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INTRODUCTION

The systems of linear algebraic equations which arise in solving differential equa-
tions by finite element or finite difference method usually have matrices which are
sparse and have certain regular structure. Solving such a system by elimination, we
try to use these properties of the corresponding matrix. It is desirable to find an
ordering of rows and columns and an algorithm for solving the system to minimize
storage requirements and the number of operations performed during the elimination.
In this paper, the problem of finding a permutation of rows and columns and an algo-
rithm for such an ordered system of equations is discussed.

There exist some approaches to this problem in which the sparsity is used to some
extent. One of them is a very general approach when the optimal (or nearly optimal)
ordering is sought and then the algorithm for solving the ordered system treats the
matrix element by element to perform only necessary operations. This case and the
case of bandmatrices are compared. In connection with this comparison another
approach is introduced in Sec. 2. A type of a matrix more general than a bandmatrix
is proposed as well as the means to order the rows and columns to get this form.
The examples of matrices reordered by the given procedure and the results are
discussed in Sec. 3.

For the sake of brevity, the paper is concerned only with symmetric matrices.
Most results may be formulated also for non-symmetric matrices without difficulties.

1. A BRIEF SURVEY OF TECHNIQUES USED

In solving differential equations by the finite element or finite difference method
we finally obtain systems of linear algebraic equations, with large sparse matrices

*) This research was sponsored in part by the National Aeronautics and Space Administration
under Grant NGL-21-002-008 to the Computer Science Center of the University of Maryland.
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of certain regular zero-nonzero structure, which are to be solved. When solving
these systems by Gauss elimination we want to use the sparsity as well as the regularity
of the zero-nonzero structure of the given matrix. Our aim is to reduce storage
requirements and the number of operations performed during the elimination. Fewer
operations take less time and result in less roundoff error.

There are two problems connected with this aim: First, to find an elimination
procedure operating only (or almost only) on such elements of the given matrix
(with a given ordering of rows and columns) which are involved in the course of
elimination. Second, to find an ordering of rows and columns for the given matrix
so that the employment of some of elimination procedures is as efficient as possible.

The work necessary for finding a proper elimination procedure and a proper
ordering of rows and columns would be superfluous when we are to solve only a single
system with reasonable storage requirements. The approaches surveyed in this
section and that suggested in the following section show to be very efficient when
we — as usual — solve many systems with matrices of a similar structure which differ
from each other only by some parameter, e.g. the mesh size h. Then it is desirable
to find a general rule for ordering such classes of matrices (see an example in Sec. 3).

In order to preserve a general point of view, we suppose in this paper that the ele-
ments of the matrix of a system are given. However, there are various procedures
for solving large sparse systems that operate simultaneously with the evaluation
of the elements of the matrix (cf. e.g. [6]).

Let us discuss the two problems mentioned above.

(I) Let us have the system

Ax =y

of linear algebraic equations. Let 4 = {a;;}} ;- be a real symmetric non-singular
sparse matrix of order n. The problem is to find an algorithm allowing us to operate
only (or almost only) on such elements of 4 which are involved and changed in the
elimination process itself.

(Ia) One of the simplest ways to solve this problem is to consider the matrix A
as a bandmatrix. The structure of the matrix as well as the number of operations are
given by two parameters: the order n of the matrix and the width 2m + 1 of the
band where

m=max(j—i), S={{,j)[lsi<j=sn,a;+0}.
(i,))eS
In connection with the elimination, the bandmatrices offer well-known important
advantages, e.g. very simple data handling. In particular, a change of the parameter
h results only in a change of the parameters n, m.

(Ib) Given a matrix of an arbitrary zero-nonzero structure, it is possible to employ
an algorithm operating only on those elements which are actually involved in the
elimination process (see e.g. Gustavson [5]). Therefore, the matrix must be treated
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element by element and the structure of such a matrix as well as the number of opera-
tions are given by the positions of every nonzero element. Apparently the use of this
algorithm can entail a considerable amount of work. This approach is very general
(in the sequel this algorithm for solving the system by elimination is called “general
algorithm”) and it may be particularly suitable for those matrices whose nonzero
elements occur in no regular structure.

