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SVAZEK 14 (1969) APLIKACE MATEMATIKY ČÍSLO 5 

TO THE INTERPRETATION OF THE OSCULATIONS OF ORBITS 
AND THE IN-SPACE LAUNCHING POINT OF ARTIFICIAL COSMIC 

BODIES 

KAREL MISON 

(Received April 17, 1968) 

The foremost interest of the present day theoretical astronautics has been con­
centrated on the problem of launching artificial cosmic bodies into the prescribed 
trajectory. A number of contributions deals with the determination of the optimal 
launching, usually with respect to the minimum fuel consumption. Numerous studies 
of this kind are due to D. F. Lawden. His work [l] contains 40 references to litera­
ture, the symposium [2] presentes 394 references! Some general formulations lead 
to complicated relations [3] whose solution is restricted only to quite special cases. 
The present paper investigates osculating transfer between two prescribed trajectories 
without considering the problem of optimization. This point of view allows a final 
numerical expression of the general case including the special Hohmann transfer [4] 
with contacts at the apsidal points which was examined in [3]. 

As the basis for the analysis of the problem expressed by the title some relations 
from the geometry of conic sections in polar coordinates have served, in particular 
the condition for osculation of two confocal conic sections and the equations of the 
common tangents of two nonosculating confocal conic sections. Respective formulae 
have been obtained by using a method of graphical solution of a certain trigonometric 
equation1). The mathematical proofs of the results presented in this paper are not 
given for the sake of brevity. The applications of the relations to the motion of 
rockets presented in the paper leads, on the basis of very traditional knowledge of 
conic sections, to quite nontraditional results for the kinematics of launching arti­
ficial cosmic bodies. Only general conclusions without secondary details are presented 
in the paper. 

*) Cf. "Grafické řešení jedné goniometrické rovnice" (Graphical solution of one goniometric 
equation), Čas. pěst. mat. 80, (1955), p. 243. 
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§ 1. CONDITIONS OF THE OSCULATION 

The possibility of transferring a rocket from the known path of departure (i = l) 
to the transfer orbit (i = 0) osculating the given trajectory of arrival (i = 2), com-
planar with the path of departure, has been already investigated. For the transfer 
one change only of the velocity modulus of the rocket is assumed so that the path 
of departure osculates the transfer orbit as well. Let us consider the case of a triplet 
of conic sections nondegrading to a straight line 

Pi i = 0, 1, 2 . 
1 + £i COS (cp - <Pi) 

The analysis of the requirements of both osculations leads to the conditions 

e2 — 1 e- 2 
(1) el + l p2

0 - 2— p0e0 cos (cp0 - (pt) + — p0 = 0 , i = 1, 2 
Pi Pi Pi 

expressing the couple of relations for the unknown triplet of orbital elements P0, e0> 

<p0. Considering the value cp0 as given, six quantities are known: 

-4* = ^ - , Bi = 2£-i-cos((p0 - <pi), Ct = ~, i = l , 2 
Pi Pi Pi 

and the determination of p0, e0 is transferred to the solution of one arbitrary equation 
of 

(2) e2
0 + AiP2 - BiPoe0 + Cfp0 = 1 , i = 1, 2 

together with the equation 

(3) (A! - A2) p0 - (B, - B2) e0 + (C! - C2) = 0 . 

Numerical evaluation of couples of both possible roots pop eoj, j = I, II is not dif­
ficult. For polar angles <ptJ of the contact points of both the transfer orbits (j = I, II) 
with the trajectory of arrival (i = 2) and with the path of departure (i = 1), a brief 
analysis gives the unambiguous determination 

(4) tg ^ = Poj-ej sin (pt - Pie0jsm(p0 . . = ^ ^ . = j u 

2 Pi(\ - e0j cos <p0) - p0/l - et cos (p^ ' 

Both conditions (1) for the osculation, into which quantities p0, e0, (p0 are substituted, 
allow to study further aspects of the investigated problem. A natural demand is to 
determine the contact point situated either on the path of departure ((p01) or on the 
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trajectory of arrival ((p02). According to (4) it signifies that one of the relations 

t g
 (Po± = p0£t- sin cpj - pfij sin cp0 > j = 1 2 

2 Pf(l - e0 cos <p0) - p0(l - Si cos <pf) ' 

be satisfied. Each of these equations allow to determine, together with the couple (l), 
the triplet of orbital parameters p0, e0, (p0. To calculate such a solution may require 
an iterative procedure, e.g. a successive selection of the angle q>0. Thus the problem 
is reduced to (2), (3). 

