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SVAZEK 16 (1971) APLIKACE MATEMATIKY CisLo 3

COMBINATORIAL PROBLEMS IN THE THEORY OF COMPLEXITY
OF ALGORITHMIC NETS WITHOUT CYCLES FOR SIMPLE
COMPUTERS')

Karer CuLik

(Received June 10, 1970)

Algorithmic nets without cycles are a generalization of logical nets without cycles,
i.e. they are finite, oriented and acyclic graphs or multigraphs with labelled vertices.
Certain total orderings of their vertices are called their courses. By each course
a graph of certain intervals is determined and one of its chromatic decompositions
is chosen. The following measures of complexity of courses with decomposition are
introduced: 1) the length of the course, i.e. the number of vertices of the considered
net, 2) the width of the course, i.e. the maximal degree of a complete subgraph in the
graph of intervals, 3) the capacity of storage of the course, i.c. the number of elements
of the chosen decomposition, 4) the non-efficiency of scopes of the course, i.e. the
sum of differences of the lengths of intervals and the output degrees of the corres-
ponding vertices and finally, 5) the non-efficiency of addresses, i.e. the difference
of the product of the capacity with the length and the sum of lengths of all intervals.
The given problems are extremal and concern either the determination of the minimum
of any mentioned measure of complexity for all courses of the given net or a de-
cision about the compatibility and the dependencies of the mentioned measures.
At the beginning, the motivations of measuring the complexity of simple programs
for simple computers are given.

1. MOTIVATION OF PROBLEMS IN THE THEORY OF PROGRAMMING
LANGUAGES

A simple computer (see [1]) Mach is determined by a set of objects Obj the com-
puter is dealing with, and by a set of basic functions Fet the domain and range of
which is Obj, both representing its operational unit, and further by a set of addresses

1) This paper was presented at the Summer school on Number Theory and on Graph Theory
in Modra-Piesok which was organized by Association of Slovak Mathematicians in May, 25—29,
1970.
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Adr at which the objects are stored (or by which the objects are denoted) and by a set
of operational symbols Opr, which denote in a one-to-one correspondence the parti-
cular functions of Fet. E.g. Obj is a set of rational numbers, Fer are four arithmetic
operations defined for rational numbers and denoted, as usually, by the corresponding
operational symbols of Opr = {+,., —, [} and Adr is the set of all small Roman
letters.

In this example of a simple computer Mach, the commands are just simple assigne-
ment statements, i.e. the strings arisen from the following scheme X » Y = : Z by the
substitution of “X™’, “Y” and “Z” by particular addresses from Adr and by the sub-
stitution of “+” by an operational symbol from Opr. A simple program for Mach is
a finite sequence of commands satisfying the following condition: if an address
occurs on the right-hand side of two commands of the program, then it occurs at
least once on the left-hand side of a command being between both considered com-
mands (the addresses x and y occur on the left-hand side of the command x + y =:z
and the address z on its right-hand side).

A function expressed by the arithmetical expression (a — b)/((¢ + b).c + ab)
can be computed or evaluated in our computer Mach by many different programs
which differ in the addresses used to store the mediate results and in the order of the
commands, i.e. in the order of evaluation of the partial expressions, e.g. first the
numerator and then the denominator of the given expression can be evaluated or,
on the contrary, first the denominator and then the numerator can be evaluated.
In the following Figures 1 and 2 these two programs computing the given expression
are shown.
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Fig. 1

The program P consists of 6 commands, because there exist 6 different occurrences
of the operational symbols in the given expression, and therefore the length of P
is 6. The addresses the first occurrence of which (from the left to the right)in P is on
the left-hand side of a command are called input addresses. Thus a, b, c are the input
addresses of P and they are given separately before the program. There are 3 input
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addresses because the computed function is a function of 3 variables. Similarly, the
address the last occurrence of which in P is on the right-hand side of a command
1s called the output address and it is given after the program. Thus v is the unique
output address of P, because just one function is computed.

The scope S, of an input address p is the shortest interval in P containing the first
command and as the last one that command on the left-hand side of which the input
address occurs for the last time. Thus S, = (C,, C,, C3, Cy), S, = (Cy, C,, C5, Cy)
and S, = (C,, C,, C;) are the input scopes of P.

