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SVAZEK 14 (1969) AP LI K AC E M ATE M ATI K Y ČÍSLO 4 

ONEDIMENSIONAL HOMOGENIZED REACTOR WITH NATURAL 
URANIUM AND WITH FLATTENED SPECIFIC OUTPUT 

ROSTISLAV Z E Z U L A 

(Received March 15, 1968) 

Let us consider a onedimensional homogenized reactor with reflector and with 
natural uranium fueled core, described (in the two-groups diffusion approximation 
and in the usual denotation [1], [2]) by the equations 

(1) -DA$ + Ia
M(\ + M)0 = q 

(la) -TAq + q = kIMM<2> 

where we suppose (neglecting the moderator-expelling by the fuel) 

(2) D = const > 0 ; T = const > 0 ; Ia
M = const > 0 

and where 

(2a) M = ^ = ^ N „ > 0 
v / Ya ya 

LM JLM 

is the relative fuel concentration in the reactor core and 

(2b) k = k(M) 

is a given function of M. From (2), (2a) there follows that the quantity 

(3) M<P = ^Nv0 
^M 

is proportional to the specific reactor output and because it is physically interesting 
to flatten it [6], we assume 

(4) M<P = const = Ct > 0 

and look for such a spatial distribution M of the relative fuel concentration in the 
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reactor core which is necessary for flattening the specific reactor output. To this 
purpose we write equation (l) in the following (evidently equivalent) form 

<5> -iM(£) + r„(l + 1 ) « - , 

from which we obtain with help of the postulate (4) the following (essentially non­
linear) relation between the neutron slowing down density q and the relative fuel con­
centration M 

(5a) -C ' f l J ( i+ 1 ) + C A ( i + 1 ) = « 
But it is evident that equation (5a) is linear in the quantity 

(6) N = — + 1 = N(M) > 1 
M 

and since we have, with respect to relation (2b) 

(6a) l(N) = k[(N - l ) " 1 ] = k(M), (M = (N - l ) " 1 ) 

so equation (la) must take, for the slowing down density in consequence of relations 
(6a), (4), the form 

(7) - i A ^ + ^ = C1ry(N). 

Substituting relations (5a), (6) for q into equation (7), we get the following quasi-
linear biharmonic equation for N = N(M) 

(8) A(AN) - XI°M + D AN + —f(N) N = 0 , 
TD TD 

(f(N) = rM [~i KNJ 
N 

which gives a necessary condition for flattening the specific output of the reactor. 
It is clear from the symmetry and stability considerations [2] that for equation (8) 
the following initial conditions must be taken into consideration 

(8a) N'(0) = N'"(()) = 0 ; N(0) = N0 ^ 1 ; N"(0) = N0 

where N0 ^ 1 and N0 are real parameters. 
The solution of the usual two-group equations for <PR, qR in the reflector has, under 

the usual homogeneous conditions on the outer boundary a of the reflector 

(9) <!>*(«) = 0 ; qR{a)==0 
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the form 

(10) qR(x; a, A) = Ay{(x; a) 

(10a) <PR(x; a, A, B) = A^y^x; a) + By2(x; a) 

where A, B are free integration constants, the constant \xx is a known function of the 
physical constants of the reflector and the known functions y{(x; a), y2(x; a) (linear 
combinations of the fundamental solutions of the two-group equations for the reflec­
tor with coefficients depending on a which fullfil the boundary conditions (9)) depend 
on the geometry considered. 

Let N be an arbitrary solution of the nonlinear biharmonic Cauchy's initial value 
problem (8), (8a) so that it depends on two real parameters N0, N0 (and on the spatial 
variable x) 

(11) N = N(x;N0,N0) 

and let the values of the real parameters N0 ^ 1, N0 lie in the stability domain 
Q a R2 of N. Then there follows from the equivalence of the both equations (1), (5) 
that a sufficient condition for flattening the specific output in the reactor core shall be 

(12) * = Ct[N(x; N0, N0) - 1] = *(x; N0, NJQ 

(where Cx is the normalization constant in (4)), since we know [3] that for the given 
thermal neutron flux <P there exists a uniquely determined distribution M of the fuel 
concentration in the core of the critical reactor inducing <£ which must therefore be 
identical with 

