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SVAZEK 15 (1970) A P L I K A C E M A T E M A T I K Y ČÍSLO 3 

THE FINITE ELEMENT METHOD FOR NON-LINEAR PROBLEMS1) 

FRANTISEK M E L K E S 

(Received February 5, 1969) 

The finite element method, which is in its essence the generalized Ritz method with 
a special choice of the basis functions, has come forward lately. Among the publications 
dealing with this method let us mention [2], [3] where the method is applied to some 
class of non-linear ordinary differential equations, and [1], [8] where linear partial 
differential equations are solved by the finite element method. Further literature 
devoted to the subject is mentioned in [8]. 

In the present paper the finite element method is applied to non-linear operator 
equations. The attained results are used to solve the general quasilinear equation. 

NON-LINEAR OPERATORS 

In this section we shall deal with the solution of the operator equation 

(i) F(x) = e, 

10|| = 0 where F is generally a non-linear operator defined on the whole real Banach 
space E. Throughout the whole section we shall suppose that the operator F is 
potential and hence its range is in the adjoint Banach space F*. Conditions for the 
operator F, either differentiable or not, to be potentional, are given in [7]. 

We shall limit our considerations to the class of monotonous operators. The 
operator F will be called, in accordance with [4], monotonous on the space E if for 
arbitrary elements xl9 x2 e E it fulfils the inequality 

(2) (xt - x2, F(xt) - F(x2)) ^ 0 . 

*) While the present paper was being prepared for publication, the paper P. G. CIARLET, 
M. H. SCHULTZ, R. S. VARGA: Numerical Methods of High-Order Accuracy for Nonlinear 
Boundary Value Problems, V. Monotone Operator Theory, Numer. Math. 13, 51 — 77 (1969) 
appeared which deals with similar problems. 
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Since the finite element method belongs to the variational methods, we shall 
solve a certain variational problem instead of the equation (1). The equivalence 
of both problems is guaranteed by the following 

Lemma 1. Let the monotonous potential operator F(x) be defined on the whole 
Banach real space E, gradf(x) = F(x). Then the element x* e E which minimizes 
the functional f(x) on the space E fulfils the equation (i). Inversely, the solution x* 
of the equation (1) minimizes the functional f(x) on the space E. 

Proof. The first assertion is proved in [7]; the other follows from the Lagrange 
formula for the potential. In fact, if F(x*) = 6 then for an arbitrary element x e E 
there is 

f(x) - f(x*) = J (x - x*, F(x* + t(x - x*)))dt = 

= J (x - x*, F(x* + t(x - x*)) - F(x*)) dt = 0 . 

It turns out that the monotony of the potential operator F by itself is not sufficient 
for the proof of the existence and unicity of the corresponding variational problem. 
It is necessary that the expression on the left-hand side of the inequality (2) be suitably 
bounded from below. A sufficient condition for the existence and unicity of the 
solution of the problem is given by Theorem 2.7 in [4]. However, the course of the 
proof makes it possible to modify the theorem in a certain way. In view of the fact 
that we are going to use this modified assertion in the sequel, we introduce its full 
wording. We shall require that the operator F fulfils the following condition of 
boundedness: 

1° given arbitrary elements xl9 x2 e F, the inequality 

(3) (xx - x2, F(xj) - F(x2)) = afll*,. - x2||) 

holds, a(t) being a non-negative function of the non-negative argument such that 
the function a(R) = Jo oc(Rt) dtjt is continuous and increasing for R = 0, a(0) = 
= 0 and l i m ^ ^ dc(R)JR = oo. 

Lemma 2. Let the potential operator F(x), gradf(x) = F(x) satisfying Condition 
1° be defined on the real Banach space. Let M cz E be an arbitrary closed or weakly 
closed convex set. Then there exists one and only one element x e M minimizing 
the functional f(x) on the set M. Each sequence {x„} c M satisfying l i m ^ ^ f ^ ) = 
= infxeMf(x) converges strongly to the element x. 

