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Czechoslovak Mathematical Journal, 41 (116) 1991, Praha 

SIXTY YEARS OF JOSEF KRÁL 

JAROSLAV LUKEŠ, IVAN NETUKA, JlŘÍ VESELÝ, P r a h a 

Ten years ago, in December 1981, a "Harmonic Afternoon" was taking place at 
the Faculty of Mathematics and Physics of Charles University. The session included 
lectures from various domains of the potential theory. Among the participants of 
the seminar wasalsothefresh quinquagenarian Josef Kral,who had devoted a con­
siderable part of his research activities to the theory of harmonic functions, and 

whose personal qualities are a paragon of harmony. Apparently everyone who has 
known him would confirm that no disharmony ever occurred at any meeting with 
him. The authors ofthis paper are convinced that it would bepossible even to prove 
the following conjecture: / / a majority of people were like JosefKrál, no contro­
versies could occur and the world would be the most harmonic ofall possible ones. 

Born on December 23, 1931. in a village Dolní Bučice near Čáslav, Josef Král 
graduated from the Faculty of Mathematics and Physics of Charles University in 
1954and became Assistant ofits Department ofMathematics and soon also a research 
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student (aspirant). In 1960 he defended his dissertation On Lebesgue area of closed 
surfaces and was granted the CSc. (Candidate of Science) degree. In 1965 he joined 
the Mathematical Institute of the Czechoslovak Academy of Sciences as a research 
worker in the Department of Partial Differential Equations, and in 1980 he was 
appointed head of the Department of Mathematical Physics. Meanwhile, in 1967, 
he had submitted the dissertation Fredholm Method in Potential Theory for the 
DrSc. (Doctor of Science) degree which he successfully defended. Approximately 
at the same time he also submitted his habilitation thesis Heat Flows and the Fourier 
Problem. Considering the extraordinarily high level of the thesis as well as the 
prominence both of his research work and his teaching activities at the Faculty, the 
Scientific Board of the Faculty proposed to appoint J. Král Professor in 1969. 
However, it took twenty years (sic!) before the changes in the country made it 
possible for J. Král to be actually appointed Professor for mathematical analysis 
in 1990. 

Although J. Král has been affiliated to the Mathematical Institute for more than 
25 years, he has never broken his contacts with the Faculty. His teaching activities 
have been of extraordinary extent. All the time he has lectured courses — both 
elementary and advanced — in the theory of integral and differential equations, 
measure theory, potential theory. He was supervisor of a number of diploma theses, 
member of committees for final, rigorous and doctoral examinations, author and 
co-author ofa four-volume lecture notes on potential theory ([63], [71], [79], [81]). 
He has been frequently invited to give talks at conferences and universities abroad, 
and spent longer periods as visiting professor at Brown University in Providence, 
U.S.A. (1965 — 66), University Paris VI, France (1974), and University in Campinas, 
Brazil (1978). 

In 1967 JosefKrál founded a seminar in mathematical analysis, directed above all 
to potential theory. He educated a number of students and formed a group of col­
laborators round himself, which has been called "The Prague Harmonic Group" 
by friends and colleagues. The results ofthe group soon found international response 
and contacts were started with many world-famous specialists in the potential theory. 
Among those who came to Prague were prominent personalities as M. Brelot, H. 
Bauer, A. Cornea, G. Choquet or B. Fuglede, and still others came to Prague in 1987 
when an international conference devoted specially to the potential theory was held 
here. 

Let us now have a more detailed look at the research activities and scientific 
results ofJosefKrál. Its essential part belongs to mathematical analysis, in particular 
to the theory of measure and integral and to the potential theory. The early papers 
of Josef Král appear in the general scientific atmosphere of the late fifties, being 
strongly influenced by prominent mathematicians of the time, especially J. Mařík, 
V. Jarník and E. Čech. The papers concern primarily the geometric measure theory. 
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MEASURE AND INTEGRAL 

