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SVAZEK 14 (1969) APLIKACE MATEMATIKY CISLO 4

ONEDIMENSIONAL HOMOGENIZED REACTOR WITH NATURAL
URANIUM AND WITH FLATTENED SPECIFIC OUTPUT

ROSTISLAV ZEZULA

(Received March 15, 1968)

Let us consider a onedimensional homogenized reactor with reflector and with
natural uranium fueled core, described (in the two-groups diffusion approximation
and in the usual denotation [1], [2]) by the equations

(1) —DAD + (1 + M) D = ¢
(1a) —1d4q +q = kX{M®

where we suppose (neglecting the moderator-expelling by the fuel)

(2 D =const >0; t=const>0; Z{ = const>0
and where

Z“ a
(2a) M==0=-7UN >0

ZA[ Z“M

is the relative fuel concentration in the reactor core and
(2b) k = k(M)
is a given function of M. From (2), (2a) there follows that the quantity

a
Oy
. Ny®
M

(3) Mo =

is proportional to the specific reactor output and because it is physically interesting
to flatten it [6], we assume

4) M® = const = C; >0

and look for such a spatial distribution M of the relative fuel concentration in the
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reactor core which is necessary for flattening the specific reactor output. To this
purpose we write equation (1) in the following (evidently equivalent) form

() —DAG53+Z&Q$+I>M¢=q

from which we obtain with help of the postulate (4) the following (essentially non-
linear) relation between the neutron slowing down density ¢ and the relative fuel con-
centration M

1 L1
But it is evident that equation (5a) is linear in the quantity
1
6 N=-—+4+1=NM)>1
© L= )

and since we have, with respect to relation (Zb)
(62) I(N) = K[(N = 1)7"] = k(M) (M =(N-1)7")

so equation (la) must take, for the slowing down density in consequence of relations
(6a), (4). the form

(7) —tdq + q = C,Z4I(N).

Substituting relations (5a), (6) for ¢ into equation (7), we get the following quasi-
linear biharmonic equation for N = N(M)

(8) A(AN) _ M
tD

AN + L f(N)N =0,
tD

(m-5[-47)

which gives a necessary condition for flattening the specific output of the reactor.
It is clear from the symmetry and stability considerations [2] that for equation (8)
the following initial conditions must be taken into consideration

(8a) N'(0) = N"(0) = 0; N(0) = Ny = 1; N"(0) = N}

where No = 1 and Ny are real parameters.
The solution of the usual two-group equations for @, g in the reflector has, under
the usual homogeneous conditions on the outer boundary a of the reflector

9) Pp(a) =0; qgla) =0
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the form
(10) , ar(x; a, A) = Ay(x; a)
(10a) @p(x; a, A, B) = Ap,y,(x; a) + Byy(x; a)

where A, B are free integration constants, the constant y, is a known function of the
physical constants of the reflector and the known functions y(x; a), y,(x; a) (linear
combinations of the fundamental solutions of the two-group equations for the reflec-
tor with coefficients depending on a which fullfil the boundary conditions (9)) depend
on the geometry considered.

Let N be an arbitrary solution of the nonlinear biharmonic Cauchy’s initial value
problem (8), (8a) so that it depends on two real parameters N, N (and on the spatial
variable x)

(11) N = N(x; No, Ng)

and let the values of the real parameters N, = 1, Ng lie in the stability domain
Q < R, of N. Then there follows from the equivalence of the both equations (1), (5)
that a sufficient condition for flattening the specific output in the reactor core shall be

(12) ® = C,[N(x; No, Ng) — 1] = &(x; No, N§)

(where C, is the normalization constant in (4)), since we know [3] that for the given
thermal neutron flux @ there exists a uniquely determined distribution M of the fuel
concentration in the core of the critical reactor inducing @ which must therefore be
identical with

1

13 M = M(x; Ny, Ng) = —————
(13) (s No. NG N(x; No, N§) — 1

under the condition that the free parameters 4, B in (10), (10a), N,, Ng in (8a) and
the extrapolated boundaries b and a of the core and the reflector, respectively, will be
chosen in accordance with the usual boundary conditions on the boundary b between
the core and reflector (insuring reactor criticality):