Proof. Since the proof of Lemma 2 is essentially coincident with that of the 
above mentioned Theorem, we shall introduce it just in outline. If x0 e E is a fixed 
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element, it follows from the Lagrange formula for the potential and from the condi­
tion (3) 

f(x)=f(x0) + (x - x0, F(x0 + t(x - x0))) dî = 

^f(*o) + a ( | | * - *o|) - \\F(xo)\\ ||* - *o|| 

where x e E is an arbitrary element. Owing to Condition 1° there exists K0 > 0 
such that for all R > R0 the function ot(R) — ||F(x0)|| R is positive. Since this function 
is bounded from below on the interval <0, R0> in view of its continuity, it is bounded 
from below on the whole positive semi-axis. The functional f(x) is consequently 
bounded from below on the whole space E and thus, all the more, on the set M . 
Hence there exists d = infX6Mf(x). For any two elements x, y e E there is 

i/W + if(y) - / ( : x + y 

2 

l=H\\x-y\\)-

Let us now choose an arbitrary sequence {x„} cz M, limM_^00f(xll) = d. For any 

£ > 0 and for m, n sufficiently large we have 

f(xn) < d + £, f(xm) < d + £, 

Hence 

and thus 

\ä(\\x„ - xm\) <; y(x„) + łf(xm) -ffe±ï») ѓ 

. d + £ d + £ , 
< ( d = £ 

2 2 

tiЫm,n^oo a( | X « - XЛ) = 0 ' 

Condition 1° guarantees that limm>B_+00 ||xn — x m | = 0 as well. In view of the com­

pleteness of the space E there is an element x e E to which the sequence {xn} converges 

strongly and, all the more, weakly. Since the set M is closed or weakly closed, x e M 

holds. The potential f(x) of the monotonous operator F(x) is weakly semi-continuous 

from below and hence 

d^f(x)^ljm^00f(x„) = d 
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which implies f(x) = d. If there existed two different elements x, x e M satisfying 

f(x) = f(x) = d then according to (4) it would be 

•/•(ЧK) < U(x) + ł/(3c) = d 

which is a contradiction, for J(x + x) e M . 

If in particular M = E then Lemma 2 guarantees in the space E the unique existence 
of the minimum of the functional f(x) and thus of the solution of the equation (1) 
as well. Any minimizing sequence converges strongly to this solution. 

The difference between the mentioned Lemma and Theorem 2.7 in [4] consists 
partly in the existence of the minimum of the functional f(x) being guaranteed not 
only on the whole space E but even on its closed or weakly closed convex subset, 
partly in the fact that Condition 1° is a little more general than the analogous condi­
tion in the Theorem. 

Approximate variational methods consist in solving the variational problem 
not on the whole space E but only on its subset M c E. We shall require that this 
subset should fulfil the assumptions of the preceding Lemma, i.e. that it should 
be a closed or a weakly closed convex set. The element x e M which minimizes the 
functional f(x) on the set M and which exists uniquely according to Lemma 2 will 
be called an approximate solution of the equation (l). Let us deal now with the 
estimate of the error caused by replacing the exact solution x* of the equation (1) 
by the approximate solution x. To this purpose it will be necessary for the operator F 
to fulfil some further condition of boundedness: 

2° given arbitrary elements x l 5 x2e E, the inequality 

(5) (xt - x2, F(Xl) - F(x2)) <. p(\\Xl - x2\\) 

holds, P(i) being a non-negative function of the non-negative argument such 
that the function fi(R) = Jo P(Rt) dtjt is continuous and increasing for R ^ 0, 
J5(0) = 0 . 

An estimate of the error of the solution is given by the following 

Theorem 1. Let a potential operator F(x), gradf(x) = F(x) fulfilling Conditions 1° 
and 2° be defined on the real Banach space E. Let M a E be a closed or weakly 
closed convex set. Denote by x* e E the element for which f(x*) = m i n ^ f ^ ) 
and xeM the element for which f(x) = min x e M f(x). Then there holds for any 
xeM 

(6) ||x - x*|| g y(|x - x*||) 

where y(R) is a certain increasing non-negative function of the non-negative argu­

ment such that y(0) = 0. 
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Proof. Since F(x*) = 9 in view of Lemma 1, we can write 

(7) f(x) - /(x*) = f (x - x*, F(x* + t(x - x*)) - F(x*)) dt 

for any x e E. Applying the inequality (3) to this relation we get 

a ( | | x - x * | ) ^ / ( x ) - / ( x * ) . 