In papers [1], [2], [4], [5], [7], [57], [13], [78] Král studied curvilinear and 
surface integrals. As an illustration let us present a result following from [2], which 
was included in the lecture notes [63]: Let / : [я, b\ ^> R2 be a continuous closed 
parametric curve of finite length, / ( [ л , b]) = K, and let indy z denote the index of 
a point z e R2 \K with respect to the curve / . For p integer set G — {z e R2 \K; 
indy z = p), G = U Gp. Let co = G -> R be a locally integrable function and v = 

рФО 

= (vxVj): K u G ^ R2 a continuous vector function. If 

jdR (t\ dx + v2 dy) = $R co dx ây 

for every closed square R cz G with positively oriented boundary dR, then for every 
p =j= 0 there exists an appropriately defined improper integral JJG/j œ dx d>\ and the 
series 

oc 

I P(S$GP ы dx dy - $$G-P
 œ dx dy) 

p=\ 

(which need not converge) is summable by Cesàro's method of arithmetic means to 
the sum j"y (vx dx + v2 dy). 

Transformation of integrals was studied in [55], [3] and [61]. The last paper 
deals with the transformation of the integral with respect to the ^-dimensional 
HausdorfTmeasure on a smooth ^-dimensional surface in Rm to the Lebesgue integral 
in Rk (in particular, it implies the Substitution Theorem for Lebesgue integral in Rm). 
Substitution Theorem for one-dimensional Lebesgue-Stieltjes integrals is proved 
in [3]. As a special case one then obtains a Banach-type theorem on the variation 
of a composed function which, as Solomon Marcus pointed out (Zentralblatt f. 
Math. 80 (1959), p. 271), implies the negative answer to one problem ofH. Steinhaus 
from The New Scottish Book. To this category belongs also [6], where Král con­
structed an example of a mapping T: D ~* R2 absolutely continuous in the Banach 
sense on a plane domain D c R2, for which the Banach indicatrix iV(-, T) on R2 

has an integral strictly greater than the integral over D of the absolute value of 
Schauder's generalized Jacobian J s(-, T). In this way Král solved the problem posed 
by T. Radó in his monograph Length and Area (Amer. Math. Soc. 1948, (i) on p. 419). 
The papers [56], [9], [10], [11], [12], [15] deal with surface measures; [9] and [10] 
are in fact parts of the above mentioned CSc. dissertation, in which Král (inde­
pendently of W. Fleming) solved the problem on the relation between the Lebesgue 
area and perimeter in the three-dimensional space, proposed by H. Federer in Proc. 
Amer. Math. Soc. 9 (1958), 447-451. In [11] a question of E. Čech from The 
New Scottish Book, concerning the area of a convex surface in the sense of A. D. 
Alexandrov, was answered. 

Papers [14] and [43] are from the theory of integral. The former yields a certain 
generalization of the Fatou Lemma: / / {/„} is a sequence of integrable functions 
on a space X with a u-finite measure ß such thatfor each measurable set M cz X 
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the sequence {\Mfnaß) is boundedfrom above, then thefunction liminf/„+ is 
fi-integrab1e (although the sequence {\xfn Ф*} need not be bounded). In the latter 
paper Král proved a theorem on dominated convergence for nonabsolutely convergent 
GP-integral answering a question of J. Mawhin from Czechoslovak Math. J. 106 
(1981), 614-632. 

In [16] J. Král studied the relation between the length of a generally discontinuous 
mapping/: [a, b] ^ P with values in a metric space P and the integral ofthe Banach 
indicatrix with respect to the linear measure o n / ( [ a , bJ). For continuous mappings/ 
the result gives the affirmative answer to a question formulated by G. Nöbeling 
in 1949. 

In [27] it is proved that functions satisfying the integral Lipschitz condition co­
incide with functions of bounded variation in the sense of Tonelli-Cesari, the paper 
[78] presents a counterexample to the converse of the Green Theorem. Finally, 
[52] provides an elementary characterization of harmonic functions in a circle 
representable by the Poisson integral of a Riemann-integrable function. 

Still another paper from the measure and integration theory is [33], in which Král 
gives an interesting solution of the mathematical problem on hair (formulated by 
L. Zajíček): For every open set G c R2 there is a set H c G offull measure and 
a mapping assigning to each point xeH an агсЛ(х) c G with the end point x, 
such that A(x) n A(y) = 0 provided x ф y. 

