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Czechoslovak Mathematical Journal, 41 (116) 1991, Praha 

ON SPACES Lp(-X) AND Wk^x) 

ONDREJ KovÁčíK, Žilina and JiŘí RÁKOSNÍK, Praha 

(Received December 30, 1988) 

1. INTRODUCTION AND PRELIMINARIES 

Consider the nonlinear Dirichlet b.v.p. 

(1.1) X ( - l ) ' " ' o 4 ( * , M = / on Q , 
\*\йк 

(1.2) w - 0 on dQy 

where ôku = {D*u: |a| g A:}. One ofthe common approaches to the weak solvability 
of the problem(l.l),(1.2) is based on the Browder theorem and assumes that the 
coefficients satisfy both the growth conditions 

(1.3) k ( x , { ) | a f l f W + c X I««!'"1 

Нйк 
with g e U{Q) and the coercivity condition 

(1.4) X *«(*> Í) Č. ^ ^i Z |í«|p - c2 

Wi* Ms* 
with some p e ( l , oo). It is then natural to look for a weak solution in the Sobolev 
space Wk'p(Q). 

Consider a more general situation, when Q = Qx u Q2, 1 < Pi < p2 < oo, and 
the conditions (1.3), (1.4) are satisfied with pt on Qt. Ifwe simply use the above scheme 
to find the weak solution of( l . l ) , (l.2) in Wkp(Q), we see that the validity ofconditions 
(1.3) and (1.4) requires p = max {pu p2} and p = min {pj, p2], respectively. Even 
more difficult situation occurs when p is a function ofx є Q. 

The aim ofthis paper is to suggest appropriate analogues ofthe Lebesgue spaces U 
and of the Sobolev spaces Wk,p. It is clear that we cannot simply replace p by p(x) 
in the usual definition of the norm in U. However, the Lebesgue spaces can be con­
sidered as particular cases of the Orlicz spaces belonging to a larger family of so 
called modular spaces. This approach enables to define corresponding counterparts 
ofthe Luxemburg and Orlicz norms in Lp(>x\ Ifthe function p is finite a.e. in Í2, then 
jj{x) j s a p a r t j c u i a r case ofthe so called Orlicz-Musielak spaces treated by J. Musieiak 
in [6] where some details for the spaces U^-x) and further references can be found. 
We extend the definition ofZf(x) for functions p taking the values from [ l , oo]. 
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Our paper is organized in the following way. In Section 2 we define the spaces 
U^x) and investigate their properties interesting from the point of view of the above 
b.v.p. It appears that spaces Lp(x) and П have many common properties except a very 
important one: the p-mean continuity. In Section 3 we introduce the generalized 
Sobolev spaces Wk'p(-X) and prove some theorems on continuous and compact 
embeddings and on equivalent norms. In the last section we deal with the Nemyckii 
operators in Lp(*} and Wk,p^x) and use the results ofthe previous sections to establish 
an existence theorem for a weak solution to the b.v.p. (1.1), (1.2) with coefficients 
of variable growth. 

Throughout the paper the terms measure, measurable etc. will mean the Lebesgue 
measure, Lebesgue measurable etc. All sets and functions are supposed measurable. 
The Lebesgue measure and the characteristic function ofa set A cz RN will be denoted 
by |v4| and yA, respectively. The symbol Q will stand for a set in RN with \ü\ > 0. 

By &(Q) we denote the family of all (measurable) functions p: Q -^ [1, oo]. 

Notation 1.1. For peJ>(Q) we put Qp = Qi = {xeQ: p(x) = 1}, Q^ = Q^ = 
= {x e Q: p(x) = oo}, Ql — Q0 = Q \ (i2t u Q^), p* = ess infp(x) and p* = 

Qo 

= ess sup p(x) if |O0 | > 0, p* = p* = 1 if |fio| = 0, cp = Wxn^ + [feIco + 
ßo 

4- ||̂ o |̂|oo* a r | d rp — cp + l|P* — l|P*- We use the convention l/oo = 0. 

2. GENERALIZED LEBESGUE SPACES 

Let p e 0>(Q). On the set of all functions on Q we define the functionals qp and 

ll-L by 
(2.1) Qp(f) = J ^ _ |/(x)[**> dx + ess sup | / (x) | , 

ßoc 

(2.2) J/J, = i n f { A > 0 : ^ M ) a l } . 
It is easy to see that gp has the following properties: 

(2.3) Qp(f) = 0 foreveryfunctionf. 

(2.4) Qp(f) = 0 if and only if f = 0 . 

(2.5) Qp(-f) = Qp(f) foreveryf. 

(2.6) ^ /s convex . 

(2.7) / / | / ( x ) | ^ | # ( x ) | fora.e. xeQ andif ^ ( / ) < o o , ífcerc 

gp(/) ^ £P(#); 'ЛЕ? / â r5 ' inequality is strict if | / | ф |#| . 

(2.8) / / 0 < Qp(f) < oo, /^еи thefunction A^Qp(f|X) is continuous 

and decreasing on the interval [1, oo) . 

The properties (2.3)-(2.6) characterize gp as the convex modular in the sense 
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of[6]. 
(2.9) QP{fi\fb) = ] f0r everyfwith ° < №' < °° • 
Indeed, taking y„ i ||/||p we use the Fatou lemma, (2.8) and (2.2) to obtain 
e p ( / / | | / | p ) ^ l i m i n f í , ( / / y . ) á l . . 

Л ^ 00 

(2.10) J / p* < oo , ffcen e , ( / / | / l p ) = 1 for everyfwith 0 < \f\p < co . 

F o r O < X й n/ |pWehavee,(/ /A) g (Ц / | | р Д)^ о р ( / / 1 / | р ) .Непсе , і ґ Є р ( / / | / | | р ) < 1, 
we can find I < \f\p such that Qp(f|X) g 1, which contradicts (2.2). и 

As a consequence of(2.6), (2.4) and (2.9) we have: 

(2.U) / / lfluU then Q&)u|fl,. 

The generalized Lebesgue space LP^x)(Q) is the class of all functions / such that 
Qp(Af) < oo for some X = / ( / ) > 0. The properties (2.3)-(2.6) and (2.9) yield 
that Zf(x)(ß) is a normed linear space if endowed with the norm (2.2) which cor­
responds to the well-known Luxemburg norm in Orlicz spaces. If p(x) = p is 
a constant function, then the norm (2.2) coincides with the usual Lp-norm and so the 
notation is not confusional. 

Let M: Q x R -^ [0, co] be a non-negative measurable function such that for 
a.e. x є Q the function M(x, •) is lower semicontinuous, convex, even and satisfies 
lim M(x, u) = M(x, 0) = 0. The so called Orlicz-Musielak space ď(Q) consists 
j c ^ 0 

of all functions / on Q such that \Q M(x, A/(x)) dx < oo for some л > 0 (cf. [6]). 
Ifthe function p is finite a.e. in Q then LPix)(Q) = LM(Q), where 

(2.1.2) M(x,u) = \u\p(x). 

Given p e 0>(Q) we define the conjugate function p' є ^*(i2), 

Î
oo for x є Qp , 
1 for xeQp„, 
p(x)|(p(x) - 1) for other x є Q . 

Theorem 2.1 (generalized Hölder inequality). Let p e 0>(Q). Then the inequality 

blA*M*)|d**rj/|,|e|, 
holdsfor everyfe U^X){Q) and g є Lp'(jc)(í2) with the constant rp defined in 1.1. 

Proof. Obviously, we can suppose that \f\p Ф 0, \g\p> Ф 0 and | ß 0 | > 0. For 

a.e. xeQ0 we have 1 < p(x) < oo, | / (x) | < oo and |#(x)| < oo. Putting a = 

= / ( * ) / I / | U k = #(*)/IHp'> ^ = P(x)> P' = P'(*) i n t h e well-known inequality 

, ^ ap bp' 
ab ^ — + — , 

P P' 
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integrating over Q0 and using (2.9) we obtain 

йгтт1 àx ^ess SUP 4~л М Ш + e s s SUP 4 ^ оД /̂lkL") ^ 
ßo ? ( * ) ßo p ( x ) ßolU | |P[ |^I |P ' 

Š 1 + l/p* - l/p* 

Thus, 

Jß \f(x)g(x)\ áx й (1 + 1/P* - 1/P*) l/ | |p M , ' Ы « > + 

+ i/Zo,ji lkXn,|U + ||Aooo lflUfoJi ^ r J / J , ||âr||p, . ш 

Corol!ary 2.2. Let p, r, q є £?(Ú) be such that p(x) ^ r(x) ^ g(x) < co for a.e. 
x є Q and p ф g. Then there exists a constant c > 0 such thatfor everyfe Lp(x)(i2) n 
n L9(x)(ß) the inequality 

(2.i3) u/| | r =g c\\f\\; | | / | | ; 

holds, where 
p(x) q(x) - r(x) 

(2.14) 

(2.15) 

ess sup 
ß r(x) q{x) - p(x) 

. p(x) q(x) - r(x) , 
ess inf ~ -~ —-- --7 if 

1 ß r(x) ф ) - p(x) 
g(x) r(x) - p(x) , f „ 

ess sup — - ^ - ^ ^ -< if 

ß r(x) ф ) - p(x) 

e s s i n f ^ A z ^ if !| 

1ІР > 1> 

l l p á l , 

II« > l > 

, a l ß r(x) ф ) - p(x) 

(frere we consider 0/0 = 1). 
Proof. It suffices to consider / Ф 0. At first, assume that r(x) < q(x) for a.e. 

x є Q. Define functions 5, t є &*(Q), 

s(x) = g ( * ) - P ( * ) , t{x) = «(*) - P(*) 
q(x) - r(x) ;

 r ( x ) - p(x) • 

Then 1 < s(x), t(x) < oo and l|s(x) + l|t(x) = 1 for a.e. x є Q and so, by Theorem 
2.1, 

(2.16) Qr 
f й r. l/l p/s іи: p/s 

According to (2.14) and (2.9) we have 

/ (2.17) 

Similarly, 

(2.18) 

, ;№L\ < 
" rUrJ -

и: -p/s 

Š 1. 