The right-hand side may be increased on the set M since the definition of the element 
xe M implies the inequality f(x) ^ f(x) for all x e M and hence 

a ( | | x - x * | ) ^ / ( x ) - / ( x * ) . 

If we use again (7) and the inequality (5) we obtain 

a(||x - x*||) S P(\\x ~ **!)• 

Since the function ~(R) is positive, continuous and increasing on the whole positive 
semi-axis, it has on the whole semi-axis a continuous inverse function a - 1 which 
is increasing as well and a - 1 (0) = 0. 

With regard to the last inequality we have 

||x — x*|| S y(\\x — **||) 

where y(R) — a_1[j5(R)]. The function y(R) is obviously continuous and increasing 
for R ^ 0 and y(0) = 0. 

Thus, if we succeed in finding a single element xe M which in the norm of the 
space E differs only little from the exact solution x*, then Theorem just proved 
guarantees that the error of the solution is sufficiently small as well. Owing to (7) 
and to Condition 2° the relation 

(8) 0 ^ f(x) - f(x*) =S f(x) - f(x*) g /,(|x - x*|) 

holds for all x e M expressing the fact that the error of the approximation is also 
small. The construction of the element xe M sufficiently close to the exact solution x* 
depends on the choice of the space E as well as of the set M. We shall show later 
some practical examples of the choice of this element. 

Let us now choose a finite dimensional subspace which is closed and convex as the 
set M. Denote by n its dimension and by x l 5 ..., xn its arbitrarily chosen linearly 
independent elements. Any element xe M can be written in the form 

(9) x = t cpc, 
i = l 
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where cl9 ..., cn are suitable real numbers. The functional f(x) on the subspace M 
can be then considered as a function of real variables cl9 . . . , cn, i.e. 

n 

(p(cl9...,cn) =fCZcixd-

J = l 

If the requirement /?(0) = 0 from Condition 2° is replaced by a stronger one 

(10) H m ^ l l ^ O 
R 

then also the condition lim^_0 + [a(R)/R] = 0 is fulfilled owing to the inequality 
ot(R) ^ fi(R) and the function (p(cl9 . . . , cn) has partial derivatives of the first order 
with respect to all variables cj9 j = 1, . . . , w. In fact, if x is in the form (9), then 

õ<p 

дc 
- = I i m s _ 0

/ ( X + SXj) / ( x ) = lim s_ 0 f (xj9 F(x + tsxj)) At = 
•j s Jo 

= (xj9 F(x)) + l i m ^ 0 j (xj9 F(x + tsXj) - F(x)) At. 

For the second term it holds with regard to Conditions 1° and 2° 

1 f1 

l im s _ 0 + „ a(s \\xj\\) g l im s ^ 0 + (xj9 F(x + tsxj) - F(x)) dt S 
s Jo 

^ l i m s ^ 0 + - j 5 ( s | | x j ) 
s 

and hence it vanishes. It would be possible to show analogously that the second term 

vanishes for s -> 0_ as well. Partial derivatives of the first order of the function 

(p(cl9 ...9cn) hence exist and are given by 

(„) |=KH)-
The coefficients cl9 ..., cn of the element x e M for which the functional f(x) attains 

its minimum can be determined either by the gradient method or by solving a ge­

nerally non-linear system of equations 

n 

(xPF(Hcixi)) = °> J = !»•••»" 
i = l 

which has precisely one solution owing to Lemma 2. 

In practice, the problem of solving the operator equation (l) often occurs, with 

the operator F satisfying the following conditions: 
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3° for any elements x, A e E there exists the Gateaux derivative F^A (the linear 

Gateaux differential); 

4° the functional (A1? F^A2) is continuous with respect to x on an arbitrary hyperplane 

passing through x for any elements hi9 h2 e F; 

5° for arbitrary elements x, hl9 h2 e E it is (A1? Fxh2) — (̂ 2» F^hj); 

6° there exist positive constants a0, p0 such that for arbitrary x, A e E it is 

(12) « o | H N (*> F » ^Po\\h\\2-

Conditions 3° to 5° guarantee that the operator F is potential (cf. [7]). Making 
use of the Lagrange formula for the operator, we obtain for arbitrary elements 
xl9 x2e E the identity 

(13) (xt - x2, F(xt) - F(x2)) = f (A, F;A) dt 
Jo 

with A = xt — x2, x = x2 + tA which makes it possible to verify Conditions 1° 
and 2°. From (12) and (13) it follows 

(xt - x2, F(xt) - F(x2)) _ al\\xt - x2\\
2 . 