Another approach is introduced in the following section.

(1) In order to make use of the advantages of special elimination procedures, the
matrix 4 cannot be usually proéessed in an arbitrary form. A permutation that trans-
forms the original ordering of rows and columns with regard to the minimization
of the number of operations and the number of nonzero elements created (i.e. storage
requirements) is sought. An elimination procedure is then applied to this permuted
matrix B.

All the practicable methods for finding such a permutation perform the minimiza-
tion only to a certain extent. In particular, they usually use only local criteria that
need not yield the global minimum. Such resulting orderings of rows and columns
are called ‘‘nearly optimal”.

Let us keep the notations of paragraph (I). Moreover, let us suppose that the elimi-
nation can be performed with an arbitrary ordering of rows and columns, i.e. with
any matrix B = PAP” where P is a permutation matrix.*) This assumption is fulfilled
e.g. by a positive definite matrix.

Let us recall several concepts of the graph theory. Let us denote by G = (X, E)
a graph of the matrix 4 where X = {x;}7_, is the set of the nodes of the graph (x;
corresponds to the ith row of A4) and E is the set of the edges of the graph (the edge
{x:, x,} belongs to E = E(X) if and only if a;; # 0, i < j). Let G be connected (i.e. A4
is irreducible). A graph is said to be ordered if a permutation

( 1,2,...,n )

p={. . .

lis 1oy ees Iy

of the set {I,2,...,n} is given. The permutation p defines an ordering {x;};-,
of the elements x; € X.

Further let us write
N(x) = {yeX | {x,y}eE} u {x},
D(x) = {{y, z} ly,.zeN(x), y+z,y¢N(2)}.

Obviously N(x) is the set of neighbors of the node x.

*) This is equivalent to the following assumption: Let By (k = 1, ..., n — 1) be the principal
submatrices of B consisting of the first k rows and columns of the matrix B and let det B, + 0;
k=1,...,n— 1 for any B = pAPT.
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Let yeX. We call G, = (X — {y}, E(X — {y}) U D(y)) the graph obtained by
eliminating the node y from G. It is well known that the graph G,,, corresponding
to the matrix arising from A4 by eliminating x; using the ith equation and omitting
the ith row and ith column, is a partial graph of G,,.

It may be easily seen that new nonzero elements may be created during the elimina-
tion. Apparently the number of nonzero elements created in this way depends on the
ordering of the rows and columns of A4, i.e. on the permutation p. This fact and the
suggestion that graph theory might be a suitable way to study the elimination is due
to Parter [7].

Let us denote the number of the elements of the sets N(x;), D(x;) in the graph G
by b(G), d{G) respectively. The number b(G) is said to be the degree of the node x;
in the graph G, the number d,(G) is usually said to be the “‘fill in”. Let G, be the graph
obtained by eliminating the node x;, from the graph G-y, G, = G. Then the number
of operations in the forward course of Gauss elimination is equal to

n—1

12 bilGe-1) (bi(Ge-1) + 5) + 1

multiplications (or divisions) and

n—1

12 bilGim1) (b Ge-1) + 3)

n—1

additions, and in the backward course Y b;(G,—,) multiplications and the same
k=1 .

number of additions. (We suppose that a row is divided by its diagonal element in the
forward course.)

(II2) The algorithms used for finding an optimal ordering of rows and columns
(i.e. an optimal permutation p) of a bandmatrix are oriented to the minimization
of the bandwidth m. An efficient and simple algorithm yielding a nearly optimal
ordering is discussed by Cuthill and McKee [4]. For further algorithms, see also
Alway and Martin [1], Rosen [9], and others.

n—1

(I1b) As a rule, the minimization of ). d;,(Gy—;) serves as a criterion for finding
k=1

an optimal permutation p. Proceeding in this way, we minimize the storage require-
ments and the number of backsolving operations in elimination. In general, the num-
ber of operations in the forward course is not minimized. Every algorithm yielding
the optimal ordering is, naturally, very complicated (see e.g. [8])