Š 1. 
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Since rs ̂  1, we can use the convexity of^r and estimates (2.16)-(2.18) to obtain 

(2Л9) в- і^ітеиѵ - ìвг (fféwè -l ' 
i.e. the inequality (2.13) holds with c = rs. 

Now, assume that \G\ > 0 where G = {x e Q: r(x) = q(x)}. Then 

. p(x) q(x) - r(x) q(x) r(x) - p(x) 
ess inf — - —— — = 0 , ess sup ^^ ^ ^ — v ; — 1 

n r(x) q(x) - p(x) D r(x) q{x) - p(x) 
and so \\f\\: ^ 1., \\f\\; ^ lf\\q. Hence, 

Qr (іш)=* (pfk) - * (ш - * (w -[ • 
Since r(x) < q(x) for a.e. x e Q \ G, by the first part of the proof(cf. (2.19)) we have 

o ( fXa^G \ > 

I|/Il:ll/Iir s 

Thus, 
o ( t- \ < o ( fXo \ + /_J>W_\ < r + i 

wKW"Vi/i;i/i;/ W\\U\f\\iJ- s 

and, similarly as in the first part ofthe proof, we conclude the inequality (2.13) with 
c = rs + 1. u 

For functions/on Q we define 

(2.20) |||/|||,= sup iof(x)g(x)dx. 
Qp'(9)ul 

This is an analogue of the Orlicz norm in Orlicz spaces (cf. [5], chap. 9) and it is 
easy to see that it is a norm on the class of functions/ with | | | / | | |p < oo. 

(2.21) Let | | | / | | |p < oo and Qp.{g) < oo. Then 

iio/w,wd,isji|i/i|i. ? * « * ; • 
l|||/|IUMff) lf QAe)> 1-

The first case follows from (2.20). Assume Qp(g) > 1. The convexity of Qp yields 
Qp{Qp{gY1 9) й Qp{g)'1 Qp>{g) = 1 and so 

\\Qf(x)g{x)àx\ - M e ) l b / W M ^ ) " 1 ^ ) d x | Û Qp{g)\\\f\\\p. m 

(2.22) / / | 0 , | = | 0 ^ | = 0 anrf 1/ ř , ( / ) < oo, | | | / | | | , ^ 1, iAew e,( / ) й 1. 
Suppose, to the contrary, that £p(/) > t. According to (2.8) there exists A > 1 

such that Qp(f|X) = 1. Putting 

ff(x) = | / (x)/A|^>-1 sign/(x) , x e Í2 , 
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we have Qp.(g) = e,(/M) = 1 and so 

| | | / | | | , ^ faf(x)g(x)dx = ЯЄр(/Д) = Я > 1 , 
which is a contradiction. H 

(2.23) / / | | | / | | | , й I then Qp(f) й cp\\\f\\\, 

First, suppose that gp(f) < oo. We have 

( 2 . 2 4 ) Qp(f) = | X f l J o o Qp(ft) + [ A b i - ^ p ( / o ) + I t o . ^ p ( / o o ) , 

where /,• - / / ß > , y = 1, 0, oo. Put 

0i(x) = sign/ t(x) , ffo(x) = |/o(*)|**>"1 sign/0(x) , x є ß . 

Then Qp>(gx) = ess sup |fifi(x)| = 1 and, according to (2.22), 
л-є-Q, 

^ o ) = k|/W|Kx)dx^ 1. 
Hence, (2.21) yields 

(2.25) Qp{fj) = fe/(x) ffy(x) dx £ | | | / | | | , , ./ = 1, 0 . 

ïf \Qj\ > 0, then for every ô є (0, 1) there exists a set A c i2^ such that 0 < |л | < oo 
and | / (x) | ^ c> ess sup | / (y) | for x є Л. Then for 

yeQoo 

Q* = И І " 1 ZxSign/ we have £y(# x) = \A \л\~1 |sign/(x) | dx g 1 
and so 

|||/|||eJo/(*)i.(*)dx = 
= И І " ' Ь | / (* ) | dx è 6 ess sup | / (x) | = S Qp(fr) . 

уєПго 

Letting ô ~> 1 — we obtain 

(2.26) ^ ( / o o ) ^ | | | / | | | p . 

Relations (2.24)-(2.26) yield the desired inequality (2.23). 
To avoid the assumption Qp(f) < oo we use the truncations 

fH(x) = min{nt\f(x)\}xGÁx)> neN> 

where \Gn] is a sequence of sets such that Gn a Gn+1 c Q, \Gn\ < oo for n є A/ 
oo 

and Q = U G„. Then Qp(f„) < oo, J | | / J | | , ^ | | | / | | | , ^ 1 and, according to the first 
n = 1 

part ofthe proof, Qp(fn) й cp\\\f\\\p- It suffices to let n ^ oo. m 

Theorem 2.3 (on equivalent norms). Lp(-X)(Q) = {f: \\\f\\\p < °o} and for every 
/ є LP(X)(Q) the inequalities 

(2.27) c;l/|U|||/|||,srJ/|, 
hold, where cp and rp are constants defined in 1.1. 

Proof. Let feLPix)(Q). If 0p-(0) g 1, then ||#fp, g 1 and the Holder inequality 
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yields $af(x)g(x)dx й Г
Р\\/\\РЫР' g rp\f\p. This gives the second inequality 

(2.27) and, consequently, | | | / | |L < oo. 
On the contrary, let 0 < | | | / | | | , < oo. Since | | | / / ( c J / | | | p ) | | | p = c'x й 1, we use 

(2.23) to get вр(//(ср|||/|||р)) S cpc~x = 1. The first inequality (2.27) follows and 
yiddsfeU^(Q). я 

We shall say that functions fneU^x){Q) converge modularly to a function fe 
e L*'>(Q), if Hm e,(f - /„) = 0. 

Tt^ 00 

in [5] it is shown that in Orlicz spaces there is a substantial difference between 
the norm convergence and the modular convergence. We shall show that a similar 
difference is in the space U^X\Q). According to (2.1.1) the norm convergence is 
stronger that the modular one. 

(2.28) / / p* < 00, then Qp(fn) ^ 0 if and only if \\fn\\p -+ 0. 

Suppose, that Qp(fn) ~> 0, and take e є (0, 1]. For sufficiently large n we have Qp(fn) < 
< є ^ 1 and so 

Qp{fnQp{LY1"') è e , ( /n) - 1 Jo4Q. \fn(x)\Hx)dx + 

+ QP{LYilp* ess sup | / , (*) | - gXLY' Qp{L) = 1 , 
#oo 

l |/X^p(/r<^-
Hence, fl/J, ^ 0. . 

Theorem 2.4. TTze topology of the normed linear space Lp(x)(Q) given by the norm 
(2.2) or (2.20) coincides with the topology of modular convergence if and only if 
p* < oo. 

Proof. Suppose that p* = oo. Then there exist sets Gn+l <= Gn ci Q\Qao such 
that \G„\ < oo and 

(2.29) \Gn\ ^ 0 , 

(2.30) p(x) > n on Gn, n e N , 

(2.31) s u p { n : | G „ \ G n + 1 | > 0 } - oo. 