METHOD OF INTEGRAL EQUATIONS IN POTENTIAL THEORY 

In [58] Král began to study the methods ofintegral equations and their application 
to the solution of the boundary-value problems of the potential theory. The roots 
of the method reach back into the last century and are connected, among others, 
with the names of C. Neumann, H. Poincaré, A. M. Ljapunov, I. Fredholm or 
J. Plemelj. The generally accepted opinion of the necessity of strongly restrictive 
assumptions on smoothness of the boundary for the essential properties of integral 
equations, expressed for example in the monographs of F. Riesz and B. Sz.-Nagy, 
R. Courant and D. Hilbert, or B. Epstein, culminated in the beliefthat for the planar 
case this method had reached the natural limits of its applicability in the results 
ofJ . Radon, being unsuitable for domains with nonsmooth boundaries. Let us note 
that, nonetheless, the method itselfoffers some advantages: when used, it beautifully 
exhibits the duality ofthe Dirichlet and the Neumann problem, provides an integral 
representation ofthe solution and — as was shown lately — is suitable also from the 
viewpoint of numerical calculations. 

In order to describe Kral's results it is suitable to define an extremely useful 
quantity introduced by himself, the so called cyclic variation. If G c Rm is an arbitrary 
open set with a compact boundary and z є Rm, let us denote by p(z; Ѳ) the halfline 
with the initial point z and direction Ѳ є Г := {0 є Rm; \Ѳ\ = 1}. For every p(z; Ѳ) 
we calculate the number of points that are essential hits of p(z; Ѳ) at dG; they are 
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the points from p[z; Ѳ) n dG in each neighborhood U ofwhich on this halfline there 
are sufficiently many (in the sense of one-dimensional (HausdorfT) measure H,) 
points from both G and Rm \ G, that is 

H,(U n p(z; Ѳ) n G) > 0 , H,(U n p(z; 0) n (JT \ G)) > 0 . 

Let us denote by nr(z, Ѳ) the number of the hits of p(z; Ѳ) at dG whose distance from 
z is at most r, and define the value of vG(z) as the average number of hits rcr(z, 9) with 
respect to all possible halflines with the origin at z, i.e. 

v%z) = \rnr{z,e)ao{9), 

the integral being taken with respect to the (normalized) surface measure er on Г. 
For r = oo we write more briefly vG(z) := v^(z). From the viewpoint ofapplication 
of the method of integral equations it is appropriate to consider the following 
questions: (l) how general are the sets for which it is possible to introduce in a rea­
sonable way the double-layer potential (the kernel is derived from the fundamental 
solution ofthe Laplace equation) or, as the case may be, the normal derivative ofthe 
single-layer potential defined by a charge placed on the boundary dG; (2) under what 
conditions is it possible to extend this potential (continuously) from the domain onto 
its boundary; (3) when is it possible to solve operator equations defined by this 
extension? 

The answer to the first two questions has the form of necessary and sufficient 
conditions formulated in terms of the function vG. In [58] Král definitively solved 
problem (2) with the simultaneous use of the so called radial variation; the both 
quantities have their inspiration source in the Banach indicatrix. In this place let 
us notice that the Dirichlet problem is easily formulated even for domains with 
nonsmooth boundaries, while for the Neumann problem such sets show principal 
difficulties from the very beginning, regardless ofthe method used. Therefore it was 
necessary to pass in the formulation from the description in terms of a point function 
in the boundary condition to a description using the potential flow induced by the 
charge on the boundary. 