1 
(13) M = M(x; N0, N'ó) = 

N(x; N0, N'i) - 1 

under the condition that the free parameters A, B in (10), (10a), N0, N0 in (8a) and 
the extrapolated boundaries b and a of the core and the reflector, respectively, will be 
chosen in accordance with the usual boundary conditions on the boundary b between 
the core and reflector (insuring reactor criticality): 

(14) $(b; N0,1V2) = 4>R(h; a, A, B) ; D<P'(b; N0, N$ = DR<P'R(b; a, A, B) 

(14a) — q(b; N0, N'£) ~= ——- qR(b; a, A) ; xq'(b; N0, N$ - rRq'R(b; a, A) 
C^s (&s)R 

where the values $(b; N0, N0), <P'(b; N0, N0) are given by (12) and the values q(b; N0, 
No), q'(b; N0, NQ) are given by relations (5a), (6) so that we have 

(14b) q(b; N0, N$ = Ct[-DAN(x; N0, NS) + Z°MN(x; N0, N$]\x=b 

(14c) q'(b;N0,N$ = cJ-D^- AN(x;N0,K) + rMj-N(x;N0,N^l . 
L dx dx Jx^h 
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From the four boundary conditions (14), (14a) we can determine four of the six 
free parameters N0, N0, A, B, a, b (as functions of the remaining two). Since in (14) 
the parameters A, B appear linearly we can easily eliminate them. We obtain 

(15) A = _ ^ \[N(b; N0, N0) - 1] y'2(b, a) -
HiWb(y1,y2) I 

- -£- N'(b; N0, JV0) y2(b, a)\ = A(N0, N'0, b, a) , 

(15a) B = — C f vx \yi(b; a) ± N'(b; No, K) -
^iWb(yl9y2) I DR 

- y\(b, a) [N(b; N0, N0) - 1 ] | = B(N0, N'0, b, a) 

where Wb(yu y2) denotes the value of the Wronskian of the known functions yt(x; a), 
y7

2(x; a) for x = b. By substituting (15) and (15a) into (10) and (10a) we get for the 
slowing down density in the reflector qR and for the corresponding thermal neutron 
flux 0R the expressions 

(16) qR(x; a, b, N0, N0) = A(N0, N0, b, a) yx(x; a) , 

(16a) <PR(x; a, b, N0,1VJ) = A(N0, N"0, b, a) fiiyi(x; a) + B(N0, N'^, b, a) y2(x; a) . 

Using relations (14b), (14c), (16) we can transform the remaining two boundary 
conditions (14a) as follows 

(17) H1(a,b;N0,N$m — q(b; N0, N'0) - - J - qR(b; a, b, N0, N 0 ) l = 0 
Џs (ś-Ук J 

(18) H2(a, b, N0, N0) - Uq'(b; N0, N'o) - TR | £ qR(x; a, b, N0, N^|X=J1 = 0 . 

Now, let us assume that the function Ht(a, b, N0, N0) of the variables a > b > 0 
given on the domain Qx ~ (amin, oo) x (bmin, oo) c R2 fulfils the following assump­
tions: 

(19) Hx e C(1)(f2i) ; — H i 4=0 on Q1 , 
db 

(19a) H1(a
(1),b());N0,N'^) = 0 for some (a(i), b(1)) e Q t and all JV0 ^ 1, N'0 real, 

so that there exists (in an interval (b(0), b(2)) containing b(l)) the implicit function 

(20) a = a(b;N0,N'0) 
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for which equation (17) is fulfilled for all 1V0 _ 1, N0 real, b e (b(0>, b(2>)? i.e. 

(20a) Hx[a(b; N0, N0), b; N0, N£] - 0 . 

