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SVAZEK 19 (1974) APLIKACE MATEMATIKY CisLo 2

ON THE SOLUTION OF THE DISPLACEMENT BOUNDARY-VALUE
PROBLEM FOR ELASTIC-INELASTIC MATERIALS

OLDRICH JOHN

(Received February 16, 1973)
1. INTRODUCTION

The system of equations which describe the model with the so called internal state
variables in continuum mechanics will be studied. The model itself was developed
by Dillon and Kratochvil in [1], [2]. Negas and Kratochvil gave the proof of exis-
tence and uniqueness of the solution of the traction problem ([3]). In this paper we
study the displacement boundary-value problem using the method of [3]. At the same
time, a simple technique due to Zacharias and Gajewski is applied which makes it
possible to avoid the partition of the time interval in the course of solution.

Let the body before the deformation occupy a bounded domain @, Q < R>.
The body forces F; = F(x, 1) as well as the displacement it; = ii(x, ) on the boun-
dary 0Q are given for i = 1,2, 3, t € (0, T). Parameter ¢ can be interpreted as time
but not necessarily. We wish to determine the state in which the body finds itself
after an elastic-inelastic deformation governed by the following equations:

00
(1) YL F =0, (i=1,223)
0x;
du.  ou.
2 &y =& + el = ]' b + = c(hi=1.2,3)
: 2\0x; 0Ox;
(3 e = Ay(0.2), (i,j=123)
t
(4) efi(x, ) = ef°(x) + f Bij(o(x, 1) ox, ) dr, (i,j =1,2.3)
0

(5 a(x, 1) = af(x) + v[IDI(U(.\', ), 4x, ) dr, (I=1,2,..,m)

(6) u; = ii; onthe frontier dQ of Q, (i=1,273),

where £7% and o® are given functions.

61



Here ¢ = a(x, t) denotes the symmetric stress tensor, & = s(x, 1) is the symmetric
small strain tensor composed of the plastic part ¢” and the elastic one ¢°. u = u(x, 1)
is the displacement, o = oc(x, 1) is an internal state variable, 4, B and D are given
functions of the variables o and o connected with the physical properties of the ma-
terial. (For the physical motivation see e.g. [1], [2].)

The relation (1) is the usual equilibrium equation, (2) is the condition of compati-
bility and (3) is a form of Hook’s law. B and D in the system of equations (4) and (5)
are the so called response functions which characterize the historical development
of material.

The question is under what conditions on Q, A, B, D, i1 and F there exist unique
o, u, &, ¢” and o which solve the system of equations (1)—(6).

2. NOTATIONS AND PRELIMINARIES

a) Notations.

Let Q be a bounded domain in R® with a generic point x and Lipschitzian boundary
0Q.

For 2 = 0 and a Banach space X define C,(<0, T); X) to be the space of all
continuous functions ¢ : (0, T)> —» X with the norm

M lollxs = sup (7 o))

1e<0,T
where | +||x denotes the norm in the space X. (If it is necessary to express the depen-
dence of an element ¢ € C,(<0, T); X) on t, it will be done by means of square
brackets). C,(<0, T»; X) is a Banach space.

In case of X = [L,(Q)]" = Ly(Q) x ... x L,(2) (m-times) we write simply ||,
instead of [[*[[izyaypm || [[lm.s instead of [[[ iz, appm,»

Remark 1. For any two non-negative numbers 1;, 4, the norms HHHXM and
HiIHXAz are equivalent. Nevertheless, the choice of A will be helpful in the following.
In case that the special choice of A has no importance we omit the index A in the
expressions C,(<0, T); X) and ||+|lly ;.