Two algorithms are used in practice and recommended by many authors: the
algorithm of the minimal degree (minimizing b;(G,-;)’s) and the algorithm of the
minimal fill-in (minimizing d;(G,-,)’s). The essential advantages of these algo-
rithms are their simplicity and small number of operations. The algorithm of the
minimal degree needs less operations than the latter but need not yield the optimal
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n—1

ordering even in the case when there exists an ordering for which ) d;(G;-;) = 0.
k=1

In general, both these algorithms give only a nearly optimal permutation p. For
details, see [8], [11], [12].

2. PIPEMATRICES

Let us try another approach. Let us consider a symmetric matrix 4 of this special
zero-nonzero structure:

X X X X

X

X

X

X

X
X
XXXXXXXi

X X X

XXXXXXXXI

X X X X X X X X X|[X

X X X X X

Only the nonzero elements are indicated (by the x’s). Let A% = {a{?}7 ;- be the
matrix arising from an n x n symmetric matrix A4 after the first k steps of the Gauss
elimination. Then a(i';-) = aﬁ-’? fori,j=k+1,...n,k=1,...,n — 1. Thus in the
elimination process applied to any symmetric system it is sufficient to operate only
on the elements on and above the diagonal.

In the elimination process applied to the symmetric system with the matrix of the
structure considered, only the nonzero elements on and above the diagonal must be
operated on. No other element in this part of the matrix is changed by the elimina-
tion process. With respect to the structure of the matrix considered, no nonzero
element is created during the elimination, i.e. fill in equals zero.

For our further considerations it is useful to introduce the following concepts:

Definition 2.1. Let A be an n X n symmetric matrix, let a;; £0; i = 1,...,n.
Let us put
my=mini; I=1,...,n.
ai %0
Then the vectors (a,,,,,,, Ayt 1,0+ os a,,,) are said to be pipes of the matrix A.
Definitior 2.2. An n x n symmetric matrix A is said to be a pipematrix with full

pipes (or to be in a pipematrix form with full pipes) if the following condition is
satisfied for all 1 £i < j < n:

0 a; #0=>a,;+0 for k=i+1,...,j.
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Remark 2.1. From Definitions 2.1 and 2.2 it follows that the pipes of the bipe~
matrix with full pipes consist of only nonzero elements. The example of a pipematrix
with full pipes was considered in the beginning of this section.

Remark 2.2. Let A be a symmetric matrix the diagonal elements of which are
nonzero. Let the numbers m;; [ = 1, ..., n of Definition 2.1 be given. Applying the
-Gauss elimination to such a matrix 4, it is sufficient to operate only on the pipes
of A. For this purpose, zero-nonzero structure of A is sufficiently described by the
numbers m,. The matrix A considered in this way will be called a pipematrix.

In general, the condition (1) need not be fulfilled for a pipematrix. If some zeros
appear in the pipes nonzero elements may be created during the elimination process.
The algorithm for solving linear algebraic system with pipematrices treats only the
elements in the pipes and operates on all of them.

Remark 2.3. It is more general to consider an arbitrary matrix as a pipematrix
than as a bandmatrix. Let us have an n x n symmetric matrix 4 whose structure
is given by the numbers m;; I = 1, ..., n. Then considering it as a pipematrix, we

n

operate on P = Y (I — m,) + n elements during the Gauss elimination while con-
=1 :

sidering it as a bandmatrix, we operate in the best case on Q = (m + 1) (n — m) +
+ 4m(m + 1) elements where 2m + 1 is the width of the band (see (Ia) of Sec. 1).
For the pipematrix 4, m = max (I — m,) and

1

P =l;(l - m) +1=Z+1(l —my) £
Simm—-1)+mn—-—m)+n=0

so that considering an arbitrary symmetric matrix as a pipematrix, we generally
perform fewer or at most the same number of operations as if we consider it as
a bandmatrix.