Fix Ae(0, 1), put con = \Gn\Gn+i\ and an = A"a>;1 if oon > 0, an = 0 otherwise. 
OO 

Consider the functions/(x) = ( £ АДс я \сй + 1М)1 М х ) , * є ß ' a n d ^ » = ^ W Then 
л = 1 

(2.32) е , ( Л = JONßoo |/(x)|**> dx = f алсоп <; f Г < со . 
л = 1 n = l 

On the other hand, (2.30) yields 

(2.33) яАт = и/(Ф\ріх)а* = 
00 СО 

= I к \ с к + , | / М М Г ' dx > £ а ^ Д - * = со , 
&=л fc=n 
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because, according to (2.3l), the last series of non-negative numbers contains an 
infinite number of members akcokX~k = 1. Now, (2.32) and (2.29) yield Qp(fn) ^ 0, 
but(2.33)gives | | / 4 ^ A . 

The sufficiency ofcondition p* < oo is proved in (2.28). m 

(2.34) / / p* < oo and iffn ^ 0 in L**>(i2), thenfn ~> 0 in measure. 

if, to the contrary, there are є, ô є (0, 1] and a subsequence {nk} such that 
inf\{xeQ: |/Як(х)| > fi}| ̂  Ö, then gp(f„k) ^ Ssp*. This, by (2.28), contradicts the 

k 

assumption fn ^> 0. B 

Theorem 2.5. The space Lp(x)(i2) is complete. 
Proof. Let {/„} be a Cauchy sequence of functions from Lp(x\Q) and let є > 0. 

There exists n0 є N such that 

(2.35) $Q\fm(x)-f„(x)\\g(x)\dx<s 

for every w, n ^ n0 and for every function g such that Qp>(g) ^ 1. We decompose Q 
into pairwise disjoint subsets Gk of finite measure and define functions gk = 
= (1 + N ) - ' Z c , , ^eAy.Then 

< ѵ Ы á k ( l + N ) - * * > d x + (1 + |G, |)"1 ^ 1 , 

and inserting gk for # in (2.35) we get 

f G k | / « W - / « W l ^ á e ( l + |Gfc|), m 5 n ^ 0 , к е Л / . 

This means that the sequence {/„} is Cauchy — and so convergent - in each Ll(Gk). 
By induction we find subsequences {f{

n
k)}n and f u n c t i o n s / ^ e L ^ G * ) such that 

oo 

Лк\х) ^ f(k)(x) for a.e. x є Gk, k e N. Thus, /„">(*) ^ I/<*>(*) *<*(*) = f(x) for 
* = 1 

a.e. .Y є Í2, and replacing/m by/^w ) in (2.35) and using the Fatou lemma we obtain 

Jo | / (* ) - / . W I k(*)l dx £ sup Jfl |£">(x) - / , (* ) | \g(x)\ dx Í e 
m 

for every n ^ и0 and every g with e^(#) <; 1. Hence, | | | / - fn\\\p ^ є. H 

According to (2.2) and (2.11.)/satisfies gp(f) ^ 1 ifand only if \\f\\p ^ 1. Hence, 
Theorem 2.3 yields: / / g e Lp(JC)(ß), then G given by 

(2.26) Gtf)-Saf(x)g(x)dx, feL*>(Q), 

is a linear continuous functional on LPix)(Q) with the norm satisfying c~llg\\p, ^ 

^ IN й Ф1-
Theorem 2.6. Thefollowing conditions are equivalent: 
(i) p є L»(ß). 

(ii) For every linear continuous functional G on LP{X)(Q) there exists a unique 
function g є LP(X\Q) such that (2.36) holds. 

Proof. Assumethat(ii)holds.Then,obviously, |(2да| = 0andLp(x )(í2)istheOrlicz-

599 



Musielak space LM(Q) with M satisfying (2.12). A. Kozek [3] proved that if (ii) 
holds then the function M satisfies the Л^-condition: there exists K ^ 1 and a function 
h є V(Q) such that for every u e Й and a.e. x e Q the inequality M(2u, x) ^ 
^ KM(u,x) + h(x), i.e. 

(2.37) (2P(X) - K) \u\p(x) й h(x) 
holds. 

Suppose that p* = co. Then the set E = {x e Q: p(x) ^ 1 + log2 K] has a positive 
measure and for x є E we have 

(2.38) 2p(x) ^ 2K . 

From (2.37) and (2.38) we obtain the estimate 

h(x) ^ sup(2p(x ) -K)\u\p(x) ^ Ksupw1 + , o g 2 K = oo , xeE, 
U ll^ 1 

which contradicts the integrability of /z. Thus, p* < oo and (i) holds. 
tfpeW(Q), then the function M from (2.12) satisfies the zT2-condition a n d so, 

according to H. Hudzik [2], the condition (ii) holds. Let us note that this part ofthe 
proof can be made also directly by the usual method for the classical Lebesgue 
spaces based on the approximation by step function and on the use of the Radon-
Nikodym theorem. m 

Corollary2.7. The dual space to LP^X)(Q) is V'^(Q) if and only if peL"(Q). 
The space Lp(x)(i2) is reflexive ifand only if 

(2.39) 1 < ess infp(x) g ess sup p(x) < oo . 
Q Q 

Given two Banach spaces X and 7the symbol X Q 7means that X is (continuously) 
embedded in Y. 

Theorem 2.8. Let 0 < \ü\ < oo and p, q e 0>(Q). Then 

(2.40) Lq(x)(Q) Q Lp{-X\Q) 

if and only if 

(2.41) p(x) й q(x) for a.e. x є Q . 

The norm of the embedding operator (2.40) does not exceed \ü\ 4- 1. 

Proof. First, assume (2.41). Then 

Q£ = oi 
(cf. Notation 1.1). It suffices to prove that 

(2.42) | | / | | , й \Q\ + 1 

for every/6L4(x)(i2) with | | / | | , й 1. By (2.11) we have 

Q<,{f) - W . . | / (*) |*" ' àx + ess sup | / (x) | й 1 , 
oœ« 
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in particular, \f(x)\ ^ 1 for a.e. x e Q%. So, we can write 

Q,{f) й | { * e u s i % : | / W | ^ 1}| + Joy>., f/(*)|**>d* + 

+ |0j ; ,x05, | + ess sup | / (x) | á | ß | + e,(/) ^ | 0 | + 1 . 
»CO« 

We use the convexity of Qp to obtain 

еЛ№| + і))а(|о| + і ) -Ч ( / )£ і . 
The inequality (2.42) follows. 

Suppose, on the contrary, that (2.4l) does not hold, i.e. there exists a subset Í2* 
ofi2 such that |ß* | > Oand 

p(x) > q(x) , x e ß* . 

In contradistinction with (2.40), we shall construct a function/eL^(x)(í2)\Lp(JC)(í2). 
If 

(2.43) | ß * n ß * | > 0 , 

then there exists a set A c Q^ n Q*, 0 < \A\ < oo, and a number r e ( l , oo) such 
that 1 ^ g(x) ^ r < oo = p(x) for all x є A. We find sets Ak such that 

O0 

(2.44) A = U Л > Ak
 n ^y = 0 for fc Ф ; , \Ak\ = 2~k\A\ for fc є Д/, 

fc = i 
00 

and define the function / = £ (3/2)*/r / ^ on £2. Then 
fc= i 

| / L ^ |/Xx|U = oo, 
but 

6,(/) = U |/(x)|**> dx = X k (3/2)**(Jt)/r dx g 
fc= 1 

oo oo 

^(з/2) ' |л| = ИХ(з/4)' = зИ< д а , 
A : = 1 k = 1 

i . e , / e L i ( x ) ( ß ) . 
If (2.43) does not hold, then 1 S q(x) < p(x) < oo for a.e. x є Q* and there 

exists a set A c i2*, 0 < |Л| < oo, and numbers a > 0, r є (1, oo) such that q(x) + 
+ a g р(я) ^ r for x є y4. We find sets Ak satisfying (2.44) and define the function 

00 

f(x) = X {2kk~2ylq{-x) хАк(х), x e Q. Then 
k=\ 

00 CO 

i,(/) = l2**-2K| = M|£fc-2<oo, 
fc = 1 * = 1 

і . е . / є Lq(j:)(í2). On the other hand, for every Я є (0, 1] we have 
00 00 

e,(A/) ^ A'Xk(2'fc-2)pW/î(JC)dx ^ А'Х(2^-2)1+в/г|Л| = 
fc= 1 ft= 1 

= A^|f2^7v"^'+^>= oo, 
fc= 1 

a n d s o , / c t f ( J C ) ( ß ) . я 
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One very important property of the Lebesgue and Orlicz spaces is the mean con­
tinuity of their elements. We shall show that this is the point in which the spaces 
Lp(jc)(i2) difTer from the classical Lebesgue spaces. Further on, we shall assume the 
functions to be extended by zero outside Q. 

We shall say that a function /eL p ( x , ( f í ) is p(x)-mean continuous if for every 
e > 0 there exists ô = S(e) > 0 such that Qp(fh — f) < e for h є RN, \h\ < S, where 
fk(x) = f(x + h), x є RN. 