3
ijlij=1>

Let S be the Hilbert space of all symmetric tensor functions @ = (@
0;; = 0}, O,; € L,(Q) with the scalar product

Ji
3
(w) @)S = . Zl(wij’ Qij)Lz(Q) .

i,j=

Further, denote W = [W*(Q)]* and W, = [W{*(Q)]*. For tensors and vectors
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m

m
we write often || instead of Z |er,| or instead of the equivalent norm ( ). 7)"’?, ]
=1

instead of Z || or Z [cu |2)1/2 etc.
i,j=1 ij=1

b) Assumptions.

Suppose that
(8) Fe C(K0, Ty; [Ly(Q)]?),
9 ii € C(<0, TY; W).

The function
A:R’>x R">R°; A:(o,2)—> A(o,0), A=Ay,
is supposed to be contintious in its domain and such that there exists a function

P:R° x R™ - R!

for which
(Pa o .
(10) Ao, 0) = ( ) (i,j=1,2,3),
do;
3 32 2 m 2
(11) 0*P(0, @) N 0*P(o, o) 9*P(o, o) <,
ijki=1[00;; 00y, ij=11=1|00;; 0x, =1 | Ox, Oa,

0 P(o, o
(]2) ( ) fULI, = C Z é

('?J ; 00y, ij=1

take place for all ¢ € R®, ¢ € R and « € R™. It means that 4 has potential P.

The symmetric tensor function B : R® x R™ — R® and the vector function D : R® x
x R™ — R™ satisfy the following conditions:

3 3 10B;o, o) " 10B; (0, «)
(13) -Z_1<k%d»l vé;(oi‘ - g'l ﬁﬁ@%fg_— ) = ¢
N L= ’ Yk n n
"o |eD,(o a) & | OD,(o, )
14 CEn9, %)
(14) nzl (k,;l ooy, k=1 ooy, ) n

¢) An auxiliary result.

Let 8 : W — S be defined by

(15) Bi(v) = (“’ ‘N’”> (i,j=1,2,3).
x;  Ox;
Put K, = B(W,).
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Lemma 1. K, is a closed subspace of S.

Proof. The inequalities

(19 1BO)s < [e]wo s Voe W,

and

(17) ”ﬁ(v)”S 2 J" ”U“WD N VU € WO
J2

prove the fact that K, and W, are linearly homeomorphic. The estimate (16) is trivial.
As for (17), we can either use the general result of Hlavaéek and Necas, [4], or prove
our special case in the following way: Let u € [CJ(Q)]*. Using Green’s formula and
the fact that u vanishes on 0Q we can write

ou; Ou; o%u; Ou; Ou;
J‘ —eddx = — | u; —L-dx = | L Hdx.
0 0x; 0x; o 0x;0x; o 0x; 0x;

31 u;\? 1 2 6u;\? 1
: = . — ) dx + -~ ) dx = = |luf?
”ﬁ(u)ﬂs i,jZZI 2 Q(E’x > ) 2_“!_,(;21 {?,\',-) t= 2 ‘“

{“liwo
J

Thus

This inequality together with the density of [ C5'(2)]* in W, yields (17).

3. MATHEMATICAL FORMULATION
Denote the resulting displacement by u and put
(18) v=u— 0.
Then the boundary condition (6) can be written in the form
(19) ve C(0, T) ; W) .
From (2), using (18) and (15), we get the compatibility equation in the form
(20) e+ ef — Pu) = P(v).

Let now H,, be an orthogonal complement to K, in S. From (18)—(20) and Lemma
1 we obtain that (20) can br written as

(21) f {ef; + &0, — (@)} hy;dx =0, VheH,te0,T).
0
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The weak form of the equilibrium equation is

(22) [0’,-]- ,.j(q))d.\':fF,.(pidx, Vo e Wy, te0, T .

JQ Q

PROBLEM. Find the elements ve C(0, T>; W,), o, ¢, &€ C(0, T); S and
ae C(€0, T); [L,(2)]™) for which (21), (22), (3)—(5) take place.

