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SVAZEK 15 (1970) APLIKACE MATEMATIKY ClsLo 3

THE FINITE ELEMENT METHOD FOR NON-LINEAR PROBLEMS')

FRANTISEK MELKES

(Received February 5, 1969)

The finite element method, which is in its essence the generalized Ritz method with
a special choice of the basis functions, has come forward lately. Among the publications
dealing with this method let us mention [2], [3] where the method is applied to some
class of non-linear ordinary differential equations, and [1], [8] where linear partial
differential equations are solved by the finite element method. Further literature
devoted to the subject is mentioned in [8].

In the present paper the finite element method is applied to non-linear operator
equations. The attained results are used to solve the general quasilinear equation.

NON-LINEAR OPERATORS

In this section we shall deal with the solution of the operator equation

(1) F(x) =0,

”9” = 0 where F is generally a non-linear operator defined on the whole real Banach
space E. Throughout the whole section we shall suppose that the operator F is
potential and hence its range is in the adjoint Banach space E*. Conditions for the
operator F, either differentiable or not, to be potentional, are given in [7].

We shall limit our considerations to the class of monotonous operators. The
operator F will be called, in accordance with [4], monotonous on the space E if for
arbitrary elements x,, x, € E it fulfils the inequality

)] (y = x5, F(x;) — F(x,)) 2 0.

1) While the present paper was being prepared for publication, the paper P. G. CIARLET,
M. H. Scuurtz, R. S. VARGA: Numerical Methods of High-Order Accuracy for Nonlinear
Boundary Value Problems, V. Monotone Operator Theory, Numer. Math. 13, 51—77 (1969)
appeared which deals with similar problems.
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Since the finite element method belongs to the variational methods, we shall
solve a certain variational problem instead of the equation (1). The equivalence
of both problems is guaranteed by the following

Lemma 1. Let the monotonous potential operator F(x) be defined on the whole
Banach real space E, grad f(x) = F(x). Then the element x* € E which minimizes
the functional f(x) on the space E fulfils the equation (1). Inversely, the solution x*
of the equation (1) minimizes the functional f(x) on the space E.

Proof. The first assertion is proved in [7]; the other follows from the Lagrange
formula for the potential. In fact, if F(x*) = 0 then for an arbitrary element x € E
there is

76 = 16%) = [ = 0 e 4 = e =
- J x = %% F(x* + t(x — x*)) — F(x¥)dt 2 0.

It turns out that the monotony of the potential operator F by itself is not sufficient
for the proof of the existence and unicity of the corresponding variational problem.
It is necessary that the expression on the left-hand side of the inequality (2) be suitably
bounded from below. A sufficient condition for the existence and unicity of the
solution of the problem is given by Theorem 2.7 in [4]. However, the course of the
proof makes it possible to modify the theorem in a certain way. In view of the fact
that we are going to use this modified assertion in the sequel, we introduce its full
wording. We shall require that the operator F fulfils the following condition of
boundedness:

1° given arbitrary elements x,, x, € E, the inequality

(3) (xl — X, F(x,) - F(xz)) 2 a(”xl - x2H)

holds, oz(t) being a non-negative function of the non-negative argument such that
the function &R) = [} «(R?) dtft is continuous and increasing for R > 0, &(0) =
= 0 and limg.,, &R)/R = oo.

Lemma 2. Let the potential operator F(x), grad f(x) = F(x) satisfying Condition
1° be defined on the real Banach space. Let M < E be an arbitrary closed or weakly
closed convex set. Then there exists one and only one element X € M minimizing
the functional f(x) on the set M. Each sequence {x,} = M satisfying lim,_, , f(x,) =
= inf . f(x) converges strongly to the element X.