The scope S; of the command C; in P is the interval (C;, 4, ..., C;) such that the
address occurring on the right-hand side of C; occurs on the left-hand side of C;
and if it occurs in C, where i + 1 < k < j then it occurs there on its left-hand side
and finally j is as large as possible as far as the considered address on the right-hand
side of C; is not an output address; and in the opposite case, C; is the last command
of the whole program, ie. j =n. Thus §; = (C,, C3, C4, Cs, Cg), S, = (C3),
S: =(Cy, Cs), S, =(Cs), S5 =(Cg) and Ss = @ are the command scopes of P.

In Fig. 1 the scopes as intervals in P are represented by lines with dots which cor-
respond to the particular occurrences of addresses in P. The first (from the left to the
right) dot in an input scope corresponds to the distinguished occurrence of an input
address not belonging to any command and in a command scope S; this dot cor-
responds to the address occurring on the right-hand side of C;, which is called the
address of this scope. The maximal number of parallel lines =scopes in Fig. 1 is the
width of P. In Fig. 1 the width is 5.

The number of the used addresses in P is 9 and simultaneously this is also the capa-
city of the storage of P.

If 7, or r; is the number of dots on the line corresponding to the input scope S,
or to the command scope S; respectively, diminished by 1, then S(P) — R(P) = 8 is
the unefficiency of scopes in P where S(P) = ISal + lS,,l + ISCI + lSll + ...+
+|Se| =21 and R(P) =r, + 1, + 1.+ 1, + ... + rg = 13, and

(the length of P).(the capacity of storage of P) — R(P) = 6.9 — 13 = 41 is the
unefficiency of addresses in P.

The addresses corresponding to the scopes satisfy the condition that two inter-
secting scopes do not have the same corresponding address. With respect to this
condition some addresses can be changed as shown in Fig. 1 where over some of the
original addresses the new ones are written. Then the new program P’ has the capacity
of storage 5 which is equal to its width which is the same as in P. Obviously also the
length of P’ and P is the same.

The unefficiency of scopes in P’ is again the same as in P but the unefficiency of
addresses is smaller than in P because it equalsto 6 . 5 — 13 = 17.

In Fig. 2 we present the second program @ computing the above given arithmetic
expression which is treated in the same way as P in Fig. 1.

The length and the capacity of storage of Q are the same as those of P but its
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width is 4, i.e. less than the width of P. The unefficiency of scopes in Q is S(Q) —

— R(Q) =19 — 13 = 6 and the unefficiency of addresses in Q is 6.9 — 13 = 41.

Again the program Q may be changed by a certain readdressing as shown directly

in Fig. 2 where the new addresses are given over some of the original ones. This new

modified program Q' has its capacity of storage equal to 4, thus again it is the same

number as its width, and its unefficiency of addresses is 4.6 — 13 = 11, which is
essentially less than in Q.
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All these examples of programs which compute the same arithmetic expression
show that there are nontrivial problems to find among all the programs which com-
pute the prescribed function those which have the least width or the least uneffi-
ciency of scopes etc. and to investigate the compatibility and dependency of all these
measures of complexity of programs for one given computer or for all possible
computers etc.

To any simple program for Mach the following construction is applicable: the
commands are considered as rewriting (or substitution) rules. i.e. what is on the
right-hand side of a command should be replaced by what is on its left-hand side
and this should always be closed in brackets. These rules should be applied consecuti-
vely from the left to the right as follows: the i-th rule must be applied to all r; occurren-
ces of the corresponding address on the left-hand side of commands belonging to
the i-th command scope S; and after all these applications the i-th rule is left out from
the program. During this construction some commands are changed, because on
their left-hand side a more or less complicated arithmetical expressions occur. These
new commands are called macro-commands. After finishing the construction the
number of macro-commands left is equal to the number of output addresses in the
original program.

By this construction a set of arithmetical expressions (with full bracketing) com-
puted by the program is uniquely determined, i.e. they are the expressions on the
left-hand sides of the remained macro-commands. Thus one can define that two
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simple programs are structurally equivalent if they compute the same set of arith-
metical expressions.