§ 2. STARTING VELOCITY 

The point of view used until now was exclusively geometrical. Let us consider the 
problem kinematically. By the localization of the orbital point r0, by the tangential 
angle S0 and by the value of the corresponding orbital velocity v0 the transfer orbit 
is uniquely determined. If we consider r0, #0 as given, all the orbital elements can be 
expressed in dependence on v0. The result of the corresponding analysis can be ex­
pressed by the following Theorem: 

Let be 

r = Ei 
1 + et cos ((p — (pt) 

for i = 1, 2 the equation of the conic section — nondegrading into a straight 
line — representing the path of departure and the trajectory of arrival, respectively, 
and for i — 0 the transfer orbit osculating these both conic sections. Let us denote 
by r0, $0, .90, v0 the quantities related to the contact point of the path of departure 
and of the transfer orbit (the starting point, the in-space launching point): the 
radius vector, the polar angle, the tangential angle, and the starting velocity, 
respectively. Then 

(5) vl = v 
{Pг - r0[í + є2 cos ((p0 - Ф0)]} p2 

Pг + (є2 ~ 1) (ro sin 90)
2 - 2p2є2r0 sin (S 0 + Ф0 - (p2) 

where vou is the value of the second cosmical velocity at the starting point. 
If the starting point is inside the trajectory of arrival, there always exists a finite 

real velocity v0. If the starting point is outside the trajectory of arrival, there exists 
a finite real value only if the tangent t of the transfer orbit at the starting point 
has no common point with the trajectory of arrival. If t is at the same time the tan­
gent of the trajectory of arrival, then v0 -» oo and the transfer orbit degrades into 
a straight line "passed through" at infinitely high speed. If t intersects the trajectory 
of arrival really in two different points then no real v0 exists. If the starting point 
is at the same time a point of the trajectory of arrival, then if it is the osculation 
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point of the path of departure with the trajectory of arrival as well, the conic section 
for i = 0 expresses formally the transfer orbit for any v0. If it is not the osculation 
point, then v0 = 0 and the transfer orbit degrades into a straight line of the free 
fall to the central body; the concept of osculation loses its sense. 

When deriving the relation (5) it is necessary to consider the singular case of 
a parabola, for which some general expressions become undefinite. The investigation 
can be made either by a limit process or by taking other expressions, e.g. instead 
of p = /i(1 — £2)l(2fijr — v2) to put p = (r vsin $)2jfi. The zero value of the de­
nominator in (5) expresses geometrically the condition that the common tangent 
of the transfer orbit and of the path of departure is that of the trajectory of arrival. 
Physically this is the case of a formal straight line transfer orbit. Both statements 
are evident. 

§ 3. STARTING SECTIONS 

Up to now we have investigated the problem of existence of the transfer orbit 
corresponding to a completely definite point of the path of departure. Let us enlarge 
the problem to the whole course of the path of departure with the aim to look for 
the possibilities of launching the rocket from the path of departure to the transfer 
orbit by a convenient change of the velocity modulus without the completely definite 
localization of the starting point. As it can be expected, the analysis shows that such 
launching is possible at any point of the path of departure if the latter lies as a whole 
either inside or outside the trajectory of arrival. In boundary cases when the path 
of departure itself osculates the trajectory of arrival (inside or outside), it itself fuses 
with the transfer orbit. On the other hand, in the case of the path of departure inter­
secting the trajectory of arrival, the transition can be realized from all points of the 
path situated inside the trajectory of arrival (by decreasing the velocity), but 
from the points situated outside, the transition (by increasing the velocity) is possible 
only from the section existing between the contact points of the common tangents 
of the path of departure and the trajectory of arrival. 

