dy® € L*(G),
(3.27) p(®(r, 1)) = q(t') forae. (I',7)eG.

Then (3.23) is an equivalent norm in Wy (Q).

Proof. We shall consider k = 1. For k > 1 the proof can be accomplished by
induction. Let f € C5'(Q), f # 0, and put 2 = ||f||,. For ' € G’ satisfying (3.27) and
for a.e. T € R we have

F@(r, 7)) = j '

-0

T

a%f((l’(t’, £)) dé = j grad f(@(r, £)) Dyo(1', &) d,

—

and so, using the Holder inequality, (3.26) and (3.27), we obtain
[f(@(0)**” < max {|| |Dyo|
Nfeun |grad f(@(r', 7)) dr .

Hence, according to (2.10) and (3.25),
L= Jo [P dx = o @) [14(0)] dt <
< sup [4a()] o LH(0, Q)" de o <

<, j J J lerad f(@(r', ¢))
G'J G(1)J G(t) A

7 1} max {477, 1} .

q(t’)
dédrdr £

< C’A(igf ]Ja)(t)D_, j M‘E@»! ree |Jo(r)| dt =
- [
o 2 '

where ¢, = sup |Jo(1)] max {|| [Dy®| |7, 1} max {47""", 1}. Putting ¢ = max {c,, 1},
G

we obtain
1< f
Q

Who 2 lHerad f1], 2z ™ 'a = ' 1], - m

cl_g.@qflx)l re dx

)

611



Example 3.12. Let Q, G,, G, be domains in R" such that G, U G, < Q,
|2\ (G, U G,)| = 0 and G, G, have Lipschitz boundaries. Let 1 < p, < p; S @
and set

\_Jpy for xeG,, _Jq, for xeGy,
() = {Pz for xeG,, a(x) = q, for xeG,,
where q; = S(p;) = Np;/(N — kp;) if p; < N[k, q;€[1, o0) arbitrary if p; = Nk,
and q; = o0 if p; > N[k, i = 1,2. Then

Wk.p(.t)(Q)Q U(.H(Q)
by Theorem 3.7,

W"'p(”(Q)Q Q L™(Q)
for every r e 2(Q) with ess inf (q(x) — r(x)) > 0 by Theorem 3.8, and ]-[,, is an
Q2

equivalent norm in Wy "(Q) by Theorem 3.10.

Example 3.13. Let Q = (0, 1) x (0, 1), let pe 2(Q) and g € L*(0, 1) satisfy 1 <
< p(xy, x;) = q(x,) < o0 for ae. (x;,x,)eQ. Set G=Q and &(t) =1, teG.
Then the assumptions of Theorem 3.11 are satisfied and so [+[, , is an equivalent
norm in Wy "(Q).

Example 3.14. Let Q = {xeR* 1/2 <|x| < 1} and let pe 2(Q) N L*(Q) be
0-homogeneous, i.e. p(Ax) = p(x) for every 4 > 0. Then Q, = {xe R*: } < |x| < 2,
xy < |xol}s @1y, ty) = ty(costy, sinty), G, = (4m, in) x (4, 2), and Q, =
={xeR} <|x| <2, x;,> —|x,)|}, &, G, = (—3m, 3n) x (4, 2) satisfy the as-
sumptions of Theorem 3.11 with g(t,) = p(cost ¢, sin t,). Hence, using the partition
of unity we easily obtain that Wy*™(Q)Q Q ’*)(2) and ][, is an equivalent
norm in Wy Q).

Example 3.15. Let Q = {x e R*: 1/2 < |x| < 1} and let p e 2(Q) n L*(Q) be such
that p(x) = p(|x|) for x € Q. Let Q, and Q, be as in Example 3.14 and set (1) =
= ty(cos ty, sint,), i = 1,2, G, = (4,2) x (3, In), G, = (4, 2) x (—3m, 3n). Then
the assumptions of Theorem 3.11 are satisfied with ¢ = j and, consequently,
We P () C Q '(Q) and ][, is an equivalent norm in W5 ?™(Q).