Two functions expressed by the following set of two arithmetic expressions {(a +b) ]
[(a = b),(a + b).(a — b)} can be computed by only one program more efficiently
than by two separated programs. The following program computs both of these
functionsP =(a + b =:x,a — b =:y,x[y=:1z,a+b=:t,a —b=:w,t.w=
=:v). It has the length 6, two input addresses a, b and two output addresses z, v.
Another program Q = (a + b =:x,a — b =:y, x|y =:z,x.y =:v)is equivalent
to P but its length is 4. Thus the problem to find the shortest program among all
equivalent ones is not trivial.

Finally it is well known that each arithmetical expression (with full bracketing)
can be represented by certain oriented graphs without cycles but with labelled vertices,
which is called logical net in the Switching Theory [2]. Very simple modifications of
these logical nets are called here algorithmic nets because they express classes of
programs, i.e. classes of algorithms. The algorithmic nets will be studied in the next
section, where all above mentioned and some further problems are formulated as
combinatorial and graph theoretical problems.

2. GRAPH THEORETICAL FORMULATION OF PROBLEMS

A net is finite, nonvoid, oriented multi-graph without cycles (and therefore also
without slings). If a net is a graph, i.e. no parallel edges occur in it, then it is a set
with an acyclic (and therefore also asymmetric) binary relation. A vertex in which no
edge terminates is called an input vertex of the net and a vertex in which no edge
starts is called an output vertex.

2.1 Characteristics of nets

In each net there exists at least one input vertex and at least one output vertex.
In a connected net a vertex is simultaneously an input vertex and an output one too
if and only if the net contains just one vertex and no edge. Each vertex of a net belongs
to a path which starts in an input vertex and terminates in an output one. By omitting
of a net an input vertex which is not an output one and all edges starting in it, we
obtain again a net.

Proofs are obvious.

A net containing just one vertex (and no edge) is called unproper, and a net whose
connected components are not unproper is called a proper net.

A proper net the input vertices of which are labelled by the addresses from Adr in
such a way that

(2.1) two different input vertices are always labelled by two different addresses
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and all the other vertices of which are labelled by operational symbols from Opr in
such a way that

(2.2) the number of edges terminating at a vertex is equal to the number of variables
of that function from Fer which is denoted by the operational symbol by which
the vertex is labelled,

is called an algorithmic net for Mach if all operational symbols used in it denote
symmetrical functions. If an operational symbol denotes a nonsymmetrical function,
then all the edges terminating at the vertex labelled by that symbol must be distin-
guished from each other e.g.

(2.3) if there are k = 1 different edges terminating at a vertex, then they are labelled
by integers 1, 2, ..., k.

The reason is to recognize which variable or which place of the denoted function
corresponds to a given edge.

According to [2] where logical nets were introduced, the output vertex satisfies
the following stronger condition: just one edge terminates at it and it is labelled by
an output address (see Fig. 6 where this vertex is denoted by a dotted line). This last fact
makes the net more symmetrical with respect to the input and output vertices (all
other vertices are called inner ones), but from the algebraical point of view it is an
unessential but superfluous complication of the structure.

2.2 Algorithm for dztermination of the algirithmic net of a simple program

First of all one chooses as many vertices as there occur different input addresses
in the program (it is assumed that in a simple program at least one input and one
output address occurs) and labels them by all the particular input addresses. Now
one considers the first command which has the following form f(X,, X,,..., X;) =:Y
where X, Ye Adr for i = 1,2, ..., k and f € Opr, chooses a new vertex, labels it by
“f” and then chooses an edge starting at the input vertex labelled by X; and ter-
minating in the considered vertex foreach i = 1, 2, ..., k, provided the function from
Fet denoted by f is a symmetric one. If f is not symmetric then the chosen edge is
labelled by i for i = 1,2, ..., k. If all the commands from the program, the 1-st,
2-nd, .... (n — 1)-st have been considered and the corresponding vertices and edges
have been chosen, then the n-th command, which has again the form
f(X1, X35 ..., X,) =:Yas above, is considered as follows. One chooses a new vertex
labelled by “f” and for each i = 1,2, ..., k one chooses an edge starting either at
the vertex corresponding to the m-th command where | < m < n and m is as great
as possible and such that on the right-hand side of the m-th command the address X
occurs (in other words that the n-th command belongs to the scope S,,) or, if there
does not exist such a command, one chooses an edge starting at that input vertex
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which is labelled by X ;. provided the function from Fet denoted by f is a symmetric
one. If f is not symmetric then the chosen edge is labelled by “i” fori = 1,2, ..., k.