By the method of integral equations, the Dirichlet and Neumann problems are 
solved undirectly: the solution is looked for in the form of a double-layer or single-
layer potential. By the theorems onjumps these problems are reduced to the solution 
of the operator equations 

WGf = g and NUp = v 

where/, g are respectively the sought and the given function, fi and v are respectively 
the sought and the given charge on the boundary dG. The potentials considered are 
harmonic functions on G, with the function g and the charge v giving the boundary 
conditions. For simplification let us consider only the more transparent, even if 
mathematically less interesting, case of the Dirichlet problem, which corresponds 
to the former from the above equations. Let us consider three quantities of the same 
nature which are connected with the solvability ofproblems ( l ) - ( 3 ) and which are 
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all derived from the cyclic variation introduced above: 

(a) v*(x), 

(b) Va:= sup{yc(š); ÇeôG], 

(c) ѵІ : = l i m s u p { ^ ( i ) ; ÇeÔG}. 
r^0 + 

While in [58] the starting point is the set G c R2 bounded by a curve K of finite 
length, the subsequent papers [22], [64] already from the beginning consider an 
arbitrary open set G with compact boundary dG. In [58] Král solved problem (2), 
which opened the way to a generalization of Radon's results for curves with bounded 
rotation. The radial variation ofa curve is also introduced here, and both variations 
are used 'm [69], [17] for studying angular limits ofthe double-layer potential. The 
results explicitly determine the value ofthe limit and give geometrically visualizable 
criteria which are necessary and sufficient conditions of existence of these limits. 
The mutual relation ofthe two quantities and their relation to the length and bound­
ary rotation of curves is studied in [59], [17]. For the plane case the results are 
collected in a very comprehensive paper in two parts [20], [21], where the inter­
relations of the results are explained and conditions of solvability of the resulting 
operator equations are given. 

Let us present these conditions explicitly for the dimension m ^ 3. If G c Rm is 
a set with a smooth boundary dG, then the double-layer potential Wf with a conti­
nuous density/defined on dG is defined by the formula 

Wf{x) : = f f(y) {-y~x)nly) dHm_ t(y), x e JT X ÔG , 
JdG |X ~~~ У\ 

where n(y) is the vector of the (outer) normal to G at the point y e dG. For x ф dG 
the value Wq){x) can be defined distributKely for an arbitrary open G with compact 
boundary and for every smooth function q>; this value is the integral with respect 
to a certain measure (dependent on x) iff the quantity (a) is finite. Then Wf{x) 
can naturally be defined for a sufficiently genera l / by the integral of / with respect 
to this measure. 

Consequently, ifwe wish to define a generalized double-layer potential on G, the 
value of(a) must be finite for all x e G. In fact, it suffices that vG(x) be finite on a finite 
set ofpoints x from G which, however, must not lie in a single hyperplane; then the 
set G already has a finite perimeter. On its essential boundary (a certain essential 
part of boundary) the normal can be defined approximatively. This fact favourably 
projects in the situation: the formula for calculation of Wf remains valid if the 
classical normal occuring in it is replaced by the generalized normal in Federeťs 
sense. If the quantity VG from (b) is finite, then the same holds also for the function 
in (a) everywhere in G, and Wfca,n be continuously extended from G to G for every/ 
continuous on dG. This condition is again a necessary and sufficient one; hence the 
solution of the Dirichlet problem can be obtained by solving the first of the above 
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mentioned operator equations. Here the operator WGf is defined by the limit values of 
WGfat the points ofthe boundary dG. A similar situation, which we will not describe 
in detail, occurs for the dual equation with the operator NUG. 

These results (generalizing the previous ones to the multidimensional case) can 
be found in [22], [64], where also the solvability of the equations in question is 
studied. Here Král deduced a sufficient condition of solvability depending on the 
magnitude of the quantity in (c), by means of which he explicitly expresses the so 
called Fredholm radius of certain operators related to those appearing in the equa­
tions considered. It is worth mentioning that the mere smoothness of the boundary 
does not guarantee the finiteness ofthe quantities in (b) or (a); cf. [23]. 

Considering the numerous similar properties ofthe Laplace equation and the heat 
equation it is natural to ask whether KráFs approach (fulfilling the plan traced out by 
Plemelj) can be used also for the latter. Replacing in the definition of vG the pencil 
ofhalfJines filling the whole space Rm by a pencil ofparabolic arcs filling the halfspace 
of Rm+ x that is in time "under" the considered point (x, t) of the timespace, we can 
arrive at analogous results also for the heat equation. Only a deeper insight into the 
relation and distinction of the equations enables us to feel that the procedure had 
to be essentially modified in order to obtain comparable results; see [65], [24]. 
It is to be mentioned that the cyclic variation introduced by Král has proved to be 
a good tool for the study of further problems, for instance those connected with the 
Cauchy integral; see [25], [28]. 