(14)  @(b; No, Ng) = tPR(b; a, 4, B); D®(b; No, Ni) = Dg®i(b; a, A, B)
1

14a) — q(b; Ny, Ng) =

(14a) e a( 0> Vo (f )R

where the values &(b; Ny, Ng), @'(b; No, N§) are given by (12) and the values g(b; N,
Ng), q'(b; Ny, Ng) are given by relations (5a), (6) so that we have

qar(b; a, A); 1q'(b; No, Ng) = 1zqi(b; a, A)

(14b) q(b; No, Ng) = C;[ —DAN(x; No, N§) + Z3N(x; No, N§)]|c=s

(14c) q'(b; Ny, Ng) = Cl[—Ddi AN(x; No, Ng) +X‘,},diN(x;NO, Ng]
x x

x=b
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From the four boundary conditions (14), (14a) we can determine four of the six
free parameters No, Ng, A, B, a, b (as functions of the remaining two). Since in (14)
the parameters A, B appear linearly we can easily eliminate them. We obtain

- €
I11Wb()’1, )’2)

(15) {[N(b; No, Ng) — 1] yy(b, a) —

D
- FN,(b;NO’ Ng) y,(b, a)} = A(N,, Ng, b, a),
R

C D
(15a) B-— S, {y (b: @) 2 N'(b; Ny NZ) —
ﬂle(yla ,Vz) ' 1 Dy o

— (b, @) [N(b; Noy N) — 1]} — B(Ng, N}, b, q)

where Wy(y, yz) denotes the value of the Wronskian of the known functions yl(x; a),
va(x; @) for x = b. By substituting (15) and (15a) into (10) and (10a) we get for the
slowing down density in the reflector g and for the corresponding thermal neutron
flux @, the expressions

(16) qR(X; a, ba N09N6) = A(NO’ Ng’ b: a) yl(x; a):
(16a)  ®g(x; a, b, Ny, Ng) = A(No, Ng, b, a) u1y4(x; a) + B(No, Ng, b, a) y,(x; a).

Using relations (14b), (14c), (16) we can transform the remaining two boundary
conditions (14a) as follows

1 4
— q(b; No, N§) —

———— qgr(b; a, b, Ng, Ng) | = 0
ez, (E5)r « ° °)]

(17)  Hy(a, b; Ny, Ng) = [

” ” d "
(18) H(a, b, Ny, N§) = {rq'(b; No, Ng) — I:a; qx(x; a, b, Ny, NO)\X:,,]} =0.

Now, let us assume that the function H,(a, b, No, Ng) of the variables a > b > 0
given on the domain Q; = (dpin ©) X (byyins w) = R, fulfils the following assump-
tions:

0
(19) H, e CY(Q,); %HI#O on Q,,
C

(192)  H,(a™, bV; No, N§) = 0 for some (a”, b'") € @, and all Ny = 1, N real,
so that there exists (in an interval (b, b®’) containing b")) the implicit function
(20) a = a(b; No, N
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for which equation (17) is fulfilled for all Ny = 1, N{ real, b e (b, b@), je.
(20a) H[a(b; No, Ng), b; No, Ng] = 0.

Substituting relation (20) for a into equation (18) we get the “criticality condition”
for b ‘

(21)

4 ’ 4 d " ”
F(b; Ng, Ng) = {rq (b; Ny, Ng) — TR[d; qr(x; a(b; No, Ng), Ny, N0)|x=,,]} =0

which under the assumption that there exists on the interval (b(”, b®) an inverse
function G satisfying the relation

(21a)  G[F(b; Ny, N3)] = b(No, Ng) forall be (b, b®) and (No, Ng)eQ, = 2
has a unique solution (the so-called “critical core dimension”)

(22) b* = b¥(No, Ng) = G(0)

satisfying the criticality condition (21) for all (No, Ng)e Q, = @, i.e.

(22a) F(b*(No, Ng); No, Ng) = 0.

For arbitrarily chosen values (N,, N§) € Q, = Q of the both real parameters No, N
in the initial conditions (8a) we can therefore evaluate the critical core dimension
b* = b*(N,, N¢) from (22) and then from (20) the corresponding value a* of the
reflector outer boundary

(23) a* = a*(No, Ni) = a(b*(No, N§); No, Ng) .