Example 2.9. Let N = 1, Q = ( - 1 , 1) and let 1 ^ r < s < oo. Put 

*>-££»<-&) ^Ax)-
Then pe0>{Q) and, obviously, feLp{-x\Q). However, given /ze(0, 1), Qp{fh\X) ^ 
^ Я"1 W (x + h)~l dx = oo for every к > 0, and so fh ф Lp(-X)(Q). We shall work 
on the principle of the previous example to show that for a rather wide class of func­
tions pe^(Q) we cannot expect the p(x)-mean continuity for all functions from 
tf<*>(0). 

Theorem 2.10. Let Q contain a ball #(x0 , r) = {x e RN: \x — x0\ < r) on which 
thefunction p is continuous and non-constant. Then there exists a function fe 
є L?(X)(Q) which is not p(x)-mean continuous. 

Proof. According to the assumptions, there exists a point z є ß(x0 , r) in which p 
does not attend its local extremum. Then there exist sequences of points x„, yn є 
e B(x0, r) such that lim xn = lim yn = z and p(xn) < p(z) < p(yn) for n є N. The 

n^ oo n^ oo 

continuity of p yields the existence of such numbers rn > 0 that 

(2.45) p{x) < \{p{z) + p(xn)) < p(z) for x e B(x„ rn) , 

(2.46) p{x)>p{z) for xeB(y„rn). 

Put qn = i(p(z) + p(xn)) anc* l e t /« be functions on Q such that 

supp/„ c B(xn, r.), / , e L ' # , , r„))\L*z>(ß(x„, r„)) and fl/.fl,. = 1 , 

and define the function / by 

f(x) = t 2-'Mx). 
n= 1 

By the use of(2.45) and ofTheorem 2.8 we obtain 
00 00 

1/1, a l 2 - | / X èï2~»\\fn\\qn(\B(xn, 0 | + і) й 
n=1 п = 1 

S 1 + sup \В(хп, rn)\ < oo . 
n 

On the other hand, we put hn = yn - xn and, according to (2.46) and to Theorem 

fx _ 1 / s for x e [ 0 , l ) , 
(О for x e ( - l , 0 ) . 
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2.8, we have 

||A,,L ž WfbjBbn,rA ^ 0 + \в(Уп,гп)\г1 | /*.x«,..JU = 
= (1 + |В(Л,0|)-Ч|ЛВ(,„>г„,[|Р(г) = оо. 

Thus, fhn ~/фП>(х)(и) and since hn -^ 0, the function / is not p(x)-mean con­
tinuous. B 

(2.47) If p* < oo, then the set of all bounded functions on Q is dense in 
L**>(Q). 

Indeed, ifG,, = {xeQ\QO0: \x\ < n}, then the functions/n, 

i / ( x ) , if |/(jc)| й n and xeGnuQœ, 
Li*) = \ n sign/(x) , if | / (x) | > n and x є Gn u Q„ , 

[0 inother points of Q , 

are bounded on Q and the Lebesgue Dominated Convergence Theorem yields 
Qp{f — /„) ^ 0 as n ^ oo. Hence, by Theorem 2.4, / я ^ / . H 

Theorem 2.11. Let pe0>(Q)nL*>(Q). Then the set C(Q)nLpix)(Q) is dense in 
LPix)(Q). If, moreover, Q is open, then the set C%(Q) is dense in LP(X)(Q). 

Proof. Let feLp(-x)(Q) and e > 0. By (2.47), there exists a bounded function 
g e U*X)(Q) such that 

(2.48) lf-gl<e. 
By the Luzin theorem there exists a function h e C(Q) and an open set U such that 

M < m i"MiMJi-
g(x) = h{x) for all x e Q\ U and sup \h(x)\ = sup \g(x)\ g ||#|oo- Hence, 

ß\t/ 

e,((ff - h)|s) й max {1, (2|g[lJey} \U\ è 1 , 

i.e. \\g — й | р ^ e, which together with (2.48) gives 

(2.49) lf-h\\pu2s. 
Assume, moreover, that Q is open. Since p e L°°(i2), we have Co(Q) c Lp(x)(0) 

and Qp(h|s) < oo, and so there exists a bounded open set G c Í2 such that 

QP{Hn\G^) й 1, i.e. 
(2.50) | | / z - / i ^ | | ^ e . 

Let m be a polynomial satisfying s u p | f t ( x ) - m ( x ) | < e m i n { l , | G | " 1 } . Then 

^ p ( f e - rnxa)|e) й min {1, |G|"1} |G| ^ 1, i.e. 

(2.51) | | % G - m * G | p < i e . 

Finally, considerations similar to those leading to (2.50) yield that for a sufficiently 
small positive number a the compact set Ka = {x e G: dist (x, dG) ^ a} satisfies 
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lmXc — тХка\р = s- Taking <реСѵ(Ѳ) such that 0 ^ <p(x) ^ 1 for xeG and 
<p(x) = 1 for x e iCfl we obtain the estimate 

\\mxG - mq>\p й \mxG ~ ™Хка\\Р ̂  £ » 

which together with (2.49)-(2.51) gives 

| | / - m<p||, < 4e. 

Obviously, m̂ > є C^(i2). H 

Corollary 2.12. / / p є 0>(Q) n L°°(ß), then Lp(x)(Q) is separable. 

Proof. Let Gn be bounded sets such that Gn cz Gn+1 a Q for n є N and Q = U Gn. 
n 

Using the same considerations as in the proof of Theorem 2.11 we obtain that the 
set of all functions т / С м , where n є N and m is a polynomial on RN with rational 
coefficients, is dense in LPix)(Q). m 

3. GENERALIZED SOBOLEV SPACES 

In this section we shall always assume that Q <= RN is a non-empty open set, 
pe0>(Q) and k is a given natural number. To avoid anyway rather complicated 
assumptions we shall consider only bounded domains Q. 

Given a multi-index a = (a l9 . . . , % ) e A / J , we set |a| = a t + ... + ocN and Da = 
= D\{ . . . DJN, where Di = d|dxi is the generalized derivative operator. 

The generalized Sobolev space Wk'p(x)(Q) is the class ofall functions/on Q such 
that D*fe Lp(x)(Q) for every multi-index a with |a| S k, endowed with the norm 

(3.1) \\f\\k,p= £ ||D«/|| fc,p. 
|«|£k 

By w£'p(x)(ß) we denote the subspace of PF*'**>(G) which is the closure of CJ(i2) 
with respect to the norm (3.1). 

We can use the standard arguments to derive the following statement from Theorem 
2.5 and Corollaries 2.7 and 2.12. 

Theorem 3.1. The spaces Wk^p{x)(Q) and \Ѵ^,р{х\и) are Banach spaces, which are 
separable if p є L°°(£>) and reflexive if p satisfies (2.39). 

As a consequence ofTheorem 2.8 we have: 

(3.2) / / q(x) й p(x) for a.e. x є Q , then Wk>p(x)(Q) Q Wk^x\Q). 

Besides this trivial embedding, it would be useful to know finer estimates of the 
type of Sobolev inequality. We may ask whether there exists the embedding 

^ '**>(0)Q#<*>(f l ) , 
with 

l|q(x) = l|p(x) - l|N , x є Q . 
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The following example shows that, in general, this we cannot expect. 

Example 3.2. Let N = 2, Q = {x є R2\ \x\ < 1}, 1 < r < s < 2 and a = 
= 2(s — r)|r. Denote by A the set of those points x e Q, whose polar coordinates 
t = |x|, <p = arccos x l 5 satisfy the inequalities 0 < <p < f and define 

/ ч {r if x є Q\ A , 
P{x) = \s if ХЄА. 

The Sobolev conjugate is 

a(x\-\2r№-r) if * e ß ^ , 
q[)~\2sl(2-s) if xeA. 

The function f(x) = |x|^ with /< = (s — 2)jr belongs to Wl,p(-X>(Q), because 

Qp(f) = U И"* áx + кд \*Ґ óx < ío tßs+*+1 dř + 2ти ji r + 1 dř, 
Gp(grad/) = Н і , ^ Г 1 ) $ с і х + H r í « u W ( M ~ 1 ) r d x < 

< fti<*-*>'+"+'di + 2 T T J i ^ - 1 ) r + 1 d / 

and ^s + a + 1 > 0, fir + 1 > 0, (ji - 1) s + a + 1 > - 1 , (fi - 1) r + 1 > - 1. 
However, 

Qq(f) > 2n^tls^2-s)^+ìàt = oo, 

because 2sp|(2 - s) + о + 1 = - 1 , and s o , / £ WX>«X)(Q). 
The idea ofthe example lies in combination oftwo unfavourable properties ofthe 

function p: Its discontinuity and the non-regularity ofthe set ofpoints ofdiscontinuity. 
We shall show that for some classes offunctions p it is possible to get the embedding 
Wk,pix)(Q) Q Uix)(Q) with functions q approximating the Sobolev conjugate. 