Substituting relation (20) for a into equation (18) we get the "criticality condition" 
for b 

(21) 

F(b; N0, N0) _ |tq'(b; N0, N£) - T J £ g*(x; a(b; N0, No), N0, N$\xmb 1 = 0 

which under the assumption that there exists on the interval (b(0), b(2)) an inverse 
function G satisfying the relation 

(21a) G[F(b; N0, No)] = b(N0,1VJ) for all b e (b(0>, b(2)) and (N0, JVg) G Q2 c Q 

has a unique solution (the so-called "critical core dimension") 

(22) b* = b*(N0, No) = G(0) 

satisfying the criticality condition (21) for all (N0, No) eQ2 cz Q, i.e. 

(22a) F(b*(No,N^);No,NS)-0. 

For arbitrarily chosen values (N0, No) sQ2 a Q of the both real parameters N0, N0 

in the initial conditions (8a) we can therefore evaluate the critical core dimension 
l>* _ b*(N0, N0) from (22) and then from (20) the corresponding value a* of the 
reflector outer boundary 

(23) a* = a*(N0, N'0) = a(b*(N0, N$; N0, No) . 

The function q(x; N0, No), which we need for determining the value a* by means of 
relation (17), is obtained by substituting the solution N(x;N0,N0) of the Cauchy's 
initial value problem (8), (8a) (which evidently forms a twoparametrical family de­
pending on two real parameters N0 ^ 1, No to be chosen so that N(x;N0, N0) is 
a stable solution of the problem (8), (8a) satisfying assumption (21a), (i.e. (N0, N0) e 
G Q2 c Q)) into relations (5a), (6): 

(24) q(x; N0, N0) = C![-DAN(x; N0,1V0) + Za
MN(x; N0,1VJ)] . 

The relations (11) for N, (12) for 0, (13) for M, (24) for q, (22) for b* and (23) for a* 
together with relations (16), (16a) for the solution qR, &R in the reflector give us a two­
parametrical family of solutions (M, <£, q, b*, a*) of the problem of flattening the 
specific output of a critical homogenized onedimensional reactor with natural ura­
nium, depending on N and therefore on two arbitrary real parameters N0 _ 1, No, 
(No, No) G Q2 so that we have proved by the preceding reasoning the following. 
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Theorem 1. Let D > 0, T > 0, Sa
M > 0, /zx be givew constants. 

Let the real values N0 = 1, N0, (N0, N0) e Q2 cz Q be chosen so that the function 
N(x; N0, No) is a stable solution of the Cauchy's initial value problem (8), (8a) 
(in an arbitrary onedimensional geometry) and that the function F in the critical 
state condition (21) fulfils assumption (21a). 

Lel the function <P(x; N0, No), q(x; N0, No) be given (with help of N(x; N0, No)) 
by relations (12), (24), respectively. 

Let the function Hl in the boundary condition (17) fulfil assumptions (19), (19a). 
Let the value b*(N0, No) °f the extrapolated critical core boundary and the cor­

responding value a*(N0, No) of the extrapolated reflector outer boundary be given 
by relations (22), (23), respectively. 

Then the distribution M(x; N0, No) Of the relative fuel concentration in the core, 
given (by means of N(x; N0, N0)) by relation (13), induces in the critical reactor 
core (with extrapolated core boundary b*(N0, No) and the corresponding 
reflector outer boundary a*(N0, No)) the thermal neutron flux #(x; N0, No) = 
= Cx[N(x; N0, No) — 1] giving the flattened specific output M<P = Cx Of the 
reactor. 

Theorem 1 enables us to look for such a distribution M(x; N0, No) of the relative 
fuel concentration for which the total output of the reactor 

rb*(N0,No") 

(25) T(N0, No) = Cib*(N0, -VS) = M(x; N0, N$ <P(x; N0, No) dx 

reaches its local maximum (under the assumption that the function b*(N0, No) 
has such a maximum). This means that we must determine in the twoparametrical 
families M(x; N0, N0), <P(x; N0, N0) the "optimal" values N0, No (lying in the subset 
Q2 cz Q of the stability domain Q cz R2 of the real parameters N0 ^ 1, N0, in which 
assumption (21a) holds) for which we have 

(25a) 
fb*(N0,N0") 