Proof. Since the proof of Lemma 2 is essentially coincident with that of the
above mentioned Theorem, we shall introduce it just in outline. If x, € E is a fixed
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element, it follows from the Lagrange formula for the potential and from the condi-
tion (3)

f(x) = f(xo) + Jl)(x — Xo, F(xo + t(x — x0))) dt =
2 f(x0) + &(x = xof)) = [F(xo)] [x = xof

where x € E is an arbitrary element. Owing to Condition 1° there exists R, > 0
such that for all R > R, the function &R) — |[F(xo)| R is positive. Since this function
is bounded from below on the interval <0, R,) in view of its continuity, it is bounded
from below on the whole positive semi-axis. The functional f(x) is consequently
bounded from below on the whole space E and thus, all the more, on the set M.
Hence there exists d = inf,.y f(x). For any two elements x, y € E there is

1) + 310) — f(" i y)

1 —
=1 x—1y, F XAV X TN Cp(2EY X T Y g
4], 2 2 2 2

2 4a(]x - ).

Let us now choose an arbitrary sequence {x,} = M, lim,. f(x,) = d. For any
¢ > 0 and for m, n sufficiently large we have

fix) <d+e, flx,)<d+e,

Xy + Xy S 4
) e

Hence
+
(s, = 5ul) 5 4000+ 150) - 1 (257 <
< d+e + d+e des
2 2
and thus
lim,, -, (%, — x,[) = 0.

Condition 1° guarantees that lim,, ., llx,, — X,,|| = 0 as well. In view of the com-
pleteness of the space E there is an element X € E to which the sequence {x,} converges
strongly and, all the more, weakly. Since the set M is closed or weakly closed, X € M
holds. The potential f(x) of the monotonous operator F(x) is weakly semi-continuous
from below and hence

d £ f(x) < lim, ., f(x,) = d

179



which implies f(X) = d. If there existed two different elements X, X € M satisfying
f(X) = f(%) = d then according to (4) it would be

f<x * ") < H®) + YE) = d
which is a contradiction, for (X + X)e M.

If in particular M = E then Lemma 2 guarantees in the space E the unique existence
of the minimum of the functional f(x) and thus of the solution of the equation (1)
as well. Any minimizing sequence converges strongly to this solution.

The difference between the mentioned Lemma and Theorem 2.7 in [4] consists
partly in the existence of the minimum of the functional f(x) being guaranteed not
only on the whole space E but even on its closed or weakly closed convex subset,
partly in the fact that Condition 1° is a little more general than the analogous condi-
tion in the Theorem.

Approximate variational methods consist in solving the variational problem
not on the whole space E but only on its subset M — E. We shall require that this
subset should fulfil the assumptions of the preceding Lemma, i.e. that it should
be a closed or a weakly closed convex set. The element X € M which minimizes the
functional f(x) on the set M and which exists uniquely according to Lemma 2 will
be called an approximate solution of the equation (1). Let us deal now with the
estimate of the error caused by replacing the exact solution x* of the equation (1)
by the approximate solution X. To this purpose it will be necessary for the operator F
to fulfil some further condition of boundedness:

2° given arbitrary elements x,, x, € E, the inequality

(5) (1 = %2, F(x)) — F(x,)) < B(|x: — xz”)

holds, ﬁ(t) being a non-negative function of the non-negative argument such
that the function B(R) = [ B(R¢)dt/t is continuous and increasing for R 2 0,

B(0) = 0.

An estimate of the error of the solution is given by the following

Theorem 1. Let a potential operator F(x), grad f(x) = F(x) fulfilling Conditions 1°
and 2° be defined on the real Banach space E. Let M < E be a closed or weakly
closed convex set. Denote by x* € E the element for which f(x*) = min f(x)
and X €M the element for which f(X) = min,y f(x). Then there holds for any
xeM

(6) |% = x*| < #(lx - x*])
where y(R) is a certain increasing non-negative function of the non-negative argu-

ment such that y(0) = 0.
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Proof. Since F(x*) = 0 in view of Lemma 1, we can write
1
(7) f(x) = f(x*) = f (x — x*, F(x* + t(x — x*)) — F(x*)) dt
0

for any x € E. Applying the inequality (3) to this relation we get

(]| — x*[) < (%) - f(x*).