It should be also noticed that, apart from the lecture notes mentioned above, 
Král later in the monograph [38] presented a selfcontained survey of the above 
described results — this book provides the most comfortable way for a reader to get 
acquainted with the results for the Laplace equation. This monograph includes also 
some new results: for example, ifthe quantity in (c) is sufficiently small, then G has 
only a finite number ofcomponents — this is one ofthe consequences ofthe Fredholm 
method, cf. [73], [38]. Part ofthe publication is devoted to results of[35] concerning 
the contractivity of the Neumann operator, which is connected with the numerical 
solution ofboundary value problems, a subject more than 100 years old. The solution 
is again a definitive one. 

The subject ofthe papers [76], [80], [86], [47] belongs to the field ofapplication 
of the method oï integral equations; they originated in connection with some in­
vitations to deliver lectures at conferences and symposia. Král further developed the 
above described methods and, for instance, in [86] indicated the applicability of the 
methods also to the "infinite-dimensionar Laplace equation. 

The last period is characterized by Kráťs return to the original problems from 
a rather different viewpoint. The quantity in (c) may be relatively small for really 
complicated sets G, but can be unpleasantly large for some even very simple sets 
arising for example in Rm as finite unions ofparallelepipeds. Even for this particular 
case the solution is already known. It turned out that an appropriate re-norming 
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leads to a desirable reduction of the Fredholm radius (the tool used here is 
a "weighted" cyclic variation); see [44], [48]. 

A characteristic feature of KráFs results concerning the boundary value problems 
is that the analytical properties of the operators considered are expressed in visual-
izable geometrical terms. For the planar case see, in particular, [46]. 

REMOVABLE SINGULARITIES 

Let us now pass to Kral's contribution to the study of removable singularities of 
solutions of partial differential equations. 

Let P(D) be a partial differential operator with smooth coefficients defined in an 
open set U c Rm and let L(U) be a set oflocally integrable functions on U. A relatively 
closed set F c U is said to be removable for L(U) with respect to P(D) if the fol­
lowing implication holds: if h є L(U) is such that P{D) h = 0 on U \ F (in the sense 
of distributions), then P{D) h = 0 on the whole set U. 

As an example let us consider the case when P(D) is the Laplace operator in Rm, 
m > 2, and Lis one ofthe following two sets offunctions: (1) continuous functions 
on U\ (2) functions satisfying the Hölder condition with an exponent у є (0, 1). It is 
known from classical potential theory that in the case (l) a set is removable for L(U) 
iffit has zero Newton's capacity. For the case(2)L. Carleson (1963) proved that a set 
is removable for L{U) iff its Hausdorff measure of dimension y + m —2 is zero. 

In [67] Král obtained a result of Carleson's type for the solution of the heat 
equation. Unlike the Laplace operator, the heat operator fails to be isotropic. 
Anisotropy enters Kral's result in two ways: first, Hölder condition is considered 
with the exponents y and \y with respect to the spatial and the time variables, respec­
tively, and second, anisotropic Hausdorff measure is used. Roughly speaking, the 
intervals used for covering have a length of edge s in the direction of the space 
coordinates, and s2 along the time axis. The paper was the start ofan extensive project 
the aim of which is to master removable singularities for more general differential 
operators and wider scales of function spaces. 

Let M be a finite set of multiindices and let the operator 

P(D) = £ ««О* 
aeM 

have infinitely differentiable complex-valued coefficients on an open set U a Rm. 
Let us choose a fixed m-tuple n = (n1? n2, ..., nm) ofpositive integers such that 

m 

|a: n\ = X <Xk|"k й 1 
fe=i 

for every multiindex a = (a1? a2 , . . . , aw) є M . 
Let us recall that an operator P(D) is called semielliptic if Č, = (Či, £2» •••» fm) — 0 

is the only real-valued solution of the equation 

E <vT = o. 
| a w | = l 
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(Ofcourse, we set С = i î 1 ^ 2 ••• C'" f° r a = (ai> a2> •••> am)- The class ofsemielliptic 
operators includes, among others, the elliptic operators, the parabolic operators 
in the sense of Petrovskij (in particular, the heat operator), as well as the Cauchy-
Riemann operator. 