2.3 The oriented multi-graph constructed by the algorithm 2.2 from a simple
program for Mach is an algorithmic net for Mach having as many input vertices as
the number of the input addresses in the program is and as many output vertices as
the number of the output addresses in the program is.

Proof is obvious.

It is clear that never an unproper net may arise by 2.2 from a simple program.
Thus it could seem to be reasonable to exclude these unproper nets of our considera-
tions at all. Although the unproper nets do not have any direct correspondence with
programs they play an important auxiliary role in the inductive reasoning as it will
be shown further. It should be mentioned by this occasion that in the study of phrase-
markers of sentences which are certain trees (see [3]), the isolated vertices played
also an important auxiliary role.

2.4 Algorithm of unification of algorithmic nets N;,, i = 1,2, ..., n

First of all the input vertices of all nets N; where i = 1, 2, ..., n are identified if they
are labelled by the same address. Then the obtained labelled net is an algorithmic
net again (because obviously (2.1) and (2.2) are satisfied). Further, one repeats the
following step as long as possible: all the non-input vertices of an algorithmic net are
identified which 1) are labelled by the same operational symbol, 2) all the edges
terminating at any two of these vertices are starting in the same set of vertices and,
if necessary, 3) all the edges terminating at any two of these vertices and starting
at one and the same vertex are labelled by the same label, and further all edges ter-
minating at all but one identified vertices are omitted (and of course all other edges
starting at any of the identified vertices are preserved but all of them start at the
unified vertex). :

v .
NuN, Fig. 3

In Fig. 3 there is an example of the process of unification where all nets are graphs
(not multi-graphs), but in Fig. 4 it is shown that the process of unification can lead
from a graph to a multi-graph.
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According to [4] a notion of homomorphism and of simplicity of algorithmic nets
can be introduced as follows: if N = (V, E, I, 4y, Agy is an algorithmic net where V
is its set of vertices, E its set of edges (V n E = ), I its incidence, i.e. the function
assigning to each edge from E an ordered pair of vertices from V x V, 4, is its label-
ling of vertices by elements from Adr U Opr which satisfies (2.1) and (2.2) and A is

Fig. 4

its labelling of edges by integers 1, 2, 3, ... satisfying (2.3) and N' = V', E', I', Ay,
Ag-y is another algorithmic net, then a mapping f of VU E onto V' u E’ such that

(2.4) f(V) =V, f(E) =FE,
(2.5) I(e) =[x, y] =I'(f(e)) = [f(x), f(y)] foreach ec E,
(2.6) id(x) = id(f(x)). A(x) = 2 (f(x)), 2e(e) = Ax(f(e)) forcach xeV and e€ E

is called homomorphism where id(x) is the input degree, i.e. the number of edges
which terminate in the vertex x. If fis a one-to-one mapping, then it is called iso-
morphism. An algorithmic net is called simple (see [4]) if each homomorphic image
of it is isomorphic with it.

It is easy to see that each algorithmic net in Fig. 3 or 4 is a homomorphic image
of any algorithmic net (or of a labelled net N; U N,) located on the left-hand side
of it. The far right nets in Fig. 3 and 4 are simple nets.

It follows by (2.6) that a homomorphism f of an algorithmic net N onto another
one N’ satisfies also the following condition

(2.7) the homomorphism f preserves the parallelism of edges, i.e. if I(e) = I(e) =
=[x, y] where e, ¢’ € E and e + ¢’ then f(e) * f(¢),

2.5 A simple algorithmic net contains the smallest number of vertices among all
algorithmic nets which can be mapped by an homomorphism onto it.

The proof is obvious.
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2.6 Characteristics of unificated algorithmic nets

The oriented and labelled multigraph constructed by the algorithm 2.4 is a simple
algorithmic net.