The function a(t) from Condition 1° is defined in the following way: 

a(t) = a0t2 . 

The corresponding function 

a(Iv)= f a 2 ( R t ) 2 - = \a2
0R

2 

Jo t 

is obviously continuous and increasing and a(0) = 0, 

a(K) i 2 r 
li%-,oo ~~ = i a 0 lim^..^ R = oo . 

iv 

Condition 1° is thus fulfilled. We show analogously that 2° is fulfilled as well. Hence, 
if 3° to 6° are fulfilled, then according to our preceding considerations there exists 
precisely one solution x* of the equation (1). This solution minimizes on F its poten­
tial. On an arbitrary finite dimensional subspace M the solution x* of (1) can be 
replaced by the approximate solution x which also exists uniquely. Since, as we can 
verify easily by a direct computation, the function y(R) occuring in the assertion 
of Theorem 1 is given by the relation y(R) = f}0 . Rja0 the error of the solution 
is in its order equal to the distance of the chosen element of the set M from the exact 
solution. 
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The function fi(R) satisfies also the suplementary condition (10) and hence the 
function defined above, (p(cu . . . , cn), has all partial derivatives of the first order. 
Condition 3° guarantees that all these derivatives are continuous. We shall show 
that in this case, the function (p(ct, ...,c„) has even all partial derivatives of the 
second order, all being continuous functions. Let us choose arbitrarily j , k = 1, ..., n, 
consider x in the form (9) and compute 

= l-ms-o - [(xj, F(x + sxk)) - (x ;, F(x))] = 
ôCj дck s 

= lims_>0 (xp Fy

yxk) át = (xp F>k) 

where we put y = x + stxk. The last limiting process may be performed owing 
to Condition 4°. This condition guarantees also the continuity of the second partial 
derivatives. 

QUAS1L1NEAR EQUATIONS 

The results of the previous section will be now applied to the solution of the 
quasilinear partial differential equation in the divergence form which is solved in [4] . 

In the ^-dimensional space R" with the general point x = (x 1 ? . , . , xn) let an open 
bounded set Q be given with a sufficiently smooth boundary. Denote D* = 

= d'^'/Ox!1 . . . dx^n where /i = (jxu ..., fin), |/i| = fit + . . . + fin. All the derivatives 
are considered in the generalized sense. The scalar product in the space Wim) will 
be denoted by (u, v)m, the corresponding norm by ||u||* = (u, u)m; in particular, 
by (u, v)0 we shall denote the scalar product in the space L2. 

Consider the quasilinear partial differential equation of the order 2m, m = 1 
in the form 

(14) X (-l)^D^afi(x,u,...,Dmu) = g 
\ti\^m 

where g e L2(Q). The solution of this equation will be sought for in the space E 
satisfying W2

m)(Q) c £ c W2
m)(Q). The coefficients a^ are supposed to satisfy the 

following condition 

7° all coefficients a^ are real continuous functions of all their arguments and for 
all u G W2

m)(Q), x e Q they satisfy the inequality 

(15) \a,(x, u(x),..., £P «(x))| =g <KH|m) [ Z \DV u(x)\ + 1] 
| v |^m 

where cp(R) is a continuous non-negative function of the non-negative variable* 
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To the differential equation (14), the non-linear Dirichlet form 

(16) A(u9 v) = X (*„(*, ">•••, Dm")> &lv)o 
\ti\Zm 

having sense for all u9 v e W2
m)(Q) will be adjoined. The form will be supposed 

to satisfy the following condition: 

8° there is a positive constant a0 such that for all u, v e E the following inequality 
holds: 

0.QItt — v\\m ^ A(u9 U — v) — A(v, u — v) . 

Making use of the Holder inequality and of (15) we find out that (16) is a linear 
functional bounded with respect to v. Consequently, to each u e E it is possible 
to determine uniquely an element G(u) e E so that for all v e E 

(17) (p, G(u))m = A(u, v) . 

The function u* e E will be called the weak solution of (14) corresponding to the 
space E if for all v e E 

A(u*, v) = (g, v)0 . 

