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EXTRAPOLATION OF S.O.R. ITERATIONS
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1. INTRODUCTION

Let us consider the system of n linear algebraic equations
) Xx=Mx+b,

where M is a normalizable square matrix (i.e. similar to a diagonal one) with o(M) < 1.
Let V,(C) be the n-dimensional vector space over the field of complex numbers C
of column vectors with n complex components. Let us define, for arbitrary nonzero
vector X, € V,(C), a sequence of vectors {x,} -, by the recurrence relation

) X, =Mx_; + b
for k=1,2,3,....

Let ueV,(C) and let {y,}2, be a sequence of vectors which belong to V,(C).
Suppose that there exist g € C, a constant K > 0 and a sequence of vectors {z}
such that the following conditions are satisfied:

1)0<lq <1,
2) ||z]| > 1/K for an infinite number of integers k,

3) |z| < K and y, — u = ¢*z, for all k.

Then we shall say that the rate of convergence of y, to the vector u equals g and
write

Vi u.
Remark 1. Symbol |-| denotes a vector norm.
Ify, — @, u,y, 9, uand|g| < |q,| then we shall say that the sequence {y,};Zo

converges to u faster than {y's}i=o-
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Let Ay, 45, ..., A, be all mutually different and nonzero eigenvalues of the matrix
M and

(3) A2 |22 2 4]

Generally, x, 2, x, and if [lll > llzl then the sequence

1 o0
P (Xk - zlxk~l)}
{1 - )*1 k=1

converges to the solution x faster than {x,};~,. This problem was studied in the papers
[8] and [9]. A generalization of this result is given in the assertion of Theorem 1
in Section 2. In Section 3, it is applied to the S.O.R. method (Successive Overrelaxa-
tion Iterative Method). We seek the solution of the system

4) Ax =b,
where A is a 2-cyclic, consistently ordered and positive definite matrix. If
Wy >y > >,

are all mutually different and positive eigenvalues of the Jacobi matrix B derived
from A then the rate of convergence of the optimal S.O.R. equals w, — 1, where
o, = 2J(1 + /(1 — ui)). However, using the construction from Section 2 we obtain
a method (if eigenvalues i, ..., it; are known) which converges by the rate w, — 1,
where @, = 2/(1 + /(1 — ). This method will be called (in this paper) the extra-
polation of the S.O.R. iterations for s eigenvalues. Moreover, inequalities

o, =1 >0, —1>...>0, -1

hold. The S.O.R. method is a special case of the extrapolation for s = 1. If gy, ...,
for any s = 1 are not given, there appear some difficulties in calculating this eigen-
values. Estimation of j¢; was done for example in the papers [4] and [12]. We present
one theorem for estimating u,, i3, .... Other relevant theorems can be found for
example in the book [2]. Practically it is possible to calculate on the digital computer,
on account of roundoff errors, the eigenvalues jt;, pt, pt5 (if double precission arithme-
tic is not used). This problem is discussed in Section 3, too.

In practice an eigenvalue problem AAx = Lx with 2-cyclic sparse matrix A of
large order is often met with. We use usually Kellogg’s iteration process or its modifi-
cation (see [12]) in order to find a maximal eigenvalue. This leads to the solution
of the systems

Av = f

for many vectors f. If eigenvalues of the Jacobi matrix derived from A4 are not given,
then the calculation of two or three eigenvalues 4, it2, i3 of B represents an additional
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work. Nevertheless, this calculation is excuted only once while the solution of Av = f
is repeated, and therefore it is worth while.

A numerical example is given in Section 4.

2. PROOF OF GENERAL THEOREM

Let us consider the system (1), let 1y, ..., 4,, (r > 1), be all mutually different and
nonzero eigenvalues of the matrix M. Let inequalities (3) hold. Denote by x, the

nonzero initial complex vector and by {x,};%, the sequence defined by the relation (2).
If

pz) =28+ 1,27  + L+ 8

is a polynomial with complex coefficients, then we put

l(cm)(tl’ RS t\") = _I—(Xk + tlxk—m + + tsxk—.\'m) .
p(1)

Let us denote by P; (i = 1,2, ..., m) and P the projection of V,(C) on the subspace
of eigenvectors corresponding to the eigenvalue 4; and 0 respectively.