Proof. The union of the given algorithmic nets N;, 1 < i < n in the algorithm
2.4 need not be an algorithmic net only because the condition (2.1) need not be
satisfied, but (2.1) is satisfied after the first step of the algorithm when the input
vertices labelled in the same way are identified. Further it is clear that after each
step of identification again an algorithmic net is constructed from an algorithmic net.
If an algorithmic net N not allowing any further identification of vertices were not
simple, there would exist a homomorphism f of it onto another net N’ which is not
isomorphism, i.e. there would exist two vertices v, v, €V, v, + v, such that f(v,) =
= f(v,). Then by (2.5) and (2.6) it must hold 2,(v,) = 4,(v,) and to each e, € E
which terminates at v, i.e. Ix(e,) = (v, v;) for a veV there exists e, € E such that
Ig(e;) = (v, v;) and moreover Ag(e;) = Ag(e,). This means that v, and v, may be
identified which is a contradiction.

With respect to 2.6 one can call the result of the algorithm of unification 2.4 the
unificated net.

Two algorithmic nets are called equivalent if their unificated nets are almost
isomorphic, i.e. if the condition (2.6) of isomorphism is weakened, i.e. it is replaced
by the following one:

id(x)

Il

id(f(x)) for each xe V,

(2.6*) 2,(x) = A,(f(x)) for each x € ¥ which is not an input vertex and
Ag(e) = Ag(f(e)) for each e€ E,

which expresses full independence on the input addresses.

With respect to the algorithm 2.2 there arises a natural and important question
how to determine all the simple programs for Mach such that their algorithmic nets
constructed by 2.2 are equivalent.

Two simple programs having equivalent algorithmic nets are called structurally
equivalent.

First of all a more special question will be answered, i.e. what are all the simple
programs by which the same algorithmic net (using the algorithm 2.2) is determined.

If N =<V, E,I)is a net, |V| = n, then the total ordering P = (v, v,, ..., v,) of the
set of its vertices V' is called a course of the net N if the following condition is satis-
fied

(2.8) v, is an input vertex of the net N; = (V;, E,, I ;> for each i = 1, 2, ..., n, when
Ny=Nand V;y, =V — {quz, oo U;}, Ei =E— {the set of all edges
starting or terminating in any of the vertices vy, v,, .. | L‘i} and I, =1,
foreachi =1,2,3,...,n— 1.
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The number of the input vertices or output vertices of a net N is called its input
width or output width respectively and denoted by inwi (N) or ouwi (N). Further
inwi (N;) or ouwi (N;) where N, is from (2.8) is called input width or output width
of P in v; and max inwi (N;) or max ouwi (N;) is called the input width or output

1<ign 1<izn
width of P and denoted inwi (P) or ouwi (P) respectively.

By each net N = (V, E, I) which is a multi-graph, another net N = <V, ¢)» which
is a graph is determinated by the requirement ¢ = {I(e); e € E}, because obviously
¢ is again an acyclic relation.

It is easy to see that a total ordering P = (v, v, ..., v,,) of V satisfies (2.8) for N
if an only if P satisfies (2.8) for N, i.e. P is always simultaneously a course of both N
and N.

2.7 Characteristics of nets and their courses

Let N be a net and N = (¥, ¢) the corresponding net without parallel edges. Then
{V, Tgo> where Ty is the transitive closure of the relation g is a partially ordered set,
the maximal or the minimal elements of which are the input vertices or output vertices
respectively (when xgy means x = y). Further let P = (v;, v,,...,v,) be a total
ordering of V and let ¢ = {(vy, v,), (v2, v3), ... (V,— 1, v,)}. Then P is a course of N
if and only if To = To, i.e. if Tq is a total extension of the partial ordering Tp (see

[5D)-

Proof. The first part is obvious because the transitive closure of an acyclic relation
must be again acyclic and therefore asymmetric, i.e. it must be a partiall ordering.

In the second part, first of all let (v,, Ugy vves v,,) = P be a course of N, and there-
fore of N too, and let (v;, v,) € To, i.c. there exists a path (ug, uy, ..., u,) in N such
that k = 1 and uy, = v; and u, =v,. We want to prove that (vj, v,) € Ta, which is true
if and only if j < h. It is clear that (u,,_,, u,,)e o for each p =1,2,..., k and by
(2.8) it follows that the vertex u,_, must precede the vertex u, in each course of N
and therefore also in the course P, ie. if u,_, = v, and u, = v, then r < s for
each p = 1,2, ..., n. Thus obviously uy(=v;) must precede u,(=v,) in P too, which
means j < h.