We can use Theorems 2.1, 2.6 and the standard reasoning to obtain the following
characterization of the dual space (W5 "*(Q))*:

Theorem 3.16. Let pe 2(Q)n L*(Q). Then for every Ge(W;"™(Q))* there
exists a unique system of functions {g,€ I’'™(Q): |a| £ k} such that

G(f) = T Jo D' (¥ 0.0 b, S Wir(@).
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4. APPLICATIONS

In this section we shall show a general scheme of application of spaces W*?)(Q)
to a Dirichlet boundary value problems for nonlinear partial differential equations
with coefficients of a variable growth. We shall assume that Q = R" is a non-empty
open set, pe 2(Q) and k is a given natural number. Given u € W*P®)(Q) we shall
write d,u = (Du: e Ny, |o| < k}.

First, we shall investigate the Nemyckii operators in W*7™(Q). We shall say that
a function h: Q x R™ - R, me N, satisfies the Carathéodory conditions, h e
€ CAR(Q, m). if for every & e R™ the function h(-, &) is measurable on Q and if for
a.e. x € Q the function h(x, +) is continuous on R™. Every function h € CAR(Q, m),
generates a Nemyckii operator H which maps an m-tuple (uy, ..., u,,) of functions
on Q onto

H(u,,....u,) (x) = h(x, uy(x), ..., un(x)), xeQ.

We shall use the convention 1/oo = 0 and 0. 00 = 1.

Theorem 4.1. Let h € CAR(Q, m) and let functions p;, r e P(Q) be finite a.e. in Q
and such that ess sup (pi(x) — r(x)) = B, < o0, i = 1, ..., m. If there exists a non-

P
negative function g € L™(Q) and a constant ¢ > 0 such that

l’l('\'~ E)l é g(X) + C‘iiléilm(x)/rlx)

for cvery éeR™ and a.e. x € Q, then the Nemyckii operator H maps the space
An(Q) = L'NQ) x ... x I"NQ) in LP(Q).

Proof. Let u = (uy(x), ..., un(x)) € 4,(R) and let 4;€(0, 1] be such that
(A < oo i=1,..,m, and @(dnsg/c) < 0. Set A= min{i;:i=
=1,....,m + 1}, Then

u B 2 m () r(x)
o A—> - j (m+ 1) '<n<- o() + 3 Al ) dx
2 c i=1

.;(;1 1)

I.(

§J. l)~m+1 g(x)/clr(x) dx + Zj lztx)—p.-(X) I'li ui(x)lp-(x) dx <
2 i=1)9

IIA

r(x

R ) m
'fg(x) +y A’“"]u,-(x)]”“"’) dx <
(4 i=1

< 0+ gle) + Y Ai_ﬂigp.-(}'iui) <X©0. m
i=1

Theorem 4.2. Let p;, r € 2(Q)n L(Q), i = 1, ..., m. If the Nemyckii operator H
maps A,(Q) in L™(Q), then it is continuous and bounded.

Proof. It is sufficient to assume that H(0) = 0 and to prove the continuity and
boundedness of H in 0 € 4,,(Q).

Suppose that H is not continuous in 0. Then, according to Theorem 2.4, there
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exists « > 0 and functions ¢, € 4,(Q), n e N, such that

(4.1) Y 0, (00) <0, i=1,..,m,
n=1
(4.2) o(H(p,)) > o, neN.

First, suppose that |Q| < o0. Using the induction we shall construct sequences of
numbers ¢, > 0, n, € N, and of sets G, = Q such that for every k € NV the following
conditions hold:

(4.3) Gr1 < 38,

(44) Gl < &,

(4.5) fou |[H(@,) (x)™ dx > 3a

and

(4.6) o |H(@,) (x)® dx < 3o forevery D < Q, |D|<2¢,,.

Put ¢, = ]Ql, n, = 1 and G, = Q. Suppose we have already found ¢, n, and G,.
Since the function |H(gp,,)|" is integrable on Q, there exists .., > 0 such that (4.6)
holds. If & < 2¢,,, then |G| < 2¢,,, and (4.6) with D = G, contradicts (4.5).

Thus, (4.3) holds.

According to (4.1), ||@,.i],, = 0 for i = 1,...,m and so, by (2.34), ¢, ; — 0 in
measure. Since the Nemyckii operator is continuous with respect to the convergence
in measure (see [4]), we have H(p,) — 0 in measure and there exists m; >
such that

|G/.-+1I < Ep+1
where

Goor - { & [H(p,..) (™ = Tgl} .