We can express the initial vector x, as the sum

(5) Xo =W, + W, + ...+ W +W,

where w; = Px, fori = 1,2, ..., rand w' = Px,. This equality implies
k=1

(5 x, = Awy + 25w, + o+ Aw, + Y M'D.
1=0

Theorem 1. Let the matrix M of the system (1), i.e.,
XxX=Mx+b,

be normalizable with o(M) < 1. Let 4y, ..., A, be all mutually different and nonzero
eigenvalues of the matrix M, r > 1 and

Az )z 24l

Let s, m be integers, s€ {1, r), m > 0. Suppose that the initial vector X, eV,,(C)
satisfies the relations

Xo * O (null vector),
Py %0 — Ps+1b/(1 - As+1) +0.
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Construct the sequence of vectors {y,(},f”:o, v €V,(C) in the following way:

(6) Ve =%, for k=0,1,..,sm—1,
Yk =f:‘(m)(0(1s’m), cary Gi‘“’m)) for k> sm,

where x, is defined by the relation (2) and

s

() R G ) LD Y P LA i

J1sdzyenji=1
Jir<j2<..<ji

fori=1,2,...,5.
Then

(8) O (Zs+1) X
and for k > sm,

(8) Yo =My, +Db
holds. Moreover, for k = sm the relation
” 1 m
(8 ) Ye — = p(M )(Xk—sm - x)
p(1)
holds, where p(z) =z, + o™=  + ... 4 o™,
Proof. Let us write

©) b=AZvi+O,

where v; = P;band ¥ = Pb. It follows from (9) that

k—1 LA j.k
(10) Mb =} ~—~——i'- v, + 9.
0 _

t= i=1 1 f

The following (s + 1) equations are obtained easily from the relations (5) and (10).

. 1 —
xk=2</1’§w,~+» 'v,->+¢'
i=1 1 =4
r k—m
KXo = 3, </1’{‘"'w, + v) +
i=1 — A
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Multiplying these equations successively by the numbers 1, ¢{*™, ..., ¢®™ and
summing them all, we obtain the equation

A ) P 1) Lo =25 p(AT) R
Ny, = i’,‘p( P+ Sovi + — LR oy (1) V.
(1) yi = :;H P Z oy 0
(Recall that

p(z) =z oM 4+ aﬁ.*‘"")).

Itis p(A2, ) = Osince A7, ; is not a root of the equation p(z) = 0 as well as p(1) # 0
since the roots A7, ..., A% of p(z) = 0 lie inside the unite sphere.
From (1) it follows that
- d 1
(12) x=(-M)"Tb=) — -

i=1 1 — 7,

and therefore

(19 nox= 3 Al i - ).

The proof of (8) will be done by showing that there exists K > 0 such that

” Z s+1)" z;| < K for all k and that for an infinite number of integers k the
mequallty || Z ()/ +1)°2z;]| > 1/K holds. The first inequality is evident since
[)», S+1| =< ] and holds for every K > Z Hz,h. Both inequalities are consequently

i=s+1

equivalent to the following auxiliary assertion:

There exists § > 0, 1/6 = Y | z;| such that

i=s+1

r 1 k
5 (2 Y]
i=st+1 \Agyq
holds for an infinite number of k.
The proof of the auxiliary assertion. Let
l;"s+1] = .. = [ls+t| > |'1s+t+1| g g ]}'rl

and denote by W the subspace of V,(C) generated by all eigenvectors corresponding
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to the eigenvalues Agy g, -... 444 Let dim (W) = 1;. Let My, denote the restriction
of M to W and

b=y,

As+1

It is clear that By is a linear operator on the space W and all its eigenvalues lie
on the unite sphere in the complex plane.

Let us denote

Wi, ..., w; : the basis of W, where wi, (i = I, ..., t,) are eigenvectors of M,

A

¥, .... ¥,,: the orthonormal basis of W.

ty
wi =2 Bi¥,
j=1

and denote by R the matrix R = (f;,);';_,. Forevery ge W,

t I
’ " A
g = Zaiwi = Z)’ivis
i=1

i=1

the equality
(7o oo 7)) = Rty ooy oy )7

holds, the superscript T being used here for transpose. Let I be an integer. If
(01s ... 8,,)" are coordinates of the vector By 'g in the orthonormal basis of W then')

(01, o0y 0,)" = R(otyeys ooy tp8,,)" =
= R{diag (e, ..., &)} (oty, ..o, )" =
= R{diag (e, ..., &)} R™Y{R(otys ooy ,)'} = F(yys oo p)"

where we put
: -1
F = R{diag (e, ..., &,)} R
and diag (¢, ..., &) denotes the diagonal matrix ¢, x ¢, with the diagonal elements
&1, €3, ..., &, SUccessively.

151

Let us define for every he W, i = ) t;%; the norm in W:
i=1

li = (X e

D) ¢; I'e on the unite circle in the complex plane.
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Consequently,

78

ie., |h||lw is equal to the spectral norm of the vector (1, 7, ..., 7,,)". For a linear
operator H on W define

]y = sup 119 Lw

ito [dlw
Itis

[B2'ollw _ 1FG 1 2)"]s

oy~ eyl = [Fls < ®) = [R5 R~}

where |- |5 denotes spectral norm of vector and matrix respectively. From the defini-
tion it follows

IBw'|w = #(R).
However, if we put g, = 2, w}, o, & 0 then

“B\;flglnw =1

l91]w

This implies that |By'[w = 1.