We shall say that the function p є 0>(Q) is *-continuous on Q if lim p(y) = p(x) 
for every x e Q (i.e. even if p(x) = oo). y^Q 

Given k є N, k < N, we define the function S, 

(3.3) s(t) = j ^ , l*t<N|k, 

which associates the Sobolev conjugate q = Np|(N — kp) with a number p є 
e[l,N|k). 

Theorem 3.3. Let k < N and let the function p e 0>(Q) be continuous on Q and 
such that p(x) < N|k for every x є Q. Then for every number e e (0, k|(N — k)) 
there exists a constant c > 0 such that 

(3-4) fl/|.S'l/b*. / 6 W f r * 4 0 ) . 
where 
(3.5) 1 й q(x) й S(p(x)) - s , x є Q . 

Proof. Without loss ofgenerality we can suppose that p is continuous on RN and 
that sup p(x) = sup p(x) = p* < N|k. 
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Let 0 < e < k|(N — k). The function S defined in (3.3) is continuous, increasing 
and S([l,N|k)) = [N|(N-k),oo). Hence, for every te[i,N|k) there exists 
a unique s e (t, oo) such that S(s) = S(t) + e and we can find numbers 

(3.6) V\ = 1 < Pi < rt < p3 < r2 < . . . < pm < rm_, < rm = p* 

such that 

(3.7) S ( p , ) ^ S ( r , ) - e , i = l , . . . , m . 

Put G, = p-*( [ l , r ,)) , G, = p"*((p,, r,)) for i = 2, ..., m - 1 and Gm = 
m 

= p " 4 ( ^ P * ] ) - T h e s e t s G ^ a r e o p e n a n d U G, = ^ L e t ^ e C J ( G i ) , i = l , . . . , m , 
i = 1 

m 

be such that 0 ^ <p,.(x) g 1 for x e RN and £ <p,(x) = 1 for x є Ô. 
i = 1 

L e t / є Co(Q) and set / ; = f<ph i = 1, ..., m. T h e n ^ є C*(Gi n 0) and, according 
to (3.5)-(3.7), for x є G, we have 

(3.8) Pi S p(x) й П , q(x) S S(Pi) . 

The usual Sobolev embedding theorem yields 

(3.9) WS'"(G, n Q) Q LS(P|)(G, n 0 ) , i = 1, ..., m . 

Using Theorem 2.8 and inequalities (3.8) we successively obtain 
m m m 

||/[|, <; X |/.|. ^ (i + M)ZI/.U.) š e,(i + |o|)I|/,0..,, á 
/ = l i = l i = l 

m 

йсхс2тх{\ + \Q\)2Y.\\fi\\k,„, 
І = 1 

where c, is the greatest of the constants of embeddings (3.9), c2 — sup {|D* <p,-(x)|: 
абА/J , |a| S k, i = 1, . . . ,m, x e ß ) and к = # { a e A / J : |a| й к}. 

Similar considerations lead to the following extended assertion. 

Theorem 3.4. Let k < N and let function p e &*(Q) be *-continuous on Ü. Then 
for every s є (0, k|(N — k)) and n є (0, (iV — k)|k) there exists a constant c > 0 
such that (3.4) holds with q satisfying 

(зло) i s , W s j m i n {s(pW) - e' s ( * - ' )} • '1 P W * ř + ' ' 
(oo for other x є fì . 

Moreover^ everyfunctionfe W£'pix)(Q) is after a possible change on a set ofzero 
measure continuous on {x є Q: p(x) > N|k]. 

Theorem 3.5. Let thefunctions p, q є &(Q) be *-continuous on Q. If 

(3.U) W*'**>(fl)Q#<*>(Q), 
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then 

(3.12) _ L ^ _ i І fora.e. xeQ. 
q(x) p{x) N 

(Recall that we set l/oo = 0.) 
Proof. Note that \\p and \.\q are continuous functions on Q with values in [0, 1]. 

Suppose, that 
1 1 _ k 

~ф) < rf7) " N 
for some z e Í2. Then p(z) < N|k and there exist numbers s є (1, oo), re (1, N/fc), 
and a ball ß = {j>: |y — z| < ř} such that 

/ . ^ 4 1 1 1 fe ' fc 
(3.1.3) < - < - - - < , y e B . 

q(y) s r N p(y) N 
Then, by Theorem 2.8, W^(B)Q W^p(x){B), Lq(x)(B)Q U(B), and since the second 
inequality (3.13) yields W^r(B)\Ls(B) Ф 0, we havQW*pix)(B)\Lq(x)(B) Ф 0, which 
contradicts(3.11). m 

There is a gap between the necessary condition (3.12) and the sufficient condition 
(3.5) for the embsdding ^ , p W ( ß ) Q L i ( x ) ( ß ) , We could not fill it up and estimate 
the behaviour ofthe constant c from (3.4) (i.e. ofthe norm ofthe embedding operator) 
when e ^> 0 or n ^ 0. Of course, the constants obtained in the proofs of Theorems 
3.3 and 3.4 tend to infinity when e ~+ 0 or // -* 0 because, in general, the number 
ofintervals (ph r,) and so the number ofmembers ofthe partition ofunity increases 
to infinity. 

The idea of the proof of Theorem 3.3 indicates that "reasonable" functions p 
need not necessarily be continuous. 

Theorem 3.6. (i) / / k > N, then W$tPix)(Q)Q C(Q). 

(ii) / / k = N and if there exists a number pt є ( l , oo) and open sets Gl9 G2 <= RN 

such that Q a Gl u G2 and p(x) ^ pY for a.e. xe G2 n Q, then the embedding 
(3.4) holds where q is an arbitrary function from 0>(Q) such that q0 = 
= ess sup q(x) < oo. 

d n ß 
(iii) If k < N and if there exists s > 0, open sets G, cz RN and numbers ph rh 

m 

m, such that Q c U G,, 
i= 1 

1 = px < p2 < ri < p3 < r2 < . . . 

••• < Pm-i < rm-2 < N|k < pm < rm_{ < rm = oo , 

S(Pi) = s(ri) - £ > i = h •••, m - 1 

Pi ik p{*) S ?i for i = 1, ..., m andfor a.e. x eGt n Q , 

і = 1, 

(3.14) 

(3.15) 
and 
(3.16) 
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then there exists the embedding (3.4), where 
m- 1 

ҐЧ17Ї „ / v \ _ f m i n { S ( K * ) ) - £ > S(pm_j)} /o r x e O n U G , - , 
(J.L7J < 7 W = j o o / o r o ř / í e / - х є 0 . 

Moreover, every function fe W£'P(X)(Q) is after a possible change on a set of 
zero measure continuous on the interior of the set {x є .Q: p(x) > N|k). 

Proof, (i) We use Theorem 2.8 and the Sobolev embedding theorem to obtain 
K**>(a)QK4a)GC(S)-

(ii) We use a partition ofunity on Q subordinated to the covering Gl9 G2, Theorem 
2.8 and the embeddings W^X(Q n G,)Q Lqo(Q n G,), W^Pi(Q n G2) Q U{Q n G2) 
which follow from the Sobolev embedding theorem. 

(iii) The proofofthis assertion is similar to that ofTheorems 3.3 and 3.4. m 

Theorem 3.7. (i) / / the sets Q and Q n Gu Q n G2, and Q n Gh i = 1, ..., w, 
consist of a finite number of components with Lipschitz boundary, then the as­
sertions (i), (ii) and (iii), respectively, in Theorem 3.6 hold with Wk,p(-X)(Q) in place 
of <**>(f l ) . 

(ii) / / k = N and if there exists a number pl e (1, oo) and open sets Gl9 G2 cz Q 
consisting of a finite number of components with Lipschitz boundaries and such 
that \Q\(G1 u G2)\ = 0 and p(x) ^ p, for a.e. xeG2 n 0 , then Wk<p(-x)(Q)0 
Q U(x\Q), where q є 0>(Q) is such that ess sup q{x) < oo. 

(iii) / / k < N and if there exist numbers s > 0, ph rt and open sets G, cz Í2, 
/ = 1, ..., m, consisting ofafinite number ofcomponents with Lipschitz boundaries 

m 

andsuchthat{Q \ U G,-| = 0andtherelations(3.U)-(3.l6)hold,then Wk-*X)(Q)Q 
t = i 

G Lqix)(Q), where q is defined in (3.17). 
Theorem 3.7 extends the class of functions p e &(Q) for which a Sobolev type 

embedding theorem holds and allows to consider even the spaces Wk,p(x)(Q). We 
shall omit the proof because it is analogous to the previous one. The difference 
consists in that we need not use a partition of unity. The assumption that the 
corresponding domains have Lipschitz boundaries enables us to use the Sobolev 
embedding theorem for Wk,p. 

Given two Banach spaces X and Y the symbol X Q Q Y means that there is 
a compact embedding ofX in Y. 

Theorem 3.8. (i) / / k > N, then W^'p(x)(Q) Q Q C(Q). 