T(N0, NS) = max T(N0, N^) = max M(x;N 0 ,N^)^(x;N 0 ,N 0 )dx = 
(N0,N0")eQ2^i2 (No,N0")J 0 

= Ct max b*(N0, N'i). 
(N0,No")eQ2^n 

Evidently, for determining the values N0, N0 we have the following necessary 
conditions 

(26) ^ - b * ( N o , N ^ ) = 0 ; - ^ -b*(N o ,NS) = 0 
dN0 dN£ 

Let us assume now that both the functions 

(26a) Pt(N0, JVS) = - — b*(N0, N',) ; P2(N0, N$) = — - b*(N0, N"0) 
8N0 dN'0 
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fulfil (in the stability domain Q c R2) the following assumptions 

dP 
(27) Pi e C(1\Q) ; — l- 4= 0 on Q a R2 (i = 1, 2) 

(27a) P^CNo1*, N0
(1)) = 0 for some (N0

1}, N£(1)) e D c R2 (i = 1, 2) 

so that there exists an interval I containing N0*
} in which both the equations (26) have 

a unique implicit solution 

(28) No" = Qi(iV0) ; No = Qi(N0) (for N0 el cz (0, +oo)) . 

By eliminating N0 we obtain from (28) the following equation 

(28a) F(N0) = Qi(-V0) - Q2(N0) = 0 

which represents a necessary condition for the determination of the optimal value 

ft0 of the parameter N0. 

Under the assumption that the function F(N0) has in the interval I0 = (1, + oo) 
the inverse function H so that 

(29) H[F(N0)-] = JV0 

for all JV0 e 70, we can get the (unique) value N0 by solving equation (28a) 

(30) M0 = H(0) 

and then determine the corresponding value N'0 from relations (28) 

(30a) N'0 = SiOVc) = Q2(iV0) . 

When we assume further that for these values N0, N0 the well known conditions 

(31) ^ ~ £>*(!Vo, /v0)|Wo=SoiNo„=J,0„ < 0 , 

- | — b*(N0, 7V0) — b*(N0, N'o) 
д2N'0 ' дҖ ÔN0 

det | 

- - - — b*(N0, N'0) - ţ - b*(N0, JV0) 
• ŐJV 0 ÔN'Ó V °J Õ2N0 

> 0 

JVo = Яo,No" = Ä0" 

are fulfilled, which are (together with (26)) sufficient for the maximum of the total 
output functional T(N0, N0) on the stability domain Q of N, so that 

(32) T(Ñ0,Ñ'0)= max T(N0,N'0), 
(JVo,ÍVo")<Ш 
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then the functions (values respectively) 

(33) M(x;N0,N$; <P(x;N0,N$; q(x;N0,N$; b*(N0,N2); a*(N0,N$ 

give the optimized stable solution of the problem of the specific output flattening for 
which the total reactor output reaches its local maximum in the stability domain Q 
of the solutions N(x; N0, N0) of the Cauchy's problem (8), (8a). Thus we have proved 
the following 

Theorem 2. Let for the functions M(x;jy0, N0); <P(x;N0, N0); q(x;N0,N0) of 
the spatial variable x and for the values b*(N0, N0); a*(N0,N0) the assumptions 
of Theorem 1 be fulfilled. 

Let the point (N0, N0) eQ2 a Q consisting of the values N0, N'0 of the real 
parameters N0 g: 1, N0 lie in the subset Q2 c Q of the stability domain Q a R2 

of the twoparametrical family of solutions N(x; N0, N0) Of the biharmonic Cauchy's 
initial value problem (8), (8a) in which assumption (21a) holds. 

Let both the functions P^No, N0) = djdN0 . b*(N0, N0), P2(N0,N'i) = djdN0 . 
. b*(N0, N0) fulfil in the stability domain Q a R2 assumptions (27), (27a). 

Let the function F(N0), defined in (28a) fulfil assumption (29) and let the value N0 

of the positive parameter N0 ^ 1 be determined from relation (30) and the cor-
responding value N0 of the real parameter N"0from relation (30a). 

Let the second derivatives of the function b*(N0, N0) fulfil (for N0 — N0, N0 = 
= N0) conditions (31) for the local maximum of b*(N0, N0). 