The function g(x; No, Ng), which we need for determining the value a* by means of
relation (17), is obtained by substituting the solution N(x; Ny, N¢) of the Cauchy’s
initial value problem (8), (8a) (which evidently forms a twoparametrical family de-
pending on two real parameters N, = 1, Nj to be chosen so that N(x; Ny, N¢) is
a stable solution of the problem (8), (8a) satisfying assumption (21a), (i.e. (No, Ng) €
€ Q, = Q)) into relations (5a), (6):

(24) q(x; No, Ng) = C;[ —DAN(x; Ny, Ng) + Z3N(x; No, Ng)] -

The relations (11) for N, (12) for &, (13) for M, (24) for g, (22) for b* and (23) for a*
together with relations (16), (16a) for the solution g, ®y in the reflector give us a two-
parametrical family of solutions (M, @, g, b*, a*) of the problem of flattening the
specific output of a critical homogenized onedimensional reactor with natural ura-
nium, depending on N and therefore on two arbitrary real parameters Ny, = 1, Ng,
(Ng, N§) € 2, so that we have proved by the preceding reasoning the following.
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Theorem 1. Let D > 0, © > 0, X3, > 0, u, be given constants.

Let the real values Ny = 1, Ng, (N, Ng) € Q, = Q be chosen so that the function
N(x; No, Ng) is a stable solution of the Cauchy’s initial value problem (8), (8a)
(in an arbitrary onedimensional geometry) and that the function F in the critical
state condition (21) fulfils assumption (21a).

Let the function ®(x; Ny, Ni), q(x; No, Ng) be given (with help of N(x; Ny, Ng))
by relations (12), (24), respectively.

Let the function H, in the boundary condition (17) fulfil assumptions (19), (19a).

Let the value b*(Ny, Ng) of the extrapolated critical core boundary and the cor-
responding value a*(No, Ng) of the extrapolated reflector outer boundary be given
by relations (22), (23), respectively.

Then the distribution M(x; No, Ng) of the relative fuel concentration in the core,
given (by means of N(x; Ny, Ng)) by relation (13), induces in the critical reactor
core (with extrapolated core boundary b*(No, Ng) and the corresponding
reflector outer boundary a*(No, Ng)) the thermal neutron flux ®(x;No, Ng) =
= C{[N(x; Ny, Ng) — 1] giving the flattened specific output M® = C, of the
reactor.

Theorem 1 enables us to look for such a distribution M(x; Ny, Ng) of the relative
fuel concentration for which the total output of the reactor

b*(No,No")
(25)  T(No, N3) = C,b*(No, Ni) = J M(x; No N§) &(x; No, N) dx

0
reaches its local maximum (under the assumption that the function b*(Ng, N
has such a maximum). This means that we must determine in the twoparametrical
families M(x; No, Ng), @(x; Ny, N) the “optimal” values Ny, Ng (lying in the subset
Q, < Q of the stability domain Q < R, of the real parameters N, = 1, N, in which
assumption (21a) holds) for which we have

(25a)

B*(NgsNo”)
T(No, N§) = max T(Ny, Ng) = max j‘ M(x;No,Ng) ®(x;No, Ng)dx =

(No,No")e,=Q (No,No") J o

= C, max b*\N,, Ng).

(No,No")eR2: =2

Evidently, for determining the values N,, Nj we have the following necessary
conditions

0 0
26 —— b*(No, Ng) = 0; —— b*(No, Ng) = 0
(26) o, (No, N) oNg (No, Ng)
Let us assume now that both the functions
0 0
26a P,(Ny, Ng) = — b*¥(N,,Np); Py(Ny, N§) = — b*¥(Ny, N
( ) 1( 0> Vo oN, ( 0 0) 2( 0> Vo 0N3 ( 0> 1Yo
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fulfil (in the stability domain Q <= R,) the following assumptions

(27) P,e C(Q); Py +0 on QcR, (i=12)
oNy
(272)  P(N{V,N¢P) =0 forsome (N(V,Ng")eQ <R, (i=1,2)

so that there exists an interval I containing N§" in which both the equations (26) have
a unique implicit solution

(28) Ng = 0:(No); Ng = Q0,(Ny) (for NoelI = (0, +)).
By eliminating Ng we obtain from (28) the following equation

(28a) F(No) = 04(No) — Q,(No) =0

which represents a necessary condition for the determination of the optimal value
N, of the parameter N,,.

Under the assumption that the function F(N,) has in the interval I, = (1, + o)
the inverse function H so that

(29) H[F(No)] = No

for all N, €1, we can get the (unique) value N, by solving equation (28a)
(30) N, = H(0)

and then determine the corresponding value N from relations (28)

(30a) ‘ N§ = 0:(No) = 0:(No).