For /7 fixed and n = max [nk\ 1 ^ k ^ m} the operator P(D) is assigned the metric 

Q(x, y) = max {\xk - ук\Пк/п; 1 ^ fc й m} , x, >' є Rm . 

To each measure function / , a Hausdorff measure on the metric space (Rm, g) 
is associated in the usual way. Roughly speaking, this measure reflects the possibly 
different behaviour of P(D) with respect to the individual coordinates, and it was by 
the measures of this type that J. Král succeeded in characterizing the removable 
singularities for a number ofimportant and very general situations. 

Removable singularities are studied in [30] (see also [72)] for anisotropic Hölder 
classes, in [75] for classes with a certain anisotropic modulus of continuity; in the 
latter case the measure function for the corresponding Hausdorff measure is derived 
from the modulus ofcontinuity. In [77] Hölder conditions ofintegral type (covering 
Morrey's and Campanato's spaces as well as the BMO) are studied. 

The papers [39] and [42] go still farther: spaces of functions are investigated 
whose prescribed derivatives satisfy conditions ofthe above mentioned types. 

For general operators Král proved that the vanishing (or, as the case may be, the 
cr-finiteness) of an appropriate Hausdorff measure is a sufficient condition of re­
movability for the given set of functions. (Let us point out that, when constructing 
the appropriate Hausdorff measure, the metric g reflects the properties of the operator 
P(D), while the measure function reflects the properties ofthe class ofthe functions 
considered.) 

It is remarkable that for semielliptic operators with constant coefficients Král 
proved that the above sufficient conditions are also necessary. An additional restric­
tion for the operators is used to determine precise growth conditions for the funda­
mental solution and its derivatives. The method of potential theory (combined with 
a Frostman-type assertion on the distribution of measure), which is applied in the 
proofofnecessary conditions, is very well explained in [99]. In the same work also 
the results on removable singularities for the wave operator are presented; see [53] 
and [50] dealing with related topics. 

In the conclusion of this section let us demonstrate the completeness of KráFs 
research by the following result for elliptic operators with constant coefficients, which 
is a consequence of the assertions proved in [42]: the removable singularities for 
functions that togehter with their certain derivatives belong to a suitable Campanato 
space, are characterized by the vanishing ofthe classical Hausdorff measures, whose 
dimension (in dependence on the function space) fills in the whole interval between 0 
and m. 
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POTENTIAL THEORY 

The theory of harmonic spaces started to develop in the sixties. Its aim was to 
build up an abstract potential theory that would include not only the classical 
potential theory but would also make it possible to study wide classes of partial 
differential equations of elliptic and parabolic types. Further development showed 
that the theory ofharmonic spaces represents an appropriate link between the partial 
differential equations and the stochastic processes. 

In the abstract theory the role ofthe Euclidean space is played by a locally compact 
topological space (this makes it possible to cover manifolds and Riemann surfaces 
and simultaneously to exploit the theory of Radon measures), while the solution of 
a differential equation is replaced by a sheafofvector spaces ofcontinuous functions 
satisfying certain natural axioms. One of them, for example, is the axiom of basis, 
which guarantees the existence of a basis of the topology consisting of sets regular 
for the Dirichlet problem, or the convergence axiom, which is a suitable analogue 
of the classical Harnack's theorem. 

Kral's intention probably was not to systematically work in the theory ofharmonic 
spaces. However, he realized that this modern and developing branch ofthe potential 
theory must not be neglected. In his seminar he gave a thorough report on Baueťs 
monograph Harmonische Räume und ihre Potentialtheorie, and later on the mono­
graph of C. Constantinescu and A. Cornea Potential Theory on Harmonie Spaces. 