It is shown in [4] that if Conditions 7° and 8° are fulfilled then for any g e L2(Q) 
there exists precisely one weak solution u* e E of the equation (14) corresponding 
to the space E. Moreover, the element u* e E is the weak solution if and only if it 
satisfies the equation 

(18) F(u) == G(u) - w = 6 

where w e E is uniquely determined by the relation 

(19) (w, v)m = (g9 v)0 

which is valid for all v e E. 

If we want to use the finite element method to determine the solution of the 
equation (18) — and thus also the weak solution of the equation (14) — we have to 
add some supplementary assumptions. To this purpose, note that the Dirichlet 
form (16) is a functional of two variables. Let us denote by Au(hl9 h2) its Gateaux 
derivative with respect to the first variable, i.e. let us put 

Au(hu hi) = lims->0 - \_A(U + shl9h2) - A(u9 h2)] 
s 

for arbitrary elements u9 hl9 h2e E. Further, the fulfilment of the following condi­
tions will be required: 
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9° for all elements u, hl9 h2eE there exists the Gateaux derivative Au(hi,h2), 
it is continuous with respect to u on any hyperplane passing through u and 
4,(hl9 h2) = Au(h2, ht); 

10° there exists a positive constant /?0 so that for all u, v e E 

A(u, u — v) — A(v, u — v) ^ /?o||w — ̂ ||m . 

We shall show that under these assumptions the operator F(u) given by (18) 
satisfies Conditions 1° and 2°, it is potential and its potential is of the form 

(20) f(u) = A(tu, u) át - (u, w)m 

w being determined by (19). The fulfilment of Conditions 1° and 2° follows im­
mediately from 8° and 10° since we have the equality 

(u — v, F(u) — F(v))m = A(u, u — v) — A(v, u — v) 

for all u, v e E. 

Let US now compute the gradient of the functional (20). It is 

H m ^ / ( - + * * ) - / ( » ) _ 
T 

ClA(tu + Ttft, U + Th) — Aitu, u) , /, \ 
= limt_o - * L K~^~1 dt - (h, w)m = 

Jo T 

,. f1 r ,/ , ,\ ^(*w + 5*> w ) — ^('w> w ) l t = lims_,0 A(tu + sh, h) + t —̂  '—* X__L__Z d t -

- (*> *)« = J [A(tu, h) + t A;U(h, u)] dt - (h, w)m = 

= [A(tu, h) + t A;M(u, ft)] dt - (h, w)m = 

= A(tu, h) + t — A(tu, ft) dt - (ft, w)m = 

f1 d 
= — [t A(tu, ft)] dt - (ft, w)m = A(u, ft) - (ft, w)m = 

Jo dl 

= (ft, G(u))w - (ft, w)m = (ft, F(u))m 

which proves that (20) is the potential of the operator F. All assumptions of Lemma 1 
and 2 as well as those of Theorem 1 are fulfilled and therefore we can replace the 
weak solution u* of the equation (14) on an arbitrary finite dimensional subspace 
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M c E by an approximate solution u e M which minimizes the functional (20) 
on the set M . For the error of the solution it is with respect to (6) 

(21) ||5 - «1« ^ --• 1» - "*||m 
ao 

where u e M is a suitably chosen element. One way of choosing this element is given 
in [1], another one in [8]. In both cases the considerations are made without expres­
sing the basis functions of the finite dimensional space M explicitly and are restricted 
at most to a two-dimensional space, the reasoning in a general n-dimensional space 
being too complicated. 

In [1], the two-dimensional region Q is assumed to be a polygon whose sides are 
parallel to the coordinate axes. Every such polygon can be expressed as a union 
of rectangles Rt = <a/? bty x <c-, dt}, i = 1, ..., k any two of them being either 
disjoint or having a part of the boundary in common. On every rectangle let us 
define a partition Qt: 

at = xl
0 < x\ < ... < xl

Ni = b{, 

ct = yo < yi < ••• < yk = dt. 

A partition of the whole region Q is such partition which is defined on each rectangle 
Rt by means of O,-. A system of such partitions let us denote by C. We say that this 
system is regular if there exist such positive constants a, x, rj that for all i, \ = i = k 
and for all O e C there holds 

a%i = nt, on'i = n\, rj g n } / ^ S T 

where 

nt = max,- (xl
j+1 - xj) , %\ = max^ (y}+1 ~ yj) , 

nt = minj (xl
j+l - xj) , n\ = min^ (y)+ 1 - yj) . 