(ii) / / the assumptions of Theorem 3.6(ii) arefu1filled, then W^P(X)(Q) Q Q Lq(x)(Q) 
where q satisfies q0 = ess sup q(x) < co. 

G i n ß 

(iii) / / the assumptions of Theorem 3.6(iii) arefulfilled, then Wj , p ( ) C ) (ß)QQ 
Q G L^{Q)for every function r є 0>(Q) such that r(x) ^ q(x) — n for a.e. x є Q, 
where n > 0 and q satisfies (3.17). 

(iv) / / , moreover, the assumptions of Theorem 3.7 concerning the components 

608 



with Lipschitz boundaries are satisfied, the assertions ( i)-(i i i) hold with Wk^x)(Q\ 
in place of W^P(X)(Q). 

Proof, (i) Using Theorem 2.8 and the compact embedding theorem for usual 
Sobolev spaces we obtain 

^ ( 0 ) Q ^ ( Q ) Q Q C ( D ) . 

(ii) Let <Pi є Co"(G,), i = 1, 2, be such that 0 <; <pt(x) g 1 for x e RN and <p^x) + 
+ ç2(

x) = 1 f° r * є ß- Let {/„} be a bounded sequence in Wj'p(x)(Q). Then the 
sequences offunctions/^1 ) =fnq>i and/„ (2 ) =fnq>2 are bounded in W£'p(x)(Qn Gj) 
and W£'p(x)(Qn G2), respectively. Since there is a compact embedding 
Wtf'p(x)(ß n G,) G G L90(Q n G t), we can find a subsequence {Д1*} such that 

(3.18) / B
( i W ( 1 ) in L ^ ( i 2 n G i ) . 

According to the compact embedding W£'pix)(Q n G2) Q Q L^(i2 n G2) we can find 
a subsequence {/я(2)} of {/и(2)} such that 

(3.19) / ^ W ( 2 ) in L ° ° ( ß n G 2 ) . 

We extend the functions/ ( 1 ) a n d / ( 2 ) by zero into RN and p u t / = / ( 1 ) + / ( 2 ) . Then, 
by Theorem 2.8, 

Wf-f II < r | ß i + l H l l f ( l ) - / " ( , ) l l + \\f{2)~f(2)\\ Ì 
[|J Уиі#-1|4 = V I I ' / Ѵ І К Jttij lko ~ Ік ^" i , - [|oo/ ' 

which together with (3.18) and (3.19) yields / n ^ / i n i? (x )(ß). 
m - 1 

(iii) Set G = Í2 n U Gř. It suffices to prove that 
/ = i 

^ * ' ( G ) G G ^ ( c ) . 
Then the proof can be finished in a similar way as in the case (ii), because p(x) ^ 
£ pm > Njk. for a.e. x e Gm and so W^p(x\Gm n 0 ) Q Q L°°(Gm n 0) . 

Let {/„} be a bounded sequence in W^'P(JC)(^)- ВУ Theorem 3.6(iii), there is the 
embedding W5'P{X)(Q)QU<X)(Q), and so 

(3.20) \\fn\\q S K 

for some K > 0 . Since W^(G)QQU(G) and W$-**(G)QW$-*(G), we have 
W & ' ^ ( C ) Q Q ^ ( C ) . Hence, the sequence {/„} contains a subsequence which is 
Cauchy in U(G). We shall denote it again with {/„}. By Corollary 2.2, 

(3.21) \\fm-L\rSc\fm-fn\\\\\fm-fZ> 
where the numbers //, v satisfy the estimates 

^ , % . ! ^ > 0 , 0 ^ Ѵй I -

Hence, from (3.20), (3.21) we obtain 

| | / m - / „ | r ^ c m a x { l , 2 K } | | / m - / „ | ^ , 

and since {/„} is Cauchy in Ll(G), it is also Cauchy in Lr(x)(G). m 
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The proof of the following theorem is similar. 

Theorem 3.9. / / the assumptions of Theorem 3.3 are satisfied, then for every 
ee(0,k|(N-k)) the compact embedding W^p(x)(Q)QQLq(xi(Q) holds with q 
satisfying (3.5). If the assumptions of Thoerem 3.4 are satisfied, then for every 
e e (0, k|(N - k)) and n є (0, (N - k)|k) the compact embedding W£'p(x)(Q) Q Q 
G Q &X\Q) holds with q satisfying (3.10). 

Theorem 3.10. Let Q, p and k satisfy some of thefollowing assumptions: 

(i) k > N; 
(ii) k = N and there exists a number p1 e ( l , oo) and open sets G1? G2 <= RN 

such that Q cz G t u G2 and p(x) ^ pl for a.e. x є Gx n Q; 
(iii) k = N and there exists p1 є (1, oo) and open sets Gu G2 cz Q consisting of 

finite number ofcomponents with Lipschitz boundaries and such that 
\Q \ (Gx u G2)\ = 0 and p(x) ^ pi for a.e. x e G2 n Q\ 

(iv) k < N and there exist numbers ph qt and open sets Gh i = 1, ..., m, satis-
m 

fying (3.14), (3.16) and such that Q cz y Gt and 
i— 1 

(3.22) n < S(Pi), i= l , . . . , m - 1 ; 

(v) k < N and there exist numbers ph qt and open sets G, cz Q. i = 1, ..., m, 
consisting offinite number ofcomponents with Lipschitz boundaries and such that 

m 

\Q\ y Gt| = 0 and the inequalities (3.14), (3.16) and (3.22) hold; 
i= 1 

(vi) p is *-continuous on Q. 
Then WŠ>Pix)(Q)QQ L^X)(Q) and 

(3.23) J/[*,= I ||D'/fl, 
|a|=fc 

is an equivalent norm in fTo'p(x)(ß). 

Proof. The compact embedding ^ ' ^ ' ^ ) Q Q L ^ ( i 2 ) can be proved in the 
same way as Theorem 3.8. Note that in cases (iv) and (v) we have the inequalities 

(3.24) Pi й p(x) й rt < Sfa) for a.e. x e G,-, 

which play the role of (3.8) in the proof of Theorem 3.3. Since the last inequality 
(3.24) is strict, we obtain the compact embedding (cf. the proof of Theorem 3.8(ii)). 
If p є &>(Q) n C(i2), then some ofthe assumptions (i), (ii), (iv) is satisfied. 

Obviously, (3.23) is a seminorm in W^p{x\Q) satisfying ]/[fcfP й \f\k,P- The 
converse inequality ||/||*fP Ú c\f[k%p can be proved in a standard way with use of 
the compact embedding W^pix)(Q) Q Q LHx)(Q). m 

Since the equivalent norm (3.23) plays an important role in applications, we shall 
prove yet another assertion of that type which extends the class of admissible 
functions p e 0*(Q). 
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Theorem 3.11. Let Q and G be domains in RN, \ü\ < oo and let p є 0>(Q) n L°°(ß). 
Put G' = {ťeRN~1:(t\x)eG for some xeR) and G(ť) = {xeR:(ť,r)eG} 
for ť є ДО*-1. Suppose that |G(i')| й Л < oo for ť є G' and that there exists a one-
to-one mapping Ф: G ^ Q satisfying the conditions for the change of variables 
in Lebesgue integral and such that 

(3.25) 0 < inf|j<p(i)| й 
sup | j 0 ( i ) | < oo , 

G G 

where Зф is the Jacobian of Ф, 

(3.26) DN0 e L*(G), 

(3.27) p(4>(t; x)) = q{t') for a.e. (t', x) є G . 

Then (3.23) is an equivalent norm in w£'p(x)(Q). 

Proof. We shall consider k = 1. For k > 1 the proof can be accomplished by 
induction. L e t / є C%(Q),f+ 0, and put X = \f\p. For ť є G' satisfying (3.27) and 
for a.e. і є R we have 

f(<P(t', t)) = f ^J(*(t', 0) dč = Г grad/(#(i', i)) Av*(''. £) dí , 
J - 0 0 ^ J _ ^ 

and so, using the Hölder inequality, (3.26) and (3.27), we obtain 

|/(<f>(i))r'> á max {|| |£>„Ф| | |£, 1} max {Л'*"1, 1} . 

. J C ( O | g r a d / ( 0 ( r ' , t ) ) | 4 < ' ' » d r . 