In case of a hyperbolic path such a section need not exist. The analysis of calculating 
this problem is relatively labourious. 

The contents of this § correspond to the concluding part of the preceding §. 

§ 4. SYNTHETIC VIEW 

The formulation using the concept of the starting velocity was a kinematic one. 
Regardless of the physically mechanical conception, the whole problem can be for­
mulated purely geometrically: 

Six values r0, <P0, 90, pl9 et, cpt determine the tangent t0 of the searched transfer 
orbit with the contact point Af0 and the form (a2, b2) and the localization of the 
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trajectory of arrival. From this stand-point we try to determine the ellipse2) (of the 
transfer orbit) touching the given ellipse2) (the trajectory of arrival), having one 
common focus F with it and touching the given tangent t0 at the given point M0. 
The concrete solution is evident: Let us denote the second focus of the trajectory of 
arrival (of the transfer orbit) by F"(F'). The bearer of the focus F' is the straight linef 
passing through the point M0 symmetrically to the tangent t0. Let us indicate a point 
M' on the linef so that M0M' = 2a2 ~ r0 is (respecting the sign of the orientation) 
plotted from t0 to the half-plane which contains F. The searched focus F' has then 
the same distance from the both points F", M'. Thus the transfer orbit is practically 
determined. The contact point is situated on the straight line joining the uncommon 
foci of the transfer orbit and of the trajectory of arrival. 

km ;Q* 

Launching of a rocket from the path of departure Ex into the trajectory of arrival E2 through 
two transfer orbits E0e, Eoi having external (e) and internal (i) osculations recpectively. 

As a numerical example we choose the path of departure F, 

ax = 14 000 km , ex = 7000 km , q>1 = 205°00'00" 

) Generally a conic section; to give a more concrete idea the word "ellipse" is used. 

382 



and the trajectory of arrival E2 

a2 = 12 000 km , e2 = 4000 km , cp2 = 0°00'00" 

so that 

bt = 12 124,4 km , Pl = 10500,0 km , e, = 0,50000 . 

b2 = 11 313,7 km , p2 = 10666,7 km , s2 = 0,33333 

and the polar angles of their intersections 

"Pi = 106°14/28// , *(pn = 286°14,26,/. */ 

The connecting line of centres of both conic sections has the length 10758,6 km and 
the direction 15°57/38,/ and therefore the normal straight lines of both common tan­
gents tl2 have the length 

Ql = 12758,9 km , Qll = 10565,7 km 

their polar angles being 

a- = 109°55/39//, a„ = 281°09/4V/ 

and thus the polar angles of the contact points 

q>n = 80°02/21//, q>2l = m°\.V2V , 

q>ul = 310°12,50//, cp2u = 262°04/04,/. 

The starting section for the external osculation is then limited on the path of depar­
ture by the angles 

(*) (-49°47 /10 / /, 80°02/21//) 

and enables launching into the trajectory of arrival into the section 

(128°11,28//, 262°04,04//) . 

The transfer with the internal osculation can be reached from the path of departure 
only from the locations in 

( ^ l ^ S " , 286°14'26//) 

with possible contact with the trajectory of arrival in 

(73°45/34//, 106°14/28,/). 

For computing the transfer orbit with the external osculation we choose the centre 
of the interval (*) 

<2>o = 15°07/35// 
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with the corresponding launching orbit F0e: 

r0e = 20693,8 km , %e = 80°24'33" , v0IIe = 6204,4 m/s 

so that 

v0e = 4133,6 m/s 

a0e = 18607,4 k m , b0e = 18231,6 km 

e0e = 3 720,5 km , p0e = 17 863,6 km 

s0e = 0,19994 , cp0e = 241°58'18" 

with the osculation point on the trajectory of arrival at 

(plle = 194°32'26" . 