Hence, (4.4) holds as well as (4.5), because
fors [H(p,,. ) (R dx =
= IQ ]H((pnk+1)(x)|’(X) dx — J.Q\Gk-fl IH((p'lkﬂ) (x),r(x) dx >o— a/3 = gd :

Now, the sets D, =~ G,\ | G, are pairwise disjoint and from (4.3), (44) and
(4.6) we have =kt

[GaD <] U G| = Y & <284,
i=k+1 i=k+1

and
(47) lek\Dk IH((pnk) (x)ir(X) dx < 06/3 :

The function y = ¥ ¢, /0, belongs to 4,(2) by (4.1). On the other hand by (4.5)
k=1
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and (4.7), for 4 > 0 we have
-‘9 li H(l//) (x)lr(X) dx = min {1 ;f‘}k;l.[[)k IH((ka) (X)Ir(x) dx =
> min {1, 27} x
X AZ:E][J.Gk |H((/7nk) (x)lr(x) dx — .[G;,—\Dk IH((p"k) (x)lr(x) dx] - o,

i.e. H(y)¢ L™ (Q), which contradicts the assumption of the theorem. Thus, the
continuity of H is proved in the case [Q| < oo.

Now, let IQ] = 0. By induction we construct an increasing sequence {n,} and
pairwise disjoint sets D, < Q such that

(4.8) lel < o0, ka ]H((p,,k) (x)!’("" dx > oc/2
for k e N. We set n; = 1 and, according to (4.2) find a set D, satisfying (4.8). Suppose

k
we have already found n, and D,. Then |U Di] < o and by the first part of the
proof there exists n,, > n, such that =t

56 o0 [H(0u, ) (O dx < 2.
By (4.2) there exists G, ; = Q with a finite measure and such that

“(k¢| H((p"kh)(}‘)lr(x)d’( > .

Hence, we put D,y = Gy \ U D;. The function = Z (p,,k/,,, satisfies i € A4,,(Q)

and H(y) ¢ L™(Q) which contradlcts the assumption of thc theorem. Thus H is conti-
nuous again.
Since H is continuous, by (2.11) there exists a number R > 0 such that

(4.9) o(H(p) =1 if [o]s, =R
Let = (uy, ..., u,)€4,(R), u=0, and let a > 0 be such that «R < [u] 4, =
< (a + 1) R. Then for every i = 1, n,

0,.(R™ mu)<[m(a+l)]’” RMa+ 1) "u) <

éDMR'HMm+UP
and there exists k; € N satisfying

[m(R™"[ull, + V" <k, < [m(R™u|4, + D7 + 1
and such that

0,(R™"mu;) < k.

. ki
Thus. there exist sets G}, j = 1, ..., k;, such that Q@ = |J G; and
j=1
(4.10) Joi, Imu(x)RT')" ™ dx <1, j=1,.., ki, i=1,..,m.

For every m-tuple I = (I, ..., l.) e [T{1, ..., k;} we put G, = () G}, and u; = ua,
i=1 i=1
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From (4.10) we have g, (mu, ;/R) < 1, i.e. |u|

o (HW) = 3 o, [H(0) (] dx < T e(H(w) < n k <

[ (R a0+ 1} o= K.

Thus, |H(u)|, < K(1) for |[u] ,, < 1, and the operator H is bounded. o

4, < R. This and (4.9) yield

As an immediate consequence we obtain:

Theorem 4.3. Let the functions p, re P(Q) be finite a.e. in Q and such that
ess sup (p(x) — r{x)) < oo. Let m = #{aeNy: |¢| < k} and let he CAR(Q, m)
Q

be such that the inequality

Ih(x, 5)] =< g(x) + c Z léz'p(x)/r(x)
la| Sk

with some ¢ > 0 and g € L™(Q) holds for every £ € R™ and a.e. x € Q. Then the
operator H: uw> h(x, 8, u(x)) maps the space W*P™)(Q) in L™(Q). If, moreover,
p, r€ L*(Q), then H is continuous and bounded.

Corollary 4.4. Let p € 2(Q) satisfy (2.39). Let he CAR(Q, m), m = #{xeNj:
lo| < k}, and let g e IZ(Q) and ¢ > 0 be such that

(4]1) Ih(,\‘, é)l < g(x) + ¢ Z |€1|l’(x)—1
lz] <k

holds for every (e R™ and a.e. x€ Q. Let ae Ny, Ial =< k. Then the operator
T,: WP Q) — (WEPS (Q))* defined by T, u(v) = (g h(x, 8, u(x)) D* v(x) dx, u, ve
€ WhP(Q), is continuous and bounded.