Then the functions M(x;N0,N0), <P(x;N0, N0), q(x;N0,N0) give the relative 
fuel concentration, the thermal neutron flux and the neutron slowing-down density, 
respectively, in the core (with the extrapolated core boundary b*(N0,N0))ofa critical 
homogenized onedimensional reactor with flattened specific output (fueled with 
natural uranium and with the extrapolated reflector outer boundary a*(N0, N0)) 
for which the total reactor output T(N0, N0) reaches its local maximum in the 
stability domain Q c R2 of the twoparametrical family N(x; N0, N0) Of solutions 
of the biharmonic Cauchy's initial value problem (8), (8a). 

R e m a r k 1. When the determinant in (31) is less than zero on the whole stability 
domain Q of N then it does not exist a stable solution N giving the extremal total 
reactor output. 

It remains to investigate the stability of the quasilinear Cauchy's problem (8), 
(8a). In order to do this we shall consider this problem in the slab geometry in which 
this problem takes the simple form 

(34) £i-j2L±2fl + ±mN,0 
dx4 TD dxz

 TD 

И-^ť-iИï^т)])-
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(34a) N(0) = N0 ; N"(0) = _VJ ; N'(0) = N'"(0) = 0 . 

For other usual onedimensional (e.g. cylindrical, spherical) geometries we can get 
(for x + 0) problem (8), (8a) in the form analogous to (34), (34a) by the well known 
transformations [4]. 

Let us denote 

(35) a. = --_- = -_í ; a2 = 
т l _ _ Гм . _ D _ 1 

— , a 2 — — — 
TD D TD т 

Then we can write equation (34) in the (evidently equivalent) form 

(36) (5 -){^-"Y'=mN--

When we put 

a_a2 — 
f(N)l Гм 1 , / 1 

xD 
l ^ i , f _ L Л Y 

тű ІV \ЛГ - 1// 

cľN 

dx2 
(37) — - - <x2ІV = Y; JV(0) = Лt0 , ІV'(0) = 0 

1 v^ 

then relations (36), (37) imply 

(37a) ^ - a_ Y = _/(N) N ; Y(0) = Y0 real, Yr(0) = 0 
dx 2 

and therefore, by substituting Yfrom (37) 

(38) M,M+mNshiN,Nr) 
dxz dxz TD 

But from relation (38) there follows evidently that the solution Y = Y(N) of the Cau-

chy's problem (37a) will be stable when the solution N of problem (37) will be stable 

so that it suffices to investigate the stability of problem (37) for Y = Y(N), i.e. 

(39) — - a 2 N = Y(N) ; N(0) = N0 , N'(0) = 0 . 
dx 2 

For this purpose we put 

dN 
(40) N' = — = Z 

dx 
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so that we get from (39) and (40) the following (evidently autonomous) system of two 
simultaneous differential equations of the first order 

(41) 

åN 
Z ш ҢZ) 

áx 

dZ 
dx «2 + ^]N = Q(N) = Q(N') + Q'(N.) (N ~ Nd + °Í(N - Ni)2] 

(where Q'(N) = - ^ = a2 + — ) 
{ *K ) dN 2 dN; 

The first (i.e. linear) approximation of the nonlinear system (41) is evidently stationary 
and the assumptions of the first Liapunoff's method [4] are fulfilled. 

Since it follows from equations (41) that we have 

( 4 2) ^,^^=l-(2Z^]^^Z^a2N+Y(N) 
dx d/Vdx 2 \ dN/ 2 dN v J 

and therefore also 

(42a) Z == N'(N, N0) = — = + 12 J [a2N + Y(N)] <1N\ , 

we can represent the solutions of system (41) in the phase plane (N, N') as a one-
parametrical system of phase curves N;(N; N0) (depending on the real parameter N0) 
which are defined by equation (42a) for all N for which the condition 

/•JV 

(42b) [a2N + Y(N)]dN ^ 0 
/•JV 

l> 
JlVo 

holds. The singular points of equation (39) are the points (N, N') in the phase plane 
with the coordinates [5] 