The right-hand side may be increased on the set M since the definition of the element
X € M implies the inequality f(X) < f(x) for all x e M and hence

a([% = x*]) < £(x) = £(x*) -
If we use again (7) and the inequality (5) we obtain
a(|® = x*[) = B(lx = x*)

Since the function a(R) is positive, continuous and increasing on the whole positive
semi-axis, it has on the whole semi-axis a continuous inverse function &~ ! which

is increasing as well and &~ *(0) = 0.
With regard to the last inequality we have

[® = > = o> = =)

where y(R) = @ '[B(R)]. The function y(R) is obviously continuous and increasing
for R = 0 and 9(0) = 0.

Thus, if we succeed in finding a single element X € M which in the norm of the
space E differs only little from the exact solution x*, then Theorem just proved
guarantees that the error of the solution is sufficiently small as well. Owing to (7)
and to Condition 2° the relation

®) 0 5 /(%) — £() < 1) - £(*) < B(lx - x*])

holds for all x e M expressing the fact that the error of the approximation is also
small. The construction of the element ¥ € M sufficiently close to the exact solution x*
depends on the choice of the space E as well as of the set M. We shall show later
some practical examples of the choice of this element.

Let us now choose a finite dimensional subspace which is closed and convex as the
set M. Denote by n its dimension and by x,, ..., x, its arbitrarily chosen linearly
independent elements. Any element x € M can be written in the form

9) x =.Z CiX;
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where ¢,, ..., ¢, are suitable real numbers. The functional f (x) on the subspace M
can be then considered as a function of real variables ¢y, ..., c,, i.e.

(/’(01, vy C,.) = f( Z cixi) .
i=1
If the requirement B(0) = 0 from Condition 2° is replaced by a stronger one
(10) limg .o E(;;) —o

then also the condition limg_,,[&(R)/R] = 0 is fulfilled owing to the inequality
#R) < B(R) and the function ¢(cy, ..., c,) has partial derivatives of the first order

with respect to all variables c¢;, j = 1, ..., n. In fact, if x is in the form (9), then
1
?’i —tim, JO ) = SO) f (x;, F(x + 1sx,)) dt =
c; s o

= (x,, F(x)) + limy J (s F(x + t5x,) — F(x))dr.

0

For the second term it holds with regard to Conditions 1° and 2°

1
lim_,, ! als ||x]) = lims_,0+J‘ (x;, F(x + tsx;) — F(x))dt <
s 0

) 1
< lim,,, ;E(S Hx,”)

and hence it vanishes. It would be possible to show analogously that the second term
vanishes for s — 0_ as well. Partial derivatives of the first order of the function
¢(cy, ..., ¢,) hence exist and are given by

o (o r(300))

The coefficients ¢,, ..., ¢, of the element X € M for which the functional f(x) attains
its minimum can be determined either by the gradient method or by solving a ge-
nerally non-linear system of equations

(xp F(Yex))=0, j=1,...n
i=1

which has precisely one solution owing to Lemma 2.

In practice, the problem of solving the operator equation (1) often occurs, with
the operator F satisfying the following conditions:
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3° for any elements x, h € E there exists the Gateaux derivative F.h (the linear
Gateaux differential);

4° the functional (h,, F}h,) is continuous with respect to x on an arbitrary hyperplane
passing through x for any elements h, h, € E;

5° for arbitrary elements x, hy, h, € E it is (hy, Fyh,) = (h,, Fih,);

6° there exist positive constants «,, f, such that for arbitrary x, h € E it is

(12) w[h]* < (h Fih) < pilh] -

Conditions 3° to 5° guarantee that the operator F is potential (cf. [7]). Making
use of the Lagrange formula for the operator, we obtain for arbitrary elements
Xy, X, € E the identity

(13) (61 — x0, F(x,) = F(x2)) = f (h, Fuh) dt

v O

with h = x; — x,, x = x, + th which makes it possible to verify Conditions 1°
and 2°. From (12) and (13) it follows

(xy = xa, F(x;) = F(x,)) 2 a3 x, — x|
The function oft) from Condition 1° is defined in the following way:
aff) = ogt?.