For the realization of the internal osculation we choose the perigee of the path of 
departure (<P0i = <pj) 

r0i = ex = 7000 km , S0i = 90°00'00", v0II = 10667,8 m/s 

whose apsidal straight line then coincides with the apsidal line of the transfer orbit. 
Using the value of the starting velocity 

v0i = 7801,6 m/s 

we obtain a nearly circular transfer orbit E0i 

a0i = 7523,3 km , h0i = 7507,1 km . p0i = 7491,1 km , 

£0i = 0,065498 , e0i = 492,76 km 

with the contact at the point 

q>Ui = 5°2r42 ; ' . 

§ 5. COSMICAL RENDEZ-VOUS 

The time of duration of the flight of a rocket on the transient orbit can be expressed 
by using Kepler's equation. The knowledge of positions in dependence on time on the 
path of departure imposes the question how to realize the cosmical rendez-vous 
of a rocket describing a conic section — which has been spoken of as the path of 
departure — with a rocket on a trajectory previously called the trajectory of arrival. 
A very simple case is that one when the conic section of departure as well as that of 
arrival reduce to circles. 

If we denote the polar angles of the osculation points by q>01, cp02; (p02 = (p0i + n 
and the times for each revolution in the circular paths by Tl3 T2, respectively, and the 
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localization of both rockets before the starting moments by corresponding angles oicp 
at times 0it, i = 1, 2, then for the moment t02 of the start at the transfer orbit we have 

_ (o2<P ~ i2<p)/2rc + [ ( 2 m + 1) To ~ 02^/^2 + oi_ j\ + n- j # 

i/r. - i/ra 

n = 0, + 1 , ± 2 , ... , m - 0, 1,2, ... . 

The quantity T 0 is the known half-time of the assumable total circulation on the 
transfer orbit and the presence of a nonnegative integer m shows the possibility 
of realizing the rendez-vous not only after passing the half of the transfer orbit 
(m = 0), but also after passing it m-times. The parameter n takes into account the 
periodicity of passing the trajectory of arrival. 

The uniform passing of the departure and arrival conic sections allows the imme­
diate construction of a graphical flight schedule for both rockets with the instructive 
interpretation of integer parameters m, n. The immediate generalization of this idea 
to the case of noncircular conic sections leads to a numerically laborious solution. 
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S o u h r n 

K INTERPRETACI OSKULAČNÍCH ORBITU A NAVÁDĚCÍCH BODŮ 

UMĚLÝCH KOSMICKÝCH TĚLES 

KAREL M I Š O Ň , P r a h a 

Jde o převedení rakety z předepsané původní dráhy na přechodový orbit oskulující 
jinou danou komplanární cílovou raketovou trajektorii. Navedení do přechodového 
orbitu se uskutečňuje jedinou změnou modulu rychlosti rakety beze změny letového 
směru, takže i původní dráha má s přechodovým orbitem oskulační styk. Požadavek 
oskulace dvou kuželoseček vede na numericky pracné řešení algebraicko-gonio-
metrické soustavy. Předpis polohy apsidální přímky přechodového orbitu je zjedno­
dušením na soustavu závislých algebraických rovnic (2) (3) s možností explicitního 
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vyjádření polárních úhlů oskulačních bodů (4). Vyjadřuje se naváděcí rychlost (5) 
v závislosti na místě navedení a vymezují se úseky původní dráhy, z nichž je dvoj-
oskulační navedení možné (§ 3). 

K úloze oskulace se přihlíží rovněž ryze geometricky, bez kinematického hlediska 
(§ 4). Závěrečný § 5 vyšetřuje kosmické rendez-vous, případ, kdy raketa letící v pře­
chodové dráze prochází oskulačním bodem s cílovou trajektorií tak, že zde právě 
zastihne raketu z této trajektorie. 

Authoťs address: Karel Mišoň, elektrotechnická fakulta ČVUT, Praha 6 - Dejvice, Technická 
1902. 
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