If on the contrary Tg = To, then we want to prove that P = (v, vy, ..., 0,) is
a course of N, i.e. that P satisfies (28) for each v; where i = 1, 2, ..., n. If this were
not true for an index i, 1 < i < n, then v; would not be an input vertex of N;, which
means that there exists v; € V; such that (v;, v;) € ¢ and i < j. Therefore by (v}, v;) € ¢
it follows (v}, v;) € To and by i < j (and by the definition of ¢) it follows (v;, v;) € Ta,
which means that To is not an acyclic relation; thus the required contradiction is
found.

Further let us consider a course P = (v, v,,...,0,) of a net N =V, E, I or,
which is the same, of the corresponding net N = <V, ¢>. The scope of the vertex v; in P
is an interval Sep(v;) for i = 1,2, ..., n, defined as follows:
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if v; is an output vertex of N, then Scp(v;) = (Ui5 (s Uigas -os V)

if v; is not an output vertex of N, then there exists v; such that (v, v;) € ¢ and j is as

great as possible and either ¢; is an input vertex and then Scp(v;) = (v, vgy oenv))

or v; is not an input vertex and then Scp(v;) = (Vig1s Vigas oo Uj)-

If v;is and input vertex Scp(v;) is called an input scope, otherwise a non-input scope.

It should be mentioned that Sep(v;) = 0 if an only if i = n and that Scy(v;) =
= Sc,,(vj) can happen for i % j only if both v; and v; are the input vertices.

The number of scopes of the course P, which contain a vertex v;, is called the scope
width of P in v; and is denoted scwi (v;) and the number scwi (P) = max scwi (v;)
is called the scope width of P. Isisn

The scope graph Gp = {V, Hp) of the course P is an unoriented graph without
slings where V is the set of vertices of the considered net N and Hp, = {{vi, vj}; i+j
and v, v; eV and Sep(v;) O Sep(v)) *+ 0.

2.8 The chromatic number of G, is equal to the scope width of P, i.e. x(G,,) =
= scwi (P).

Proof. It is clear that in G, there exists a complete subgraph with scwi (P) vertices
and therefore scwi (P) < x(Gp). Further let us have scwi (P) different colours and let
us colour the vertices of Gp with them as follows from the left to the right according
to P = (vy, vy, ..., U,) : b, is coloured arbitrarily and if v, v,, ..., v;_;, where 1 <
< k < n, are coloured in such a way that no two of them connected by an edge are
of the same colour, then v, is connected by an edge with at most scwi (P) — 1 pre-
ceding vertices and with no vertex v; for j > i and therefore v, can be coloured by
one of the remaining colours which is different from all those used for the vertices
connected by an edge with v,. This proves sewi (P) < y(G5p).

Finally let D be a chromatic decomposition of Gp and let 4, be a one-to-one map-
ping of D into Adr.

Now it is easy to see that the above mentioned question can be answered as follows:

2.9 Characteristics and construction of all simple programs for a Mach which lead
by the algorithm 2.2 to the same algorithmic net for this Mach

Each simple program for a Mach which leads by the algorithm 2.2 to the prescribed
(unique with respect to an isomorphism) algorithmic net N = <{V, E, I, A,, Ag) can
be obtained by the following construction, which depends on the choice of a course
P = (v, vy, ..., v,) of N, of a chromatic decomposition D of G and of a one-to-one
labelling 4, of D into Adr such that each input-scope is labelled by that address by
which the input vertex belonging to this scope is labelled: using 4,, an auxiliary
labelling of edges from E is introduced in such a way that all edges starting at the
vertex v; from a class D; e D are labelled by the address A,(D;) foreachi =1,2,...,n
and then to each non-input vertex the corresponding command is chosen according
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to Fig. 5. Finally the ordering of these commands in the constructed program is the
same as the ordering of the corresponding non-input vertices in P.

Proof. First of all let us show that the constructed sequence of commands is
a simple program for Mach. By the constructionit isclear that all the chosen commands
are commands for Mach because N was an algorithmic net for Mach. The sequence
of these commands is a simple program for Mach, because with one exception (of the
last command) all other commands have non void scopes.