The corresponding function

— ! 2 zdt 12D2
&R) = | «5(Rt) " = lagR
0

is obviously continuous and increasing and #(0) = 0,

Condition 1° is thus fulfilled. We show analogously that 2° is fulfilled as well. Hence,
if 3° to 6° are fulfilled, then according to our preceding considerations there exists
precisely one solution x* of the equation (1) This solution minimizes on E its poten-
tial. On an arbitrary finite dimensional subspace M the solution x* of (1) can be
replaced by the approximate solution X which also exists uniquely. Since, as we can
verify easily by a direct computation, the function y(R) occuring in the assertion
of Theorem 1 is given by the relation y(R) = B, . R/o, the error of the solution
is in its order equal to the distance of the chosen element of the set M from the exact
solution.
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The function B(R) satisfies also the suplementary condition (10) and hence the
function defined above, (p(cl, ey c,,), has all partial derivatives of the first order.
Condition 3° guarantees that all these derivatives are continuous. We shall show
that in this case, the function ¢(cy, ..., ¢,) has even all partial derivatives of the
second order, all being continuous functions. Let us choose arbitrarily j, k = 1, ..., n,
consider x in the form (9) and compute

% . 1
- =limg_,— [(Xj, F(X + 5x;)) — (xj, F(x))] =
0Oc; Ocy, s

1
~ Jim,_, J () Fix) di = (x,, Foxy)
0

where we put y = x + stx,. The last limiting process may be performed owing
to Condition 4°. This condition guarantees also the continuity of the second partial
derivatives.

QUASILINEAR EQUATIONS

The results of the previous section will be now applied to the solution of the
quasilinear partial differential equation in the divergence form which is solved in [4].

In the n-dimensional space R" with the general point x = (x, ..., x,) let an open
bounded set Q be given with a sufficiently smooth boundary. Denote D* =
= oM [oxh' ... dxkn where pt = (uy, ..., ), || = py + ... + p,. All the derivatives
are considered in the generalized sense. The scalar product in the space W™ will
be denoted by (u, v),, the corresponding norm by |ul|7 = (u, u),; in particular,
by (u, v), we shall denote the scalar product in the space L,.

Consider the quasilinear partial differential equation of the order 2m, m = 1
in the form

(14) Y (=1)“D*a,(x,u, ..., D") = g
lnfsm

where g € LZ(Q). The solution of this equation will be sought for in the space E
satisfying W{™(Q) < E = W§™(Q). The coefficients a, are supposed to satisfy the
following condition

7° all coefficients a, are real continuous functions of all their arguments and for
all u e W{™(Q), x € Q they satisfy the inequality

(19 e w070 S o) [ 10 0]+ 1]
where @(R) is a continuous non-negative function of the non-negative variable.
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To the differential equation (14), the non-linear Dirichlet form

(16) A(u, v) = Z (au(x, u,..., D”'u), D“v)0

lulsm

having sense for all u, ve WY”(Q) will be adjoined. The form will be supposed
to satisfy the following condition:

8° there is a positive constant o, such that for all u, v € E the following inequality
holds:

2
CLOHu -

In < A(u,u — v) — A(v,u — v).

Making use of the Hélder inequality and of (15) we find out that (16) is a linear
functional bounded with respect to v. Consequently, to each u € E it is possible
to determine uniquely an element G(u) € E so that for allve E

(17) (v, G(u)) = A(u, v).

The function u* € E will be called the weak solution of (14) corresponding to the
space E if forallve E

A(u*, v) = (g, v), .