Hence, according to (2.10) and (3.25), 

1 = J. |/(*)M|**> dx = Jc |/(Ф(0)АГ('» WOI dř á 
^ sup | j . ( i ) | ,fc |/(Ф(Ґ, r))/A|'<''> di dť è 

4 í í 
J c J G(r')J G(r') 

gc,4inf|j*(<)|)-1 f 
G J. 

|grad/(x 

|grad/(<P(t',g))| fl(i') 

d ^ d i d í ' й 

Hgrad/(0(Q)| р(Ф(і» 

WOIdř = 

.j 
Ji3 

p(*) 
d x , 

wherecj = sup |J*(r)| m a x {|| |Аѵф | ||£* l} m a x ИР* '» l ) .Put t ingc = max {c2, 1}, 
we obtain G 

|c |grad/(x)| 'p ( x ) 

-LI d x , 

i.e., 
M ^ | | | g r a d / | | ^ c - ' A = f-1! 
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Example ЗЛ2. Let ß , Gu G2 be domains in RN such that G{ u G2 ^ Q, 
\Q\(Gl u G2)| = 0 and Gl5 G2 have Lipschitz boundaries. Let t ^ p, < p^ S °o 
and set 

t ч fp, for x e G, , t v fg t for x є G, , 
P W = b for , е С 2 , в ( * ) - { в а for x e C , , 

where qx = S(pi) = Npi|(N - kpt) if p-t < N|k, qte [1, oo) arbitrary if pt- = N/fc, 
and qx = 00 if pt > N|k, i = 1, 2. Then 

jp*.p(*>(Q)Q tf(x)(&) 

by Theorem 3.7, 

Wk-*X)(Q)QQ&X)(Q) 

for every re0>(Q) with essinf(g(x) — r(x)) > 0 by Theorem 3.8, and ]#[fc,p is an 
« 

equivalent norm in W#,p(x)(ß) by Theorem 3.1.0. 

Example 3.13. Let Q = (0, 1) x (0, 1), let p e 0>(Q) and q є L°°(0, 1) satisfy 1 g 
S p(xux2) = q(xi) < oo for a.e. (xux2)eQ. Set G = Q and Ф(*) = ř, í e G . 
Then the assumptions ofTheorem 3.1L are satisfied and so ]e[fc>p is an equivalent 
norm in Wtf'**>(Q). 

Example 3.14. Let Q = { х е й 2 : l/2 < |x| < 1} and let pG^(ß )nL°° ( i2 ) be 
O-homogeneous, i.e. p(Àx) = p(x) for every X > 0. Then Í2, = {x є /A?2: \ < \x\ < 2, 
*i < |*2І}> ф('і> *2) = t2(costu sinři), Gj = (£я, Jrc) x (1, 2), and Q2 = 
= { х є Я 2 : -1- < |x| < 2, x, > - | x 2 | } , Ф, G2 = ( - | тг , |тг) x (£,2) satisfy the as­
sumptions ofTheorem 3.11 with q(tL) = p(cost tu sin řx). Hence, using the partition 
of unity we easily obtain that W^pix)(Q)QQLp(x)(Q) and }'{кчР is an equivalent 
norm in WoiP(x)(Q). 

Example 3.15. Let Q = {x є Я2: 1/2 < |x| < 1} and let p є &{Q) n L°°(ß) be such 
that p(x) = p(\x\) for х є Q. Let f2t and £>2 be as in Example 3.14 and set <r,(i) = 
= i,(cos t2, sin ř2), / = 1, 2, Gi = (1, 2) x (i71, |тг), G2 = (±, 2) x ( - |7r , | я ) . Then 
the assumptions of Theorem 3.11 are satisfied with q = p and, consequently, 
W^p{x)(Q)QQ U^(Q) a n d ] - ^ . p is an equivalent norm in Wtf'p(x)(ß). 

We can use Theorems 2.1, 2.6 and the standard reasoning to obtain the following 
characterization ofthe dual space (Жо'г(х)(&))*: 

Theorem 3.16. Let p e ^ ( i 2 ) n L ° ° ( ß ) . Then for every Ge(W£'p(x)(Q))* there 
exists a unique system offunctions [дяеЬр{х)(и): |a| ^ k) such that 

G(f) = I Ь ö V W <7a(x) dx , / є Wr'<*>(0). 
\а\йк 
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4. APPLICATíONS 

In this section we shall show a general scheme ofapplication of spaces Wk,p(x)(Q) 
to a Dirichlet boundary value problems for nonlinear partial differential equations 
with coefficients of a variable growth. We shall assume that Q c RN is a non-empty 
open set, p є :^(Q) and k is a given natural number. Given u є Wk,p(-x)(Q) we shall 
write ôku = {D*u: a є N%, |a| g fc}. 

First, we shall investigate the Nemyckii operators in Wk,p(-X)(Q). We shall say that 
a function h:QxR"*^>R, meN, satisfies the Carathéodory conditions, he 
є CAR(i2, m). if for every £ є Rm the function h(', Ç) is measurable on Q and if for 
a.e. x є Q the function h(x, •) is continuous on Rm. Every function h є CAR(£>, m), 
generates a Nemyckii operator H which maps an m-tuple (w1? ..., um) of functions 
on Q onto 

#(w,, ..., м,и)(х) = ft(x,M,(x), . . . ,wm(x)), x e i 2 . 

We shall use the convention l/oo = 0 and 0 . oo = 1. 

Theorem 4.1. Let h e CAR(i2, m) and letfunctions ph r e 0>(Q) befinite a.e. in Q 
and such that ess sup (Pi(x) — r(x)) = ß; < oo, i = 1, ..., m. / / řftere ^x/si5 я пол-

.Q 

negativefunction g є Е^х)(0) and a constant c > 0 such that 
m 

Щ*л)\йд(х) + с^\ЦРі{хтх) 

i— 1 

for every ceR'" and a.e. xeQ, then the Nemyckii operator H maps the space 
AjQ) = L^X)(Q) x ... x LP"M(Q) in Lr(x)(Q). 

Proof. Let и=(иі(х),...,ит(х))еЛт(и) and let A , e ( 0 , l ] be such that 
Qp.(AiUi) < oo, i = 1, ..., ra, and £r(Am+1#/c) < oo. Set k = min {At-: / = 
= 1, ..., m + 1). Then 

<'Mhi) = Í (m + 0"^f-^W + I AKx)r*>^)^dx S 
Vc(m + 1)/ J« V «-і / 

- Í (|^ ^c^>r^ ^^^^м^.с^і^^Л ^̂  ^ 
й f | ^ i f f W / ^ d x + f f Ar-^>|A,^x)|"Wdxa 

J ß i=lJi3 
m 

£ Q,(ln,+ i0|c) + Z *7''Qn(*iUi) < °° • -
i = l 

Theorem 4.2. Leř P;, r є ^ ( ß ) n L*(i2), í = 1, ..., m. / / the Nemyckii operator H 
maps Am(Q) in Lr(x)(í2), řftefl fř is continuous and bounded. 

Proof, it is sufficient to assume that #(0) = 0 and to prove the continuity and 
boundedness of И in 0 є Am(ü). 

Suppose that H is not continuous in 0. Then, according to Theorem 2.4, there 
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exists oc > 0 and functions cpn e Am(Q), n e N, such that 
00 

( 4 Л ) Z Qpt(<Pn,d < °° , ï = 1, ..-, m , 
n = i 

(4.2) Qr(H(<Pn)) > « , n є N . 

First, suppose that |i2| < oo. Using the induction we shall construct sequences of 
numbers Ek > 0, nk є N, and of sets Gk c ß such that for every k є N the following 
conditions hold: 

(4.3) ek+1 < isk, 

(4.4) \Gk\ й sk, 

(4.5) ScjH(<pJ(x)l'^dx>|a 

and 

(4.6) j D \H(q>J (x)|**> dx < fa for every Z) c ß , \D\ й 2sk+ { . 

Put ex = |i2|, И] == 1 and Gj = jQ. Suppose we have already found ек, пк and Gk. 
Since the function |Я(<р„к)|г is integrable on Q, there exists ek+1 > 0 such that (4.6) 
holds. If sk ^ 2ek+u then \Gk\ й 2efc+1 and (4.6) with D = Gk contradicts (4.5). 
Thus, (4.3) holds. 

According to (4.1), ||<ря,;[|Р(. ^ 0 for i = 1, ..., m and so, by (2.34), срПіі -+ 0 in 
measure.Since theNemyckii operator is continuous with respect to the convergence 
in measure (see [4]), we have H{cp^ ~* 0 in measure and there exists nk+i > nk 

such that 
\Gk+i\ é e*+i , 

where 

Ct+1=j*eß:|tf(^J(*)r^}. 
Hence, (4.4) holds as well as (4.5), because 

k.,H^,,)Wr^ = 
= Ь \H(9mtJ W r dx - SnxGk+i \H(cp„kfi) (x)|'<*> dx > a - ф = | a . 