When we assume further that for these values N, N the well known conditions

02 "
(1) s b0V N3)lvoomer -5 < 0
1]
P o
N bl N” - b* N ,N"
| TN o No) N aN, (No, N .
et 62 * " 52 * " >
P e (No, Ng P (Nos N6) [ |vo=So.n07 = 80"

are fulfilled, which are (together with (26)) sufficient for the maximum of the total
output functional T(N o N S) on the stability domain Q of N, so that

(32) T(NO’ N’(’)) = max T(N05 N’(’)) >
(No,No")e
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then the functions (values respectively)
(33)  M(x;No, Ng); @(x;No, No) 5 a(x; No, Ng) 5 b*(No, Ng) 5 a*(No, N§)

give the optimized stable solution of the problem of the specific output flattening for
which the total reactor output reaches its local maximum in the stability domain Q
of the solutions N(x; N, Ng) of the Cauchy’s problem (8), (8a). Thus we have proved
the following

Theorem 2. Let for the functions M(x; No, Ng); @(x; No, Ng); a(x; No, Ng) of
the spatial variable x and for the values b*(No, N§); a*(No, N§) the assumptions
of Theorem 1 be fulfilled.

Let the point (No, Ni)e Q, = Q consisting of the values Ny, Ny of the real
parameters Ny = 1, Ng lie in the subset Q, = Q of the stability domain Q < R,
of the twoparametrical family of solutions N(x; N, Ng) of the biharmonic Cauchy’s
initial value problem (8), (8a) in which assumption (21a) holds.

Let both the functions Py(No, Ni) = 0/0N, . b*(No, Ng), Po(No, Ng) = 0[oNG .
. b*(Ng, Ng) fulfil in the stability domain Q = R, assumptions (27), (27a).

Let the function F(N,), defined in (28a) fulfil assumption (29) and let the value N,
of the positive parameter Ny = 1 be determined from relation (30) and the cor-
responding value N§ of the real parameter N from relation (30a).

Let the second derivatives of the function b*(No, Ny) fulfil (for Ny = No, Nj, =
= N¢) conditions (31) for the local maximum of b*(N,, Ng).

Then the functions M(x; Ny, NG), ®(x; No, N3), q(x; No, N§) give the relative
fuel concentration, the thermal neutron flux and the neutron slowing-down density,
respectively, in the core(with the extrapolated core boundary b*(No, N¢))of a critical
homogenized onedimensional reactor with flattened specific output (fueled with
natural uranium and with the extrapolated reflector outer boundary a*(N,, Ng))
for which the total reactor output T(No, N¢) reaches its local maximum in the
stability domain Q < R, of the twoparametrical family N(x; Ny, N§) of solutions
of the biharmonic Cauchy’s initial value problem (8), (8a).

Remark 1. When the determinant in (31) is less than zero on the whole stability
domain Q of N then it does not exist a stable solution N giving the extremal total
reactor output.

It remains to investigate the stability of the quasilinear Cauchy’s problem (8),
(8a). In order to do this we shall consider this problem in the slab geometry in which
this problem takes the simple form

4 a 2
(34) d_N_Md_A{_Fif(N)N:O
dx* D dx®> D

(-5 ()
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(34a) N(0) = No; N"(0) = Nj; N(0) = N"(0) = 0.
For other usual onedimensional (e.g. cylindrical, spherical) geometries we can get

(for x = 0) problem (8), (8a) in the form analogous to (34), (34a) by the well known
transformations [4].

Let us denote

(35) o =—H ="M g, == =

Then we can write equation (34) in the (evidently equivalent) form

d? d>
(36) <@ - a1> (&3 - cxz>N = g(N)N ;
- EG)) B3
<g(N) - [alaz w] DN (N - 1))
When we put
(37) ?g—mN=Y;M®=ijwm=o
X

then relations (36), (37) imply

2
(37a) i—}; —o;Y=g(N)N; Y(0)=Y, real, Y'(0)=0
x

and therefore, by substituting Y from (37)

Y _

2
dx? d_1V+I£IDNEh(N’N")
X

dx? D

(38)

%y

But from relation (38) there follows evidently that the solution Y = Y(N) of the Cau-
chy’s problem (37a) will be stable when the solution N of problem (37) will be stable
so that it suffices to investigate the stability of problem (37) for Y = Y(N), i.e.

d’N ) )
(39) G~ N =Y NO) =No, N(0)=0.
For this purpose we put

(40) N=—=12
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so that we get from (39) and (40) the following (evidently autonomous) system of two
simultaneous differential equations of the first order

(41)

v _ Z = P(2)
dx

% = [az + X%\D]N = Q(N) = O(N;) + Q'(N;)) (N — N;) + O[(N — N,)*]

4o dy
h ! =—==qa,+—]).
(w ere Q'(N) N oy + dN)

The first (i.e. linear) approximation of the nonlinear system (41) is evidently stationary
and the assumptions of the first Liapunoff’s method [4] are fulfilled.