(43) N = Ni9 N' = 0 

where the values Nt are the real roots of the equation 

(43a) - Q(Nt) =Ni + ~ Y(Nt) = 0 . 
a a2 

According to the first Liapunoff's method the character of those singular points 
(Ni9 0) in the phase plane is determined by the properties of the roots Xl9 X2 of the 
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characteristic equation corresponding to the linearized system (41) [5] 

(44) det ( ~X M = X2 - [a2 + Y'(iV,)] = 0 
^ ' \Q'(N.) -X) l 2 { ,U 

which are given by the formula 

dY 

AN 
(45) X% = ± V(a2 + Y'(N,)) ; (Y'(jV,) 

The two following cases (45a), (45b) may occur (for fixed i): 

(45a) a2 + F(N i) > 0 . 

In this case the point (Nf, 0) of the phase plane is an unstable singular point of the 
"saddle" type [5] to which the trivial unstable solution N = Nt = const, cor­
responds (physically possible only for b* = oo). 

(45b) a2 + Y'(Nt) < 0 

In this case the roots Al5 X2 of the characteristic equation (44) are purely imaginary 
and adjoint, i.e. 

(46) Aft-i.vh + rWI 
so that the point (N,., 0) is a stable singular point of the phase plane, of the "centre" 
type, (but it is not asymptotically stable) and to which the trivial stable solution N = 
= Ni = const, corresponds (possible only for b* = oo or b* = 0, but physically 
not realizable [2] with respect to the boundary conditions (14a)). 

Let us make now (for physical reasons [2]) the following two assumptions I, II: 

I-There exists an interval Ix of initial values Y0 

(47) / . = «?{Y0 | Y*1' < Y0 < Y<2)} 

such that if Y0 elx then equation (43a) has only two real roots N2 = 1, Ni > N2 

such that the singular point (N2, 0) of the phase plane is a stable centre-point and the 
singular point (Nl5 0) is an unstable saddle-point. 

II-There exists a separatrix phase curve 

(48) Nr(N, N^ = ± 2 J [a2N + y(N)] dN 

which separates the domain of the phase plane containing the centre-point (N2, 0) 
and the periodic phase curves N'(N, N0) corresponding to the stable solutions of 
problem (37) and has (except for the value Nt) only one further root N3 given by the 
relation 

(48a) N'(N3,N1) = 0. 
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Under these two assumptions the initial value problem (37) for all initial values N0 

from the interval I2 where 

(49) l2 = g{N0\N3 < N 0 < N 1 } 

and for an arbitrary right hand side Y(N; Y0) which is the solution of the initial value 
problem (37a), has a stable periodical solution N* = N[x; N0, Y(N; Y0)] for which 
equation (37) is fulfilled and for which the relation 

(50) N*" = a2N* + Y0 

holds. If a solution N** =N(x;NQ, N0) of the nonlinear biharmonic Cauchy's 
problem (34), (34a) will be used for the construction of the right hand side #(N**) N** 
in problem (37a), then there follows from (36) that in this case we shall have 

(51) N[x; N0, Y(N; Y0)] = N* = N** = N(x; N0, N[,) 

and therefore the stability domain Q a R2 of the twoparametrical family N(x; N0, N0) 
of solutions of the Cauchy's problem (34), (34a) must be given by the Cartesian 
product 

(52) Q = I2 x I3 

where the interval I3 for the initial value N0 is given (with help of the intervals I1? I2 

defined by equations (47), (49), respectively), by the relation 

(52a) I3 = S{N'^ | N0 = a2N0 + Y0; N0 el2; Y0 E I J 

By the preceding reasoning we have thus proved the following: 

Theorem 3. Let N = N(x; N0, N0) be the twoparametrical family of solutions 
of the nonlinear biharmonic Cauchy's initial value problem (34), (34a) for which 
the assumptions of Theorem 1 are valid. Let Y = Y(N) be the corresponding solu­
tion of problem (37a). 