A\,
\ sither t+ v=z
:> 1 (%, XZ."'IX/(F:Y = or v+ =iz

Fig. 5

Further one proves by induction with respect to the number of vertices of N that
by 2.2 each constructed program leads to the original net N and finally that each
program with this property can be obtained by the described construction.

In Fig. 6 the unificated algorithmic net is given which corresponds to all the pro-
grams P, P’' in Fig. 1 and Q, Q' in Fig. 2. The auxiliary labellings by addresses men-
tioned in 2.9 are not shown in Fig. 6, but they are different in different cases.

X Fig. 6
2

Finally, the original question concerning the structurally equivalent programs is
answered as follows:

2.10 Characteristics of structural equivalence of simple programs

If P is a (simple) program for a Mach, then all programs for this Mach which are
structurally equivalent to P can be obtained as follows: a) one constructs the algo-
rithmic net 4 by the algorithm 2.2 for P, b) then one constructs the unificated net
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A’ to A by the algorithm 2.4, ¢) further one constructs an arbitrary unificated net
B’ which is almost isomorphic with A’ by an arbitrary’ change of addresses of input
vertices of A’ (according to the condition (2.1)), d) now an arbitrary homomorphic
pattern B” of B’ is constructed in such a way than one takes an arbitrary course
(v(s v, ..., v,) of B" and splits each non-input vertex v; and each edge which terminates
in it into h; new vertices and h; new edges, respectively, consecutively (but back-
wards) for i =n, n —1,...,2, 1 where h; = | is a quite arbitrary integer for an
output vertex v; but h; satisfies | < ii; < od(v;) for a non-output vertex v, (where
the output degree od(v;) is the number of edges which start in v; with respect to the
mediate net constructed in the previous step v;, ,:for i = none starts with B’ itself);
the vertex v, is splitted into (or replaced by) h; new vertices labelled by the same sym-
bol as v; in such a way that at each of the new vertices at least one edge starts, which
originally started in v; and each splitted edge starts in the same vertex as the original
edge, is labelled (if necessary) by the same symbol as the original edge, and all h;
new splitted edges terminate exactly in all h; new vertices, and finally e) one con-
structs all courses and then also all simple programs Q to each B” (by the construct-
ion 2.9).

Now different extremal problems can be formulated either in the class of all equi-
valent nets or in the class of all courses (or programs) of a given net or in the class
of all structurally equivalent courses.

Using the measures of complexity of courses defined above, several questions may
be formulated.

Problem 1. For a given net N determine min inwi (P), min ouwi (P), max inwi (P)
PeP(N) PeP(N) PeP(N)

and max ouwi (P) where P(N) is the set of all courses P of the net N. Further find
PeP(N)

an efficient algorithm for the construction of a course P (or of all courses P) of the
net N such that its inwi (P) or ouwi (P) is extremal.
Of considerable interest is the following

Problem 2. For a given net N determine min scwi (P) and max scwi (P) where
PeP(N) PeP(N)

P(N) is the set of all courses P of the net N. Further find and efficient algorithm for the
construction of a course P (or of all courses P) of the net N such that inwi (P) or
ouwi (P) is extremal.

It is easy to see a strong connection between the algorithmic nets and the trans-

portation nets (see e.g. [6]), where the notion of a cut is introduced. E.g. min scwi (P)
PeP(N)

is a measure of complexity of the net N itself, because it means the minimal number
of edges starting at different vertices which must be cut or contained in a cut of the
net N.

A further important and well known measure of complexity of a course is its length
which is equal to the number of vertices of its net. On the other hand, it should be
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mentioned here that if a program and its aigorithmic net are considered, then the
length of the program plus the number of its input addresses is equal to the number
of vertices of its net.

The corresponding extremal problems concerning the length of a course P are
solved by 2.5 and by homomorphic characteristics (see [4]) of any homomorphic
pattern of the simple net. A very important role is played by the measures of complex-
ity of programs which express different efficiencies concerning the storage. If the du-
ration of all instructions is the same then the time unit of storage is one address during
one instruction. In the graph-theoretical version the following two numbers are
assigned to a course P = (vy, vy, ..., v,) of a net N. First of all it is the non-efficiency
of scopes of the course P

nefsc (P) =él(5i -r)

where s; = IS"(U:')I and r; is the number of different vertices such that there is an
edge terminating at one of them and starting at v; (i.e. r; is the number of edges
starting at v; in the corresponding net N without parallel edges); obviously r; < s,
(and in the language interpretation s; denotes how long something must be stored
and r; how many times or in how many instructions it is used).