As the finite dimensional subspace M on which the approximate solution is sought 
for we take the set M = E n H(m)(g, Q) where H(m)(g, Q) for any natural m and for 
any choice of O e C is the set of all real functions u defined on the set Q, satisfying 
the condition D(l'J)u e C°(Q) for all i, j for which 0 = i, j = m - 1, and being 
a polynomial of the degree 2m — 1 on each elementary rectangle of which the above 
described rectangle Rt consists. 

If the solution w* e Sp'r(Q), p = 2m, r = 2 where Sp'r(Q) is the set of all functions 
u e W(p)(Q) satisfying D^u e C°(Q), |/L| < p, then in the quality of u we take the 
element of the set H(m)(g, Q) forming the H(m)(g, ^-approximation of the element u*. 
It is shown in [1] that if C is a regular system of partitions of the region Q then there 
exists a constant K independent of the choice of the partition O e C so that it holds 

||u - u*\\m = Kxm , 
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x = max, (nhn'i). If iieE then UeM and making use of the last inequality we get 
the result that when replacing the weak solution u* of the equation (14) by the 
approximate solution u e M we make an error estimated by 

\\u - M*||m g K^xm . 
a0 

Another choice of the element u is introduced in [8]. The region Q may be more 
general, viz. an arbitrary polygon. On this polygon we perform a triangulation, 
i.e. we express it in the form of a union of triangles Tt each two of them either being 
disjoint or having in common a vertex or a side. If we denote by xt the largest side and 
by &t the smallest angle of the triangle T, then each triangulation is characterized by 
the quantities x = max, xh 9 = minf #f. A system C of triangulations will be called 
regular if there exists a constant &Q > 0 such that S ^ i90. In the quality of the set M 
we take M = E n HU)(Q) where H(l)(Q) is the system of functions being polynomials 
of two variables of the degree I on each triangle Tt and satisfying some conditions 
at vertices, centres of sides or at centres of gravity of the triangles (cf. [8]). If the 
function u* is (l — m — l)-times continuously differentiable and if it has bounded 
derivatives of the (l + l)-st order, then the element of the set H(l)(Q) satisfying 
the above mentioned conditions at the vertices, centres of sides or centres of gravity 
with parameters given by the exact solution u* can be taken for u. For m = 1, 
I = 2, 3 and m = 2, I = 5 it is shown in [8] that 

" sinw 9 

where the constant K is independent of the choice of the partition g e C. If u e E 
and thus u e M then we get in these cases the following estimate for the error of the 
solution: 

B xl~m + 1 

u-u*'• \<K™~ . 
11 " " a0 sinw,9 

E.g. when solving the Dirichlet problem u\& = 0 for the equation (14), there 
is E = JV2(m)(-2) and using any of the two mentioned ways of dividing the region Q 
the element u selected above belongs to E. 

In conslusion I would like to express my gratitude to Prof. M. Zlamal who read 
the manuscript carefully and made many valuable comments. 
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S o u h r n 

METODA KONEČNÝCH PRVKŮ PRO NELINEÁRNÍ PROBLÉMY 

FRANTIŠEK MELKES 

Práce pojednává o metodě konečných prvků, která je v podstatě zobecněnou 
Ritzovou metodou se speciálním výběrem bázových funkcí. Metoda konečných 
prvků byla různými autory aplikována na nelineární obyčejné diferenciální rovnice 
i na lineární parciální diferenciální rovnice. V předložené práci je tato metoda použita 
při řešení nelineární operátorové rovnice. Operátor stojící na levé straně zmíněné 
rovnice je potenciální a splňuje jisté podmínky ohraničenosti. Z těchto předpokladů 
vyplývá jednoznačná existence jak přesného tak přibližného řešení rovnice i jistý 
odhad chyby řešení. Dosažené výsledky jsou využity při řešení obecné kvasilineární 
rovnice. 

Authors address: RNDr. František Melkes, Výzkumný a vývojový ústav elektrických strojů 
točivých, Mostecká 26, Brno 14. 
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