Let equation (43a) fulfil Assumption I. 
Let the separatrix phase curve given by equation (48) fulfil Assumption II. 
Then the stability domain Q a R2 of the twoparametrical family N(x; N0, N0) 

of solutions of the Cauchy's problem (34), (34a) is the rectangle given by relations 
(52), (52a). 

R e m a r k 2. When in (48a) the condition 

(53) N3 = 1 

holds then there may evidently exist two solutions of the problem of the critical 
reactor with flattened specific output: one for N0 e ( N 3 , N 2 ) , N0 = a2N0 + Y0 for 
which N(x; N0, N0) has in x = 0 a local minimum, and the other one for N0 e 
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6 (N2, Ni), N0 = a 2N 0 + Y0, for which N(x, N0, N0) reaches in x = 0 its local 
maximum. 

R e m a r k 3. In the same manner as it has been done for the total reactor output, 
the optimization of other functionals (interesting from the reactor physicist's view­
point) with respect to the two parameters N0, N0 in the solution N(x; N0, N0) of the 
problem of the reactor with flattened specific output can be considered. E.g., optimiza­
tion of the total fuel loading in the reactor core 

~- ~ rb*(N0,N0") 

(54) Q(N0, N0) = max Q(N0, N$ = max M(x; N0, N'0") dx = 
(N0,N0")eQ2<=Q (N0,N0")GQ2J0 

fb*(N0,N0") 

= max [N(x; N0, N0) - 1]~ l dx 
(N0,N0")eQ2<=Qj0 

which requires the following two conditions 

(55) 
OiV 0 

82 

~ Q(N0, Лtő) = 0 ; - £ - Q(N0, N'0) = 0 ; 
дN0 õN0 

(56) 
Õ2N0 

< 0; 
No = N0,N0" = N0" 

l & 2(iVo, xVj) --f— Q(N0, ivrf 
det 

' 0 

ô2 

'0 и ' o 

\dNÁ dNn dzN„ 

> 0 

No = N0,N0" = No" 

to be fulfilled. Another example is the optimization of the mean thermal neutron flux 
in the reactor with flattened specific output 

(57) 

Ф(N0, N0) 

fb*(N0fN0") rb*(N0,N0") 

<P(x;N0,N$dx [N(x;N0,NoVl]dx 
Jo _ r Jo 

—~———- _ d —— — Ь*(N0,N$ Ь*(ІV0, ІV0) 

*č>*(JV0,!Vo") 

= C^No, N0) - 1] . \ where iV(iV( 

whose optimization 

Í
b*(No,N0") \ 

iV(x;iV0,iV0)dx\ 
^ c - v ; ) " z 

(58) Ф(Ñ0, Ñ0) = C. max [Лf(.V0, ІV0) - 1] 
(N0,N0")єSÌ2czQ 

must fulfil two conditions analogous to (55), (56). 
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The relations between these functional can be studied in the same way. 
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S o u h r n 

JEDNOROZMĚRNÝ HOMOGENIZOVANÝ REAKTOR S PŘÍRODNÍM 
URANEM A S VYROVNANÝM MĚRNÝM VÝKONEM 

ROSTISLAV ZEZULA 

Hlavní výsledky práce jsou formulovány ve třech větách. 

Ve větě 1 jsou udány postačující podmínky pro existenci resp. konstrukci takového 
rozložení M(x; N0, N0) = [N(x; N0, N0) — 1 ] _ 1 relativní koncentrace paliva v jádře 
kritického reaktoru, které indukuje tok tepelných neutronů $(x; N0, N0) dávající 
vyrovnaný měrný výkon M$> = const. 

Ve větě 2 jsou udány postačující podmínky pro existenci resp. konstrukci optimál­
ních hodnot N0, JVQ parametrů N0, No, pro které celkový výkon reaktoru T(N 0, No) 
nabývá svého lokálního maxima na oblasti stability Q řešení N(x; N0, N0) kvasi-
lineárního biharmonického Cauchyova problému pro reaktor s vyrovnaným měrným 
výkonem. 

Ve větě 3 jsou udány podmínky postačující pro existenci obdélníkové oblasti 
stability Q řešení N(x; N0, N0). 
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