Secondly it is the non-efficiency of adresses of the course P

nefadr (P) = x(Gp).leng P — Y s,

i=1

where leng P is the length of the course P and all other terms are defined above. In the

language interpretation Y s; is the actual time measure of storage and y(Gp) . leng P

i=1

is its possible maximum.

Problem 3. For a given net N determine min nefsg(P), max nefsc(P),
PeP(N) PeP(N)

min nefadr (P) and max nefadr (P). Further find an efficient algorithm for the
PeP(N) PeP(N)

construction of a course P (or of all courses P) such that its nefsc (P) and nefadr (P)
are extremal.

Now very natural questions arise concerning the compatibility and mutual depend-
ence of all the defined measures.

Problem 4. For a given net N does there exist its course P such that scwi (P) =

= min scwi(Q) and simultaneously nefadr (P) = min nefadr (Q)? Similarly for
QeP(N) QeP(N)
other pairs of measures the same question arises.

201



References

[1] K. Culik: On semanitics of programming languages. J. Dérr, G. Horz: Automatentheorie und
formale Sprachen, Bibliographisches Institut AG, Mannheim 1970, 291— 302.

[2]1 K. Culik, V. Dolezal, M. Fiedler: Combinatorial analysis in praxis (Czech), SNTL, Prague
1967.

[3]1 K. Culik: On some transformations in context-free grammars and languages, Czech. Math.
Jour. 17 (1967), Academia, 278— 311.

[4] K. Culik: Zur Theorie der Graphen, Cas. pro pést. mat. 83 (1958), 133—155.

[5] G. Birkhoff: Lattice theory, New York 1948.

[6] C. Berge: Théorie des graphes et ses applications, Dunod, Paris 1958.

[7]1 R. Sethi, J. D. Ullman: The Generation of Optimal Code for Arithmetic Expressions. Journal
of ACM, Vol. 17, No. 4, October 1970, pp. 715— 728.

[8) A. Blikle: Addressless units for carrying out loop-free computations, Polish Academy of
Sciences, Institute of Mathematics, July 1970, Warsaw.

Remark. In [7] and [8] a special type of algorithmic net is involved, where 1)
id(x) = 2 for each non-input vertex x, 2) there is only one output vertex and 3) no
parallel paths occur, i. e. a binary rooted tree. In [8] a push down store is assumed.

Souhrn

KOMBINATORICKE PROBLEMY V TEORII SLOZITOSTI
ALGORITMICKYCH SITI BEZ CYKLU PRO JEDNODUCHE POCITACE

KareL CuLik

Algoritmické sité bez cykla jsou zobecnénim logickych siti bez cykld, tj. jsou to
konecné, orientované a acyklické grafy nebo multigrafy s ohodnocenymi uzly. Jista
Gplna uspotfadani jejich uzld se nazyvaji jejich priibéhy. Kazdym prab&hem je uréen
Jisty intervalovy graf a je zvolen jeden z jeho chromatickych rozkladii. Jsou uvedeny
nasledujici miry slofitosti pribéht se zvolenymi rozklady: 1) délka pribéhu, tj.
polet uzlii uvaZované sit§, 2) §ifka pribéhu, tj. maximalni fad uplného podgrafu
v piislusném intervalovém grafu, 3) kapacita paméti pribéhu, tj. podet prvkii zvole-
ného rozkladu, 4) neefektivnost rozsahii uvaZovaného priitbéhu, tj. soucet rozdila
délek intervalt a vystupnich stupiiti odpovidajicich uzli a koneén& 5) neefektivnost
adres, tj. rozdil soucinu kapacity s délkou a souctu délek vSech intervali. Predlozené
problémy jsou extremalni a tykaji se bud urCeni minima nékteré z uvedenych mér
sloZitosti pro vSechny priitbéhy dané sité a nebo se tykaji slucitelnosti a zavislosti
jednotlivych mér. Na zacatku jsou uvedeny motivace zavedenych mér sloZitosti
pochézejici z méfeni sloZitosti jednoduchych programi pro jednoduché poditace.
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