Remark 2.4. It is less general to treat a matrix as a pipematrix than to treat
it by the general algorithm, element by element. The zero-nonzero structure of
a pipematrix is described by the positions of the whole pipes (i.e. the vectors), which
makes this algorithm as well as its use (handling data) simpler than the general one.

Now the problem arises to find a permutation p (or, equivalently, a permutation
matrix P or an ordering of rows and columns) by which the matrix A given would
be reordered into the form of a pipematrix whose pipes include as few zero elements
as possible.

Let a matrix 4 satisfy all the assumptions of the previous section (i.e. it is a symme-
tric irreducible matrix which can be eliminated with an arbitrary order of rows and
columns). Suppose A can be permuted into the pipematrix form with full pipes.
The following procedure gives the permutation by which the matrix is reordered
into the form with full pipes.
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- Procedure 1
Step 1

1. Set Si = {x;| d{(Go) = 0}.
(According to the assumptions about the matrix A there exists at least one subscript
i for which d(G,) = 0.)
" 2. Select x;, € St arbitrarily.
" 3. 8! = {x,,| x€ N(x,)}. Eliminate the node x;, from the graph G, (i.e., in the
permutation p being constructed this i; corresponds to the integer 1).
Stepk =2,..,n — 1

1. Set R* = {x; | x; € N(x,,) for all x,,€ $*~!} (R* + 0 because $*~! = RY).

2. 8% = {x;| x;e€ R, d{(G,-;) = 0}. If S§ =0 set S{' =8\""~ {x;_,} and
repeat the step k — 1.

3. If S% % 0 then select Xip est arbitrarily.
4. Set S* = {x,,| %€ N(x;,)}. Eliminate the node x;, from the graph G,—, (i.e.,
in the permutation p being constructed this i, corresponds to the integer k).

Remark 2.5. In practice it may be advantageous to use the following additional
criteria in part 2 of step 1 and part 3 of step k =2,...,n — 1.
We substitute .

2. Set 3 = {x;| x; €SI, b(G,) = min by(G,)} and select x;, € S} arbitrarily.
xqeS11
for part 2 of step 1 and
3. Set % = {x;|x;e8%x;€8 "), n(x;) = max n(x,)} where n(x,) is an
k

xq€S1

integer uniquely determined by the condition x, € S*7™@, x ¢ §¥T" 071 Set
S = {x; | x; €85 by(Gi—y) = misn’ by(Gi—1)}. Select x;, € S arbitrarily.
xq€S2k

for part 3 of step k = 2, ..., n — 1. Using Procedure 1 modified in the above way,
we may require less time to complete the process.

If A cannot be permuted into the pipematrix form with full pipes we may employ
Procedure 2 obtained from Procedure 1 by substitution of

1. Set S{ = {x;]|d{(Go) = min d,(G,)}.
q=1,...,n
for part 1 of step 1 and substitution of
- 2. Set 8§ = {x; | x; € RY, d)(Gy—,) = min d(G,_,)}.
xqeR®

for part 2 of step k = 2,...,n — 1. The set S* in part 2 of step k =2,...,n — 1
is never empty..

. Remark 2.6. Using Procedure 2 with the additional criteria given in Remark 2.5,
we may obtain a better ordering.
The procedure shown above have the following important properties.
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Theorem 2.1. Let A be a symmetric matrix. If there exists a permutation matrix
P such that PAPT is a pipematrix with full pipes then Procedure 1 gives the corre-
sponding permutation p.

Proof. Procedure 1 gives the possibility to try in each step k the finite number
of all the orderings {x;,, ..., x;,} of nodes such that x; € S} for I = 1, ..., k. Accord-
ing to the assumptions, there exists at least one ordering {x;, ..., x; } where x;, € S|

for I =1, ..., n. Obviously the ordering {x; x;} is one of the orderings {x;

s TH
e X}

Theorem 2.2. Let A be a symmetric irreducible matrix. Let it be possible to perform
the elimination on any matrix QAQT where Q is an arbitrary permutation matrix.
Let P be a permutation matrix given by either Procedure 1 or 2. Let us solve the
system of linear algebraic equations with the matrix PAPT by the algorithm for
pipematrices. Then the same number of operations is required as when using the
general algorithm (e.g. [5]) where the matrix is treated element by element.