It is shown in [4] that if Conditions 7° and 8° are fulfilled then for any g € L,(2)
there exists precisely one weak solution u* € E of the equation (14) corresponding
to the space E. Moreover, the element u* € E is the weak solution if and only if it
satisfies the equation

(18) Fu)=Gu)—w=20
where w € E is uniquely determined by the relation

(19) (W, 0 = (9, 0)o

which is valid for all v € E.

If we want to use the finite element method to determine the solution of the
equation (18) — and thus also the weak solution of the equation (14) — we have to
add some supplementary assumptions. To this purpose, note that the Dirichlet
form (16) is a functional of two variables. Let us denote by A,(h,, h,) its Gateaux
derivative with respect to the first variable, i.e. let us put

A(hyy hy) = limyoo L [A(u + shy, hy) — A(u, h)]
S

for arbitrary elements u, h,, h, € E. Further, the fulfilment of the following condi-
tions will be required:
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9° for all elements u, hy, h, € E there exists the Gateaux derivative A,(h,, h,),
it is continuous with respect to u on any hyperplane passing through u and

A;(hla hZ) = A;(th hl);
10° there exists a positive constant f, so that for all u, ve E

2
m

A(u, u — v) — A(v, u — v) éﬁé“u —v

We shall show that under these assumptions the operator F(u) given by (18)
satisfies Conditions 1° and 2°, it is potential and its potential is of the form

(20) ﬂ@:leMmpwm@m

w being determined by (19). The fulfilment of Conditions 1° and 2° follows im-
mediately from 8° and 10° since we have the equality

(u — v, F(u) — F(0)) = A(u, u — v) — A(v, u — v)

for all u, ve E.
Let us now compute the gradient of the functional (20). It is

_'Of(u + ‘L'h)—f_(u_) _

T

lim,

1 —
_ ﬁmz-of A(tu + tth, u + th) — A(tu, u) dt — (h, w), —

0 T

A(tu + sh, u) — A(tu, u):l df —
s

1
= limwoj‘ [A(tu + sh, h) + t

0

_@w%=fuwmm4mﬂwnm~wm%=

0

=fuwmm44Mwﬂm—@m%=

=f[4mm+ti4mwﬂM—wm%=

(]

= J‘l (% [t A(tu, h)] dt — (h, w)m = A(u, h) _ (h, W)m _

= (h’ G(u))m - (h’ W)m = (h’ F(u))m

which proves that (20) is the potential of the operator F. All assumptions of Lemma 1
and 2 as well as those of Theorem 1 are fulfilled and therefore we can replace the
weak solution u* of the equation (14) on an arbitrary finite dimensional subspace
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M < E by an approximate solution i € M which minimizes the functional (20)
on the set M. For the error of the solution it is with respect to (6)

(21) |7 - u*], < %ga _—

where @ € M is a suitably chosen element. One way of choosing this element is given
in [1], another one in [8]. In both cases the considerations are made without expres-
sing the basis functions of the finite dimensional space M explicitly and are restricted
at most to a two-dimensional space, the reasoning in a general n-dimensional space
being too complicated.

In [1], the two-dimensional region Q is assumed to be a polygon whose sides are
parallel to the coordinate axes. Every such polygon can be expressed as a union
of rectangles R; = {a;, b;> x {¢;,d;>, i =1,...,k any two of them being either
disjoint or having a part of the boundary in common. On every rectangle let us
define a partition g;:

a; =Xy <Xy <...<xy, =b;,

G =Y <y <..<yw =d;.

A partition of the whole region Q is such partition which is defined on each rectangle
R; by means of g;. A system of such partitions let us denote by C. We say that this
system is regular if there exist such positive constants g, 7, n that forall i, | < i < k
and for all ¢ € C there holds

on; = W, om = mp, 'l§7_t2/ﬁi§'f
where
= _ i i = _ i i
T = maxj(xj+1 - xj), ;= maxj(yj+l - yj),

’

;= min; (X}, — xj), m= min; (Vi1 — y,')

As the finite dimensional subspace M on which the approximate solution is sought
for we take the set M = E n H™)(g, Q) where H(g, Q) for any natural m and for
any choice of ¢ € C is the set of all real functions u defined on the set Q, satisfying
the condition D"u e C°(Q) for all i, j for which 0 < i, j < m — 1, and being
a polynomial of the degree 2m — 1 on each elementary rectangle of which the above
described rectangle R; consists.