Since it follows from equations (41) that we have

@ Z= ) 2Lz N V()
dx dNdx 2 dN 2dN

and therefore also
dN N
(42a) Z =N'(N,N,) = N [4,N + Y(N)]dN},
X No

we can represent the solutions of system (41) in the phase plane (N, N’) as a one-
parametrical system of phase curves N '(N ; No) (depending on the real parameter N 0)
which are defined by equation (42a) for all N for which the condition

(42b) J [N + Y(N)]dN 2 0

holds. The singular points of equation (39) are the points (N, N’) in the phase plane
with the coordinates [5]

(43) N=N;, NN=0
where the values N; are the real roots of the equation

(43a) Lowy=n,+ L yv) =o.

According to the first Liapunoff’s method the character of those singular points
(N, 0) in the phase plane is determined by the properties of the roots 1, 4, of the

332



characteristic equation corresponding to the linearized system (41) [5]

(44) det (Qilfh) _1/1) =22~ [a; +Y(N)] =0

which are given by the formula

(45) i = & (o + Y(N) 5 (Y'(Nf) - jTYv _ )

The two following cases (45a), (45b) may occur (for fixed i):
(45a) a4 + Y(N) > 0.

In this case the point (N, 0) of the phase plane is an unstable singular point of the
“saddle” type [5] to which the trivial unstable solution N = N; = const. cor-
responds (physically possible only for b* = o).

(45b) @+ Y(N) <0

In this case the roots 4,, A, of the characteristic equation (44) are purely imaginary
and adjoint, i.e.

(46) A, = ti|oy + Y(N)

so that the point (N, 0) is a stable singular point of the phase plane, of the ‘“‘centre”
type, (but it is not asymptotically stable) and to which the trivial stable solution N =
= N,; = const. corresponds (possible only for b* = oo or b* = 0, but physically
not realizable [2] with respect to the boundary conditions (14a)).

Let us make now (for physical reasons [2]) the following two assumptions I, II:

I-There exists an interval I, of initial values Y,
(47) I, =&Y, | Y < ¥, < Y}

such that if Y, €I, then equation (43a) has only two real roots N, = 1, N; > N,
such that the singular point (N5, 0) of the phase plane is a stable centre-point and the
singular point (N, Q) is an unstable saddle-point. '

II-There exists a separatrix phase curve
N
(48) NN, N,) = + \/z f [N + Y(N)] dN
N1

which separates the domain of the phase plane containing the centre-point (N, 0)
and the periodic phase curves N'(N, N,) corresponding to the stable solutions of
problem (37) and has (except for the value N,) only one further root N5 given by the
relation

(48a) N'(N3,N;) = 0.
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Under these two assumptions the initial value problem (37) for all initial values N,
from the interval I, where

(49) I, = &{No| N3 < Ny < Ny}

and for an arbitrary right hand side Y(N; Y,) which is the solution of the initial value
‘problem (37a), has a stable periodical solution N* = N[x; N,, Y(N; Y,)] for which
equation (37) is fulfilled and for which the relation

(50) Ng" = a,Ng + Y,

holds. If a solution N** = N(x; Ny, Ng) of the nonlinear biharmonic Cauchy’s
problem (34), (34a) will be used for the construction of the right hand side g(N**) N**
in problem (37a), then there follows from (36) that in this case we shall have

(51) N[x; Ny, Y(N; Yy)] = N* = N** = N(x; Ny, Ng)

and therefore the stability domain Q < R, of the twoparametrical family N(x; N, Ng
of solutions of the Cauchy’s problem (34), (34a) must be given by the Cartesian
product

(52) Q=1, xI;

where the interval I; for the initial value Ny is given (with help of the intervals I, I,
defined by equations (47), (49), respectively), by the relation

(52a) Iy = &{N§| Ny = a,Ny + Yo; Noelp; Yoel,}

By the preceding reasoning we have thus proved the following:

Theorem 3. Let N = N(x; Ny, Ng) be the twoparametrical family of solutions
of the nonlinear biharmonic Cauchy’s initial value problem (34), (34a) for which
the assumptions of Theorem I are valid. Let Y = Y(N) be the corresponding solu-
tion of problem (37a).