Proof. The pipes of the matrix ordered by the permutation p given by Procedure 1
or 2 do not involve zeros which are not changed by the elimination process. This
follows from part 1 of step k = 2, ..., n — 1 where the set R¥ is constructed.

Remark 2.7. The only time-consuming part of Procedure 1 may be part 2 of step
k =2,...,n — 1 where it can theoretically happen that we go back to the very
beginning of the procedure several times. However, in the computations performed,
where a matrix was successfully permuted into the form with full pipes, only Pro-
cedure 2 was used and, therefore, this problem did not arise.

Remark 2.8. If Procedure 2 is applied to the matrices which cannot be permuted
into the form with full pipes or if we do not require the matrix with full pipes as
aresult, it may give an acceptable ordering in some cases as will be shown on examples
in Sec. 3.

Remark 2.9. Procedure 2 is not very time-consuming because only a certain
set of nodes is tested in each step.

3. EXAMPLES

Procedure 2 was applied to several types of matrices. The results have been very
interesting. Let us show two typical examples where the procedure yields a satisfactory
ordering. In Procedure 2, the additional criteria given in Remark 2.5 were used in part
2 of step 1 and part 3 of step k = 2,..., n — 1. When “Select x;, € S} or S% arbitra-
rily” is recommended in these parts, the node with the lowest subscript in the original
ordering was selected.

Example 3.1. (The example of a matrix that can be reordered into the pipematrix
with full pipes.) The matrix which arises from mesh refinement in one dimension
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when the solution of a certain boundary value problem is approximated by a kind
of hill functions (see: Babuska [7], [8]) has a graph of the type in Fig. 3.1.

The corresponding matrix is given in Fig. 3.2. Procedure 2 gives the permutation p
defining the ordering {xll, X105 Xos X125 X135 X145 X15 Xgs X7, X155 X165 X2, X3, Xg5 X5,
x6} of the elements x; € X. The permuted matrix B = PAPT is shown in Fig. 3.3.
Eliminating the system with the matrix B (by the elimination procedure for pipe-
matrices) we get zero fill in.

X X X X X X X X X X X X
X X X X X X X X X X X X X
X X X
X X X
X X X
X X
X % X X X X X X X
X x X X X X X X X X
A——xx X X X
X X X X X
X X X X
X X X X X X
X % X X X X X
X X X X X X X
X X X X X X X
X % X X X X
Fig. 3.2.
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X X X X
X X X X X
X X X X X
X X X X X X
X X X X X X X
X X X X X X X
X X X X X X X X X X X X
X X X X X X X X X X
B = X X X X X X X X X
X X X X X X X
X X X X X X
X X X X X X X X X X X X X
X X X
X X X
X X X
X X
Fig. 3.3.

We can obtain several orderings by which the matrix is reordered into the pipe-
matrix form with full pipes by starting with various original orderings. Moreover,
these particular examples show certain general features allowing us to construct
permutations p for various problems of this kind not using the procedure of the
previous section any more.

Example 3.2. Suppose we have a matrix with graph G in Fig. 3.4 (which arises
from using the five point difference formula in approximating certain boundary
value problems on an L-shaped domain D = D, U D, U Dy U D, U Ds). If we
number the nodes in the so-called natural ordering (see Fig. 3.4) we obtain a band-
matrix with m = my,.

Let us number the nodes by Procedure 2. With this ordering, the number of opera-
tions performed during the elimination in D; U D, U Dj is less than or equal to
that for the bandmatrix with m = min (m,, m, + ms) and in D, U D with m =
= min (ms, m,). This can result in a substantial time and operations reduction.
Similar results are valid for various types of L-shaped domains which differ only in
theratios of m,, m,, ms, m,. Moreover, having matrices with the graph in Fig. 3.4 where
only h (the mesh size) is different, it is not necessary to seek an ordering for every
matrix because the procedure gives a general rule for orderings in the corresponding
domains D; with various magnitudes of h.