Proof. We use Theorem 4.3 with r = p’ to obtain H(u) e L’ *(Q). Theorem 2.1
yields

IT; ”(D)I = r,,[]H(u)”,,» ”D’v”p = r,,”H(u)”,,» ”U“k-p

and so Tu e (W*?™(Q))*. Since p, p’ € L*(Q), the continuity and boundedness of
the operator T, follows from Theorem 4.3. g

We are now ready to show an application of generalized Sobolev spaces W*?)(Q)
to Dirichlet boundary value problems for partial differential equations.

Boundary value problem. Consider a differential operator 4 of order 2k in the

divergence form,
Au(x) = Y (=1)""D%,(x, 8, u(x)),
lal sk

where the functions a, € CAR(Q, m), m = #{xe N§: |«| < k}, fulfill the growth
condition (4.11) with g € I?®(Q) and ¢ > 0. Let Q be a Banach space of functions
on Q equipped with a norm ||+ |, and such that C3(Q) is dense in Q and, moreover,
WiP¥(Q) Q Q. By Theorem 2.11, for Q we can take e.g. IP*(Q). Let f€ Q* and u, €
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e WHP™)(Q) and denote by <+, *>, the duality on Q. A function y ¢ Whre)(Q) s a
weak solution to the Dirichlet boundary value problem (A, Uo, f) for the equation

Au=f
with the boundary condition given by u,, if

u — uge Wyr(Q)
and if the identity

py Ja a:(x, 8, u(x)) D* v(x) dx = <f, v}
holds for every v e Wy P™(Q).

From Corollary 4.4 we obtain that the operator T: Wy "(Q) — (Wtr(Q))*
defined by

(4.12) {Tw, vy = a; fo a(x, 8 [w(x) + uo(x)]) D* v(x) dx ,

where -, +» stands for the duality in WA"”“"(Q), is continuous and bounded. It is
clear that u € (A, uq, f) if and only if u = uy, + wand Tw = f.

Theorem 4.5. Let p € 2(Q) satisfy (2.39). Let the functions a, satisfy (4.11) and let
for every &, ne R™ and for a.e. x € Q the conditions

(4.13) Y [alx, &) — a)(x,n)] (&, —n,) = 0,

la| Sk

(4.14) Y a0z g Z IL [P — e

lal 2
hold with some constants ¢, ¢; > 0. Then the boundary value problem (A, uy, f)
has at least one weak solution ue W*P™(Q). If, moreover, the inequality (4.13)
is strict for & % n, then the solution is unique.

Proof. It suffices to verify that the operator T: Wy ?™"(Q) — (W5 "™(Q))* from
(4.12) satisfies the assumptions of the well-known Browder theorem (see e.g. [1]).

The space Wy "*)(Q) is reflexive by Theorem 3.1.

The operator T is continuous and bounded by Corollary 4.4.

Inserting & = &, u(x), n = & v(x) into (4.13) and integrating over Q we obtain
the monotonicity of T.

Similarly, from (4.14) we obtain

lim (Tws w) zc, lim wl, X o, (D).
Il Wi, il p e0 HED

Since |w]y,, < m max {|D*w]: 'cx] < k} and since we can consider [|w|;, Z I, we have

S o0w) 2 [ulty X ol(DwlIvl.) 2

e 'm*"ap(lD“‘ I/H DPwlp) = [wlis,!

al <k

= |w m-r,
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where B is the multi-index for which the maximum of || D*w|, is attained. Thus,

. Tw, w g
lim < >g cym™™ lim o w

etien=o W] il p=or

pe—1 _
k.p = 0

and the operator T is coercive.
If the inequality (4.13) is strict, then T'is strictly monotone, which yields the unicity
of the solution. g

Remark 4.6. If Q and p satisfy the assumptions of Theorem 3.10 or 3.11 then the
condition (4.14) in Theorem 4.5 can be weakened in the following way:

Z o‘z('\-* é) Lfaz g cll [Z;k

la} £k

P

&P — €y
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