Let equation (43a) fulfil Assumption I.

Let the separatrix phase curve given by equation (48) fulfil Assumption II.

Then the stability domain Q = R, of the twoparametrical family N(x; N, Ng
of solutions of the Cauchy’s problem (34), (34a) is the rectangle given by relations
(52), (52a).

Remark 2. When in (48a) the condition
(53) Ny=1

holds then there may evidently exist two solutions of the problem of the critical
reactor with flattened specific output: one for Ny e (N3, N,), Ng = a,N, + Y, for
which N(x; Ny, Ng) has in x = 0 a local minimum, and the other one for N, e
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€(N,, Ny), Ng = ay,Ny + Y, for which N(x, No, Ng) reaches in x = 0 its local
maximum.

Remark 3. In the same manner as it has been done for the total reactor output,
the optimization of other functionals (interesting from the reactor physicist’s view-
point) with respect to the two parameters Ny, Ng in the solution N(x; Ny, Ng) of the
problem of the reactor with flattened specific output can be considered. E.g., optimiza-
tion of the total fuel loading in the reactor core

~ =~ b*(No,No")
(54) OQ(No, No) = max Q(No, Ng) = max J M(x; Ny, Ng) dx =
(

No,No")ef22= (No,No")eR:2 J o

b*(No,No”)
=  max J. [N(x; No, Ng) — 1] dx

(No,No")e2:=2 | o

which requires the following two conditions

i )
55 —— O(Ng, Ng) = 0; —— QO(N,y,Ny) =0
(55) N, Q(No, Ng) oNG Q(No, Ng)
(6) C O(No NY) <0:
P 0> o) ~ ~ ’
azNO JN0=N0.N0”=E'0"
&2 i j
N , Nu . N , N*
P oMo N, 0N ONo» NG)
det 1 >0
o (Nos N§ o O(No, N}) |
0N6 aNO Q 0> 0 aZN(,), 0> 0 \‘Alo:%u‘[vo”zﬁo"

to be fulfilled. Another example is the optimization of the mean thermal neutron flux
in the reactor with flattened specific output

(57)
b*(No,No") b*(No,No")
f &(x; No, NJ) dx f [N(x; No, N3) —1] dx
@' N , N// — 0 — C 0 -
(No b*(No, N}) ! b*(No» Ny,
b*(No,No")
J N(x; No, Ng) dx
= C,[N(N,, N2) — 17, | where N(N,, N) = =2

1[ ( 0 0 ] ( 0 (0] b*(No, Ng

whose optimization
~ ~ !

(58) ®(No, No) = C; max [N(N,, Ng) — 1]

(No,No")eQ2= 2
must fulfil two conditions analogous to (55), (56).

335



The relations between these functionals can be studied in the same way.

Acknowledgement. The author wants to thank Dr. M. GRMELA and Dr. V.
BARTOSEK for their interest in his work.
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Souhrn

JEDNOROZMERNY HOMOGENIZOVANY REAKTOR S PRIRODNIM
URANEM A S VYROVNANYM MERNYM VYKONEM

ROSTISLAV ZEZULA

Hlavni vysledky préce jsou formulovdny ve tfech vétach.

Ve vété 1 jsou uddny postacujici podminky pro existenci resp. konstrukci takového
rozloZeni M(x; Ny, Ng) = [N(x; No, Ng) — 1]~ " relativni koncentrace paliva v jadie
kritického reaktoru, které indukuje tok tepelnych neutrontt ®(x; Ny, Ng) ddvajici
vyrovnany mérny vykon M® = const.

Ve vété 2 jsou uddny postacujici podminky pro existenci resp. konstrukci optimal-
nich hodnot N, N parametrit No, Ng, pro které celkovy vykon reaktoru T(N,, 0)
nabyvd svého lokdlniho maxima na oblasti stability @ feSeni N(x; No, Ng) kvasi-
linedrniho biharmonického Cauchyova problému pro reaktor s vyrovnanym mérnym
vykonem.

Ve vété 3 jsou uddny podminky postacujici pro existenci obdélnikové oblasti
stability Q feSeni N(x; No, Ng).
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