To solve this problem we use the following process: For o e C({0, T); S) we
calculate o from (5), after that we get ¢” from (4). Denote these a, &” by ofc), £”(c).
Then we find such an w € C(<0, T); S) that

(i)  substituted for o satisfies (22),

(ii) o satisfies the condition
(21, a) f {4, ofo) + e¥(o) — Bi(i)} hyjdx =0, YheH,, te0,T).
2

It will be proved that for each o€ C(C0, T); S) there exists a unique o = o(c)
such that the process defines an operator o : C(<0, T); S) - C(<0, T); S). Further,
the operator o is contractive as an operator from C;(<0, T); S) to C4(<0, T); S)
for some 1 = 0. Thus the existence and uniqueness of the solution of the PROBLEM
follow easily from the Banach fixed-point theorem.

4. SOLUTION OF THE PROBLEM

Let us denote

(23) Do, ) [1] = f'D(a[r], of]) dr,
(24) Bo,7)[1] = f 'Bo[<]. a[<]) dr .
Lemma 2.

(25) 2 :C(K0, T); S) x C(<0, T; [L,(2)]") = C(€0, T>; [Ly(2)]"),

(26) B :C(K0, TY; S) x C(0, T; [Ly(R)]") = C(<0, TD; S).
Proof. From (14) it follows that for all ¢ € R®, € R™

(27 |D(a, 2)| < sl + |o| + |af) -

Hence for cach o € S, a € [L,(2)]" we get D(s, 2) € [L,(Q)]" .
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Again from (14) we obtain for each o e C(0, T); S), a e C(<0, TY; [L,(2)]™),
tlv IZ € <0’ T>,

(28) ID(o[t:], o[ 1:]) — D(o[tz]. o[ t])]m =
< es(|lofti] = o[t]lls + [e[ts] = «[t2]]m) -

This proves the fact that D(c,a)e C(<0, T);[L,(2)]") and the integral in (23)
exists in Riemann’s sense.

Finally, using (27) again we can see immediately that
D(0,a) € C(CO, TY; [Ly(2)]") .

and (25) is proved. (26) can be proved similarly.

Lemma 3. There exists A > 0 such that for each o€ C((O, T); S) the operator

D(0, +) 1 C;(€0, TY; [Ly(Q)]™) = C,(<0, T); [Ly(2)]™)

is contractive.

Proof. Let o € C(<0, T); S), o', «* € C(€0, T); [L,(2)]™),

ma S sup e J-IH D(a[7], «'[7]) — D(o[7], «*[1])] dr =
1e0,T) o

Hl@(a, a') — (o, az)i

t
< [using (28)] < ¢s sup <e™* f a'[c] = o?[c]| e™* tdr <
1e(0,T 0

t
< csmrxl — o2l ; sup (e_“f e’*dr) <
0

<t — o2,
A )
Choosing now A = 2c¢s, we get
(29) 2(e, ") = 2(0, @) jn.s < Hjo* = o*[m.a-

Assertion 1. To each o € C(<0, T); S) there exists a unique o€ C(<0, T; [L,[Q)]™)
and ¢” € C(<0, T); S) satisfying (4) and (5).

Proof. Let o be an arbitrary fixed element of C(<0, T); S). Using Lemma 3 we
establish by the Banach fixed-point theorem that the operator equation
(5, a) o= 0o’ + Yo, )

has a unique solution a € C(€0, T); [L,(R2)]™). Denote it by ofc). The corresponding
¢”(0) is then uniquely determined from the relation (4). Finally, ¢”(c) € C(<0, T>; S)
by Lemma 2.
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Assertion 2. To each aeC((O, T);S), te0, Ty fixed, rheré exists a unique
(o) [t] €S for which

Q) J o) [1] Bis(@) dx — J Fl] p:dx, YoeW,.

(i) j {4(0) [1], (o) [1]) + efi(0) [1] — Bi@) [1]} hydx = 0. Vhe Hy,
(iii) ’ o(a) e C(<0, TY; S).