If the solution u* € S”"(Q), p = 2m, r = 2 where S”"(Q) is the set of all functions
ue W(Q) satisfying D*u e C°(Q), |u| < p, then in the quality of & we take the
element of the set H"™(g, Q) forming the H"™(g, Q)-approximation of the element u*.
It is shown in [1] that if C is a regular system of partitions of the region Q then there

exists a constant K independent of the choice of the partition ¢ € C so that it holds .

[ — ul < K,
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» = max; (T, 7;). If f€E then iie M and making use of the last inequality we get
the result that when replacing the weak solution u* of the equation (14) by the
approximate solution # € M we make an error estimated by

7 — u], = K Pom.
0

Another choice of the element & is introduced in [8]. The region Q may be more
general, viz. an arbitrary polygon. On this polygon we perform a triangulation,
i.e. we express it in the form of a union of triangles T; each two of them either being
disjoint or having in common a vertex or a side. If we denote by »; the largest side and
by 9; the smallest angle of the triangle T; then each triangulation is characterized by
the quantities ¥ = max; x;, 3 = min; 9;. A system C of triangulations will be called
regular if there exists a constant 3, > 0 such that 3 = 3,. In the quality of the set M
we take M = E n H"(Q) where H"(Q) is the system of functions being polynomials
of two variables of the degree ! on each triangle T; and satisfying some conditions
at vertices, centres of sides or at centres of gravity of the triangles (cf. [8]). If the
function u* is (I — m — 1)-times continuously differentiable and if it has bounded
derivatives of the (I + 1)-st order, then the element of the set H/(Q) satisfying
the above mentioned conditions at the vertices, centres of sides or centres of gravity
with parameters given by the exact solution u* can be taken for &#. For m =1,
I =2,3and m = 2,1 = 5itis shown in [8] that

I-m+1

. x

[ = wrln = K=
sin™ 9

where the constant K is independent of the choice of the partition pe C. If i e E

and thus @ € M then we get in these cases the following estimate for the error of the
solution:

I-m
[ERT M U —

E.g. when solving the Dirichlet problem uIQ = 0 for the equation (14), there
is E = Wi™(Q) and using any of the two mentioned ways of dividing the region Q
the element # selected above belongs to E.

In conslusion I would like to express my gratitude to Prof. M. Zldmal who read
the manuscript carefully and made many valuable comments.
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Souhrn
METODA KONECNYCH PRVKU PRO NELINEARNI PROBLEMY

FRANTISEK MELKES

Prace pojedndvd o metodé konecnych prvkl, kterd je v podstaté zobecnénou
Ritzovou metodou se specidlnim vybérem bdzovych funkci. Metoda konecnych
prvkl byla riiznymi autory aplikovdna na nelinedrni obycejné diferencidlni rovnice
1 na linedrni parcidlni diferencidlni rovnice. V pfedlozené préci je tato metoda pouzita
pii feSeni nelinedrni operdtorové rovnice. Operdtor stojici na levé strané zminéné
rovnice je potencidlni a spliiuje jisté podminky ohranicenosti. Z téchto predpokladt
vyplyvd jednoznalnd existence jak ptfesného tak pfibliZzného YeSeni rovnice i jisty
odhad chyby feSeni. DosaZené vysledky jsou vyuZity pfi feSeni obecné kvasilinedrni
Tovnice.

Author’s address: RNDr. Frantisek Melkes, Vyzkumny a vyvojovy ustav elektrickych stroju
toc¢ivych, Mostecka 26, Brno 14.
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