According to the assumption of the theorem, it is z.,, + @, and therefore
s+t
Yz, % 0.
i=s+1
Let us put
s+t

| Y zs=254R)>0,
i=s+1

and let k be such an integer that for k > k the relation

r k
) 2 Z;
i=stet1 \ Agyq
holds. It is

s+t

>z

i=s+1

~

<0

N

s+t

PIRE?

i=st+1

26x(R) =

s+t

By'Byw Y z;

i=st+1
s+t k
Z ’Ai zZ;
i=s+1 \Agy1

r k s+t k
Y A z; Y A z;
i=st1 \ Agtq i=s+1 \ Agqq

Recall that |+ | and ||+ s satisfy the relation ||+ ||s < 9] - | for some 3 > 0.If we put

=
s

W

W
s+t

B’\‘?VZ Z;

i=s+1

< [Bw'w-

=
w

N

2

—5_2_5>0.

S N

& = min (8/9, (i=Z:+ 1Uzill)'l)




then the auxiliary assertion holds for this J, therefore
Vi (As+1) X.

If k > sm then (13) implies

r
Vicr =X+ Y Az

i=s+1
and hence
My, =Mx+ Y Mz, =x-b+ Y Nz, =y, —b.

i=s+1 i=s+1

To complete the proof we show (8"). It is easy to see that

Im—1
xk—(s-—llm = ('wm), xk—sm + Z Mjb
ji=0
for I =0,1,...,s and
Im—1
x=(M"'x+ Y Mb.
j=0

j=

Evidently

(xk—(s-—l)m - X) = (Mm)l(xk—sm - X)
forl = 0, 1, ..., s. If we multiply the /-th equation by ¢{*™ and sum all these equations
we obtain

P(1) (v — %) = p(M™) (X — X) -

Dividing by p(1) we obtain (8"), which completes the proof.

Remark 1. We have assumed that s < r. The case s = r is evident since y, = x
for k > sm.

Now we assume that the eigenvalues 44, ..., 4, of the matrix M are given. We shall
show how to find the other eigenvalues of M.

Theorem 2. Let M be anormalizable convergent matrix n x nand Ay, 4,, ..., 2,all
mutually different and nonzero eigenvalues of the matrix M. We assume that r > 1.
Let m > 0, te <1, r) be integers and let the inequalities

Ml z 2| 2 - 2 A 2 2] > e 2 2 4]

hold. Suppose that the eigenvalues A, ..., A, are given. Let x, € V,(C) and P, ;x, +
+ 0.

Construct sequences of vectors {X,};- and {y}s>o in the following way:
(14) X, = Mx,_y,
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Ye =X, fork=1,2,..,tm — 1,

(15) Ve = (e, L 6lo™) for k= tm.
If we put
(16) NOTIR /<1 /%
Vi 1¥k-1
then
(17) im0 = 2,4, .

Remark 2. The superscript H denotes transpose and conjugate.

Proof. If we assume that x,, is given by the relation (5) then

r Al )
18 Vi = }," ( w;
(18) k i:;a l"” ( )
or
(19) Y = ’1":+lw:+1 + Z llﬁw:
i=t+2
where we denote

It follows from (19) that

(20) yl{:{—lyk = A‘t+1]ll+1|2k_2 Wi "WIr'+1(1 + ZH uql k
i, j=t
where
o:: = (wi)"wj - and = Ai
b " H__n 4; 2
(wt+1) Wirt t+1

It is easy to see that |q,] < 1 fori =t + 2, ..., r. From (20) we obtain

R
’ —k—1 k
L+ 37 od; 'q;
(1+1) _ ij t+1
Vi = 41 s

I VA

i,j=t+1

where ) denotes that we do not sum for i = j = t + 1. The assertion of the theorem
is evident from this formulae.

Theorem 2'. Let the assumptions of Theorem 2 be valid. Moreover, let the eigen-
values of the matrix M be real.
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If we denote

L D= (y;cIYk/y}L 1¥k- 1)1/2

then

lim D = (4,

k=00

Discussion of Theorem 1. The assertions of Theorems 2 or 2’ are the same.
For the sake of brevity, take s =3 and m = 1. There are two ways how to
interpret the theorem.

A) We calculate successively X, X, X3,

Ys = {Xs + 00X + 02X + oo} [{(1 = 2,) (1 = 2,) (1 = 23)}
where
oy = — (A + 23+ A3)s 05 = Ady 4+ A A5 + Ayds,
g3 = — AiA A5,
and then
Ve = My,-1+b for k=4,5,...
B) For sufficiently great k it is
X =y = {X+ 0% + 0%, + stk--s}/{(l — 4y) (1 =) (1 — 23)} (%)

Now we take a special case. Let x|, = 1, i.e., for some j the j-th component
(x); = 1. Moreover, let A;, 4,, 43 be close to unity. Then {(1 — 4,)(1 — 4,).
(1 — 23)} ' is a great number. It is (y,); = 1 since x = y,. According to (*) and
the relation (x)j = 1, the exponent of the number

(xk + 0 X1+ 03