Proof. Let o € C(<0, T; S), t € €0, T) be fixed. We shall find o in the form
(32) o(o)[t] =6® +w

where ¢° is an arbitrary fixed element of S which satisfies (22). The demand that
o(0) [1] satisfies (i) leads to the condition that w € H.

From (10) and (32) it follows that the left-hand side in the equation (ii) is nothing
else than a Gateaux differential Dif @(w, h) of the functional

(33) P(w) = f {P(c° + w, of0) [t]) + 7o) [1] wij — Bif(r) [] wi;} dx

defined on H,. Rewriting (ii) as

(31, a) Dif ¢(w, h) = 0, VheH,
we see that the problem is to find all critical points of ®.
If
(34 lim &(w) = +o0
[lwlls=w
and
(35) Dif ®(w?, w? — w') — Dif ®(w', w? — wy) = C|w? — w'|3

take place (which will be proved below) then there exists a point of minimum of @
in H, ([6] or [5], theorems 1.4.5, 1.6.3). This implies ([6] or [5], 1.6.2) that there
exists a critical point of @. The uniqueness of such a point follows from (35). So w
in (32) is uniquely determined. By an easy calculation we get the independence
of w(o) [] of the choice of ¢° which completes the proof of its existence and unique-
ness.

To show that (34) holds we write (omitting for the sake of brevity the arguments

in a, &, B):
dP(0,0
(36) P(ao + w, oc) = P(O, 0) + __P;L,__) (wij + G(i)j) +

i
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4 oP(0, O)a N 9*P(a, oz)(

4+ ow) (o) 4+ W) +
Oo; ! 0o;; 0oy, ) (o

0*P(G, &
+0P(o,a)( +W.‘j)0f1+(ﬁ(a"a—)°<
0o ;; Oy Ox, Oa,

“n -

Using (11), (12) and the inequality

[S]

2
(37) Iablée-am—f—lk—, e>0
2 g 2
we can estimate
(38) P(o® + w, @) 2 — My = Mo|* = Myfo* + My|w]?,

where M, M,, M5 and M, are positive constants.

Estimating in the analogous way

(39) elwy; = — M |ef]? — Ai W,
M

(40) - Bijwi; = — »Mslﬁlz - zﬂ : [W!Z

we get after substituting (38)—(40) into @:

(41) P(w) 2 — M + — J] w|? dx

where the constant M appears as a consequence of the integration of the members
independent of w over Q. (41) implies (34) immediately.

Using the definition of Dif &(w, h), the Lagrange meanvalue theorem and (12),
we can write

Dif ¢(w?, w? — w') — Dif §(w', w?> — w') = j {
Q2

OP(0° + w?, o) _
00;;

1

M@} Wl dx = ff—(—)( B wh) (vl - wh) dx 2

0o;; 00;; 0oy,
= c, f [w? — w'|? dx = c,|w? — w'||3
P

which is the inequality (35).

It remains to prove (iii). Suppose that ¢° is chosen in such a way that
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c®e C(K0, T); S). Let t, t, € <0, T>. We have from (ii)

P(olt
(42) j {9-—@[4‘]—“[“]) +elte] = Bult]} hydx =0, k=1,2, heH,.
o 0

Put in (42)

(43) h = (o[t] = oft]) = (6°[t,] = o°[.]) .

After a rearrangement of members we get

(@) 0=j{”@D a1,]) w@@Lﬂﬂ%«wﬁj_wdqy_

(70,1 0o ;;

— (1] = O]} dx + J {( P(o[t,], 2[11])  dP(w[t2], o[15]) 4

do; do;

+efln] = eflta] — Bylti] + ﬁij[’z]} Houltu] = oylt]) -
= (ob[t,] = ofi[r2])} dx.

By means of the same technique as in the proofs of (34), (35) we obtain finally
from (44)

(45) [eo(o) [22] = (o) [1]]s = M{[|a°[12] — o°[1]]s +
+ o) [t:] = o) [t + [e7(@) [11] ~ (o) [12]]}s} -

The continuity of w(e) in {C, T follows then from (45) and from Assertion I.