For example, let us consider the L-shaped domain D above. Then for every sub-
domain there is a formula describing the relation between the coordinates of the node
(x, y) in the net (it is also the node in the graph of the matrix) and the number
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O(x, y) that is assigned to this node by the permutation p found. For example in D,

O(x,y) =3(x*h"% + y*h™% + xh™' + yh™') + xyh™? + xh™* +
+(y —x) h™ 1 8o, + Jg,

(where 8y, = 1if a = 0 and 6o, = 0 if a + 0) is valid. Similar formulae are valid
for the other parts of the domain.

™
V'
P X
s
v
b
7
7/
Ve ”’2
7/ 02
v
— Z -
s
AN
\\ Da
N
N
N
N\
N m
05 D4 N 3
N
AN
AN
AN
N
AN
AN
y "
Fig. 3.4.

Let us have a matrix with graph G in Fig. 3.4. Let us permute the 1ows and columns
using the permutation p found by Procedure 2 and let us solve the system by the
algorithm for pipematrices. Also let us permute the rows and columns in the
ordering given by the minimal degree algorithm and solve the system by the general
algorithm. Then we have the following results -(m1 =5 m,=5m;=5 m, =12,
n = 80):

1. Ordered in the so-called “natural ordering” we get the bandmatrix with m = 12.
Solved by the algorithm for bandmatrices 80 x 13 = 1040 elements are treated.
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2. Ordered by Procedure 2 and solved by the algorithm for pipematrices, fill is 230.

3. Ordered in the ordering given by the minimal degree algorithm and solved
by the general algorithm, fill is 188.

In comparison with 1, the fills in 2 and 3 are approximately the same, but in case 3
we require the general algorithm for solving the system, which means a disadvantage
mentioned above.

The technique when the matrix is permuted by Procedure 1 or 2 into the pipe-
matrix form and the system is solved in the corresponding way is advantageous
if applied to certain matrices (as in Examples 3.1, 3.2) in comparison with both
of the other approaches mentioned in Sec. 1.

The examples show that the algorithm for solving the system with a pipematrix
and, in particular, its operation (handling input data) aie simpler than the general
algorithm and its application. On the other hand, a pipematrix form is more general
than a bandmatrix form, which, in turn, may be an advantage; particularly if the
ordering has been found for a set of matrices with the same zero-nonzero structure
as in the Example 3.2.
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Souhrn

ELIMINACE RIDKYCH SYMETRICKYCH SOUSTAV
SPECIALNI STRUKTURY

JITKA SEGETHOVA

Matice soustav linearnich algebraickych rovnic, které vznikaji pfi feSeni diferen-
cialnich rovnic metodou koneénych prvkii nebo konecnych diferenci, jsou zpravidla
tidké a maji jistou pravidelnou strukturu rozloZeni nenulovych prvkd. Pfi feSeni
takové soustavy zvolenou modifikaci eliminace se snaZime nalézt vhodné pofadi
fadkt a sloupct matice, abychom vyuzili vlastnosti dané matice k minimalizaci
pozadavkii na pamét a poctu operaci.

V ¢&lanku je podan struény piehled technik, uZivanych pro eliminaci soustav
s Fidkymi maticemi, a navrZen dal§i postup, ktery je obecnéjsi neZ eliminace matice
v pasovém tvaru, nezachazi vsak s matici prvek po prvku jako nejobecnéjsi mozny
algoritmus. Je uveden postup pro nalezeni ,,pi§falového tvaru‘ matice, tj. potradi
fadka a sloupcti, vhodného pro tuto modifikaci eliminace. Clanek je doplnén nume-
rickymi ptiklady.

Author’s address: Dr. Jitka Segethovd, Matematicko-fysikalni fakulta KU, Malostranské nam.
25, Praha 1.
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