00 

Now, the sets Dk == Gk\ U Gt are pairwise disjoint and from (4.3), (4.4) and 
(4.6) we have 

00 00 

\Gk\Dk\ g | U G,\u I £ ( < 2 б , + 1 
i = fc+l I=fe+1 

and 

(4.7) k ^ l ^ J W r « d x < a / 3 . 
00 

The function ф = £ ^ д ^ belongs to Am(Q) by (4.1). On the other hand, by (4.5) 
k= 1 
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and (4.7), for /. > 0 we have 

J0 \A Н(ф) (x)\W dx ^ min {1, Ґ] £ j D f c ]H(<pJ (x)|"*> dx £ 
A — 1 

^ min {1, Г*} x 

x £ [ к | Я Ы (*) | r W dx - J 0 t ^ |tffo>J (x)|'<*> dx] = oo , 
A = 1 

i.e. Н(ф)фП(х)(и), which contradicts the assumption of the.theorem. Thus, the 
continuity o f # is proved in the case \Q\ < co. 

Now, let | ß | == oo. By induction we construct an increasing sequence {nk} and 
pairwise disjoint sets Dk c Q such that 

(4.8) \Dk\ < oo , \Dk {H(<pJ (x)|'<*> dx > a/2 

for k є /V. We set пл = 1 and, according to (4.2) find a set D1 satisfying (4.8). Suppose 
k 

we have already found nk and Dk. Then | lJ D,| < co and by the first part of the 
proof there exists nk+1 > nk such that i = 1 

i u B . H ^ + 1 ) W | r ( J c ) ^ < « / 2 . 
i = 1 

By (4.2) there exists Gk+1 c Q with a finite measure and such that 

k+,№nt+1)(x)f'Wdx>a. 
k oo 

Hence, we put Dk+l = Gk+1 \ U £/• The function ^ = £ <P„kZDk satisfies ф e Лт(0) 
і = 1 к = 1 

and Н(ф) ф L(x)(Q) which contradicts the assumption of the theorem. Thus H is conti­
nuous again. 

Since H is continuous, by (2.11) there exists a number R > 0 such that 

(4.9) g,(H(<p)) й 1 if И к ž R . 

Let и = (uu ...,um)eAm(Q), и Ф 0, and let a > 0 be such that aR < \\и\\Лгп й 
<; (í/ + 1) R. Then for every í = 1, ..., m, 

Q^{R-*muu Û [m(a + l ) ] " * ^ ( * " 4 * + lY' uò ^ 

S[m(R-*\\u\\Ám + l)y 

and there exists k{ e N satisfying 

[т(Я-*МЛт + l)]'<* й kt < [m{R-l\u\Am + 1)]><* + 1 

and such that 

Qp(R-lmut)u kt. 
ki 

Thus, there exist sets G], j = 1, ..., kh such that Q = U Gj and 
; = i 

(4.10) j^]mUi(x)R-^*4x%l, 7 = l , . . . , f e . , i = l , . . . , m . 
w* w 

For every m-tuple / = (lu ..., / м ) є П { і , ..., fcJ we put G, = fl G/ť and wř =* t/Zc,-
ř = i ř = i 
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From (4.10) we have QPi(mujR) й 1, i.e. flw,|^ ^ Я. This and (4.9) yield 
m 

Qr(H(u)) й I Jc, |Я(и) (*)|*<*> dx g I Q,(H(u,)) й П fc< ̂  
1 1 і = 1 

m 

an{H^'IHU,,+ i ) r + i]:=^(HL). 
í = i 

Thus, |#(м)| |г ^ K(l) for ||м||л,„ й 1, and the operator H is bounded. a 
As an immediate consequence we obtain: 
Theorem4.3.Ler thefunctions p,re^(Q) befinite a.e. in Q and such that 

esssup(p(x) - r(x)) < oo. Let m = # { a e A / J : |a| ̂  k] and let heCAR(Q,m) 
Q 

be such that the inequality 

\h(x, 0 | й g{x) + c X |fe|*x)/r(x) 

Hák 

with some c > 0 and g є E^x)(ü) holds for every f є Rm and a.e. x є Q. Then the 
operator H: и ь^ h(x, ôk w(x)) maps the space Wk,p(-x)(Q) in Lr(x)(i2). / / , moreover, 
p, r є L*(i2), then H is continuous and bounded. 

Corollary 4.4. Let p є 0>(Q) satisfy (2.39). Let h є CAR(i2, m), m = #{a є N%: 
|a| <̂  k}9 and let g є Lp'(x)(Q) and c > 0 be such that 

(4.11) \h(x,t)\ug(x) + c S |f.|**>-1 

|a|afc 
holds for every Ç є Rm and a.e. x є Q. Let a є N%, |a| ̂  k. Then the operator 
Ta: Wk<*x)(Q) ̂  (W***>(fl))* defined by Tx u{v) = Jß h(x, ôk u(x)) D* v{x) dx, w, v є 
є Wk,p(x)(Q), is continuous and bounded. 

Proof. We use Theorem 4.3 with r = p' to obtain H(u)e Lp(x)(Q). Theorem 2.1 
yields 

\Таи(ѵ)\йгрЩи)Ір.\\^ѵ\\рйгр\\Н(и) v U,P 

and so Txue(Wk,pi<x\Q))*. Since p,p'eU*(Q), the continuity and boundedness of 
the operator Tx follows from Theorem 4.3. m 

We are now ready to show an application ofgeneralized Sobolev spaces Wkpix)(Q) 
to Dirichlet boundary value problems for partial differential equations. 

Boundary value problem. Consider a differential operator A of order 2k in the 
divergence form, 

Au(x)= £ (-iy*lPaa(x9Sku(x)), 
\a\uk 

where the functions aaeCAR(Q,m)9 m = # { a e A / J : |a| fg k}, fulfill the growth 
condition (4.11) with g є Lps(-X)(Q) and c > 0. Let Q be a Banach space of functions 
on Q equipped with a norm [| • ||Q and such that Cc(Q) is dense in Q and, moreover, 
W^P{X)(Q) G Ô- By Theorem 2.11, for Q we can take e.g. L*X\Q). L e t / є Q* and w0 є 
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є Wk'p(x)(Q) and denote by <•, ->Q the duality on Q. A function u є Wk^x)(Q) is a 
weak solution to the Dirichlet boundary value problem (A, u0,f) f0r the equation 

Au =f 

with the boundary condition given by u0, if 

u - u0 e W*'P{X\Q) 

and ifthe identity 

I $fíaa(x,oku(x))D*v(x)dx~<f,vy 
\*\ак 

holds for every v e W^P(X)(Q). 
From Corollary 4.4 we obtain that the operator T: W^P(X)(Q) ^ (w£'pix)(Q))* 

defined by 

(4.12) «Гѵѵ, ѵУ = Z io Ф* SklH*) + "o(*)]) »* »(*) àx , 
|«|£fc 

where <C*, *^ stands for the duality in W£,P(X)(Q), is continuous and bounded. It is 
clear that u є (A, u0,f) if and only if u = w0 + w and Tw = / . 

Theorem 4.5. Let p e 0>{Q) satisfy (2.39). Let thefunctions aa satisfy (4.11) and let 
for every £, ц e Rm andfor a.e. x є Q the conditions 

(4.13) X [*«(*. Í) - *«(*, *)] & - 4«) £ 0 , 
MŠ* 

(4.14) X a . ( x , i ) i . ^ c , X | ^ ' - ' ' 2 
|e|gfc |<z|gfc 

ftoJd w///z some constants c,, c2 > 0. 77?e/i ifte boundary value problem (A, u0,f) 
has at least one weak solution ue Wk'p{x)(Q). If, moreover, the inequality (4.13) 
is strictfor ç Ф ;/, then the solution is unique. 

Proof. It suffices to verify that the operator T: w£'Pix)(Q) ^> (Wtf'***(0))* from 
(4.12) satisfies the assumptions ofthe well-known Browder theorem (see e.g. [ l ] ) . 

The space w£'pix)(Q) is reflexive by Theorem 3.1. 
The operator T is continuous and bounded by Corollary 4.4. 
Inserting c = Sku(x), n = Skv(x) into (4.13) and integrating over Q we obtain 

the monotonicity of T. 

Similarly, from (4.14) we obtain 

Mm ^ Y ^ ^ c , lim H | r . ; X ^ w ) . 
l | w | | k , p ^ o o \\УѴ\\кщр H w | l k . p ^ o o \*\йк 

Since ||w|]ftp g m max {|D*w||p: |a| S Щ andsince wecan consider \w\ktP ^ l , w e have 

X eP(D-w) * Mi% X QAMhhJ ^ 
l«li* Mš* 

^ HI*V' m-pmQÁ\D4P4kP) = НІгѴ ™~р*> 
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where /? is the multi-index for which the maximum of |DV| |p is attained. Thus, 

lim ^ p - ^ ^ c{m~p* lim \\w\\p
k*;1 - oo 

and the operator Tis coercive. 
If the inequality (4.13) is strict, then Fis strictly monotone, which yields the unicity 

of the solution. u 

Remark 4.6. If Q and p satisfy the assumptions of Theorem 3.10 or 3.11 then the 
condition (4.14) in Theorem 4.5 can be weakened in the following way: 

£ a,(.v, 0 £a £ c. £ |£|'<*> - c2 . 
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