Now we want to prove that the mapping w : o — w(0) from C;(<0, TD; S) to
C4(<0, Ty; S) is for some A > 0 contractive. It will be done in Lemmas 4—7.

Lemma 4. Let w be a mapping defined in Assertion 2. There exists a constant
¢ > 0 such that for each ). = 0, 6*, 6% € C(<0, T); S),

(46)  |lo(e") = o(@)]ls. = &([[(e") = Ao llnx + llle"(0") = &0 []5.) -

Proof. Let ', 6* € C(€0, T); S). Assertion 2 implies

(47) jg{ap(w(ak) [t]’ O‘(Gk) [’]) ( 91 [1] - B (“) [I]} dx =0,

28,

heHyte0, Ty, k=1,2.
Put in (47)

(48) h = o(c') — w(c?)
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for both k = 1, k = 2 and substract these two identities. We get after an obvious
transformation (omitting the argument again)

j {(’W(m(o'), x(a'))  aP(afa?), a(a’))} (0u(0) = 0(0?) dx +

do;; do;;
; J {OP(‘”@* A00) _ OPA)ATD) gy gf,<a2>} (o) -
o Jo; do;;

— w;f6?)dx =0.
Hence using the same estimates as in the proof of Assertion 2 we get

(49) lo(e") [1] = w(o®) [1]]s = e(|e(a") [1] = 2(o?) []]s +
+ o) [1] = «{6?) []].), Vie<0,T).
Let now 4 = 0. From (7) and (49), (46) follows immediately.

Lemma 5. Let ¢ be the constant from the previous Lemma. There exists A, = 0
such that for each 2 = 7,:

m . | L, |
(50) o', 0% e C(€0, T); S) = ||u(a") — a(0?)[ |, < e lle* = o?|lls.x -
Proof. Using (14), (5) we get for each ¢', 6> € C(<0, T); S), t 0, T

le) [1] = Ao?) [l < <5 J ;(llol[f] = o’[e]]s + Jlu(e") [=] = «o®) [<]|) d=.

By the same method as in the proof of Lemma 3, we get for A > 0

Im,2) -

(") = oDl = 5 (o = s + o) = ofo?)
Putting 2, = ¢5(4¢ + 1) we obtain the estimate (50).

Lemma 6. Let ¢ be the constant from Lemma 4. There exists 1, = 0 such that
for each A = 1,,

1
4 3

(51) o',6%eC({0, T);S) = “P”((r‘) — z"(oz)ms,,x = HEG‘ - GZH'_m .

1

Proof is quite similar to that of Lemma 5.

Lemma 7. Let 7 = max (4, A,). Then the mapping w is contractive from
C;(0, Ty; S) to C4<0, T; S) with the constant }.

Proof follows immediately from Lemmas 4, 5, 6.
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Theorem. There exists a unique solution of the PROBLEM.

Proof. Let & be the fixed point of the mapping w. Using Lemma 3 we calculate
(G) satisfying (5). From (3) and (4) we get &7(5), £(G). It follows from the definition
of the mapping o (Assertion 2) that the equilibrium equation as well as the compati-
bility condition (21) are satisfied. Thanks to that, the displacement u can be calculated
in the unique manner.
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Souhrn

O RESENI DRUHEHO OKRAJOVEHO PROBLEMU
PRO ELASTICKO-INELASTICKE MATERIALY

OLDRICH JOHN

V ¢&lanku je zkoumdana druhd okrajova tdloha (jsou zadana posunuti na hranici
oblasti) pro soustavu rovnic mechaniky kontinua, popisujicich model s vnitfnimi
parametry. Kombinaci teorie monotonnich operatori a Banachova principu
kontrakce je dokazana qxistence a jednoznalnost slabého feSeni ulohy.
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