In Kral's list of publications there are four papers dealing with harmonic spaces. 
In [32] an affirmative answer is given to the problem of J. Lukeš concerning the 

existence of a nondegenerate harmonic sheaf with Brelot's convergence property 
on a connected space which is not locally connected. The paper [26] provides 
a complete characterization ofsets ofellipticity and absorbing sets on one-dimensional 
harmonic spaces. All noncompact connected one-dimensional Brelot harmonic 
spaces are described in [31]. In [29], harmonic spaces with the following continuation 
property are investigated: Each point is contained in a domain D such that every 
harmonic function defined on an arbitrary subdomain of D can be harmonically 
continued onto the whole D. It is shown that a Brelot space X has this property 
iff it has the following simple topological structure: for every xeX there exist 
arcs Cj, C2, ..., Cn such that (J {C,-; 1 ^ j ^ n) is a neighborhood of x and Cj n 
n Ck = {x] for 1 S j < к й n. 

The papers [41] and [37] are devoted to potentials of measures. In [41] it is 
shown that for the kernels K satisfying the domination principle, the following con­
tinuity principle is valid: If v is a charge whose potential Kv is finite, and if the 
restriction of Kv to the support of the charge v is continuous, then the potential Kv 
is necessarily continuous on the whole space. In the case of a measure (i.e. non-
negative charge) this is the classical Evans-Vasilesco theorem. However, this theorem 
does not yield (by passing to the positive and negative parts) the above assertion, 
since "cancellation of discontinuities" may occur. 
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In [37] a proof is given of a necessary and sufficient condition for measures v 
on Rm to have the property that there exists a nontrivial measure g on R such that 
the heat potential of the measure v ® g locally satisfies the anisotropic Hölder 
condition. 

In [45] the size ofthe set offine strict maxima of functions defined on Rm is stu­
died. Let us recall that the fine topology in the space Rm, m > 2, is defined as the 
coarsest one among all topologies for which all potentials are continuous. For 
/ : R*" ^ R let us denote by M(f) the set of all points x e Rm which have a fine 
neighborhood Fsuch t h a t / <f(x) on F \ { x } . It is shown in [45] that the set M(f) 
has zero Newton capacity provided/is a Borel function. 

In [40] Král proved the following theorem of Rado's type for harmonic functions 
(and in this way verified Greenfield's conjecture): Tf h is a continuously differentiable 
function on an open set G cz Rm and h is harmonic on the set Gh = {xeG; h(x) ф 0] , 
then h is harmonic on the whole set G. In this case the set Gh on which h is 
harmonic, satisfies /z(GxG/,)<={0}. For various function spaces, Král [40] 
characterized, in terms of suitable Hausdorfif measures, the sets E c R for which 
the condition h(G \ Gb) c E guarantees that h is harmonic on the whole set G. 

An analogue of Radó's theorem for differential forms and for the solutions of 
elliptic differential equations is proved in [51]. 

The papers [82], [36] do not directly belong to the potential theory, being only 
loosely connected with it. They are devoted to the estimation ofthe analytic capacity 
by means ofthe linear measure. For a compact set Q c Cand for z є Clet us denote 
by vQ{z) the average number ofpoints ofintersection ofthe halflines originating at z 
with Q and set V(Q) = sup {vQ{z)\ z є Q). Let us present the main result of [36]: 
If Q Œ C is a continuum and K cz Q is compact, then the following inequality holds 
for the analytic capacity y(K) and the linear measure m(K): 

y(K) > — m(K) . 
; - 27i 2 V(Q) + 1 l ; 

We do hope that we have succeeded in at least indicating the depth and elegance 
ofKral's mathematical results. Many ofthem are ofdefinitive character and provide 
final solution of important problems. The way in which Král presents his results 
shows his conception of mathematical exactness, perfection and beauty. 

His results and their international response, together with his extraordinarily 
successful activities in mathematical education, have placed Josef Král among the 
most prominent Czechoslovak mathematicians of the post-war period. His modesty, 
devotion and humble respect in front of the immensity of Mathematics have made 
him an exceptional person. 

His personal qualities combined with his talent, but above all with extreme in-
dustriousness, persistence and dedication to Mathematics, form the background 
of KráFs successful career. Since even for Josef Král (whose name means "King" 
in Czech), there was no royal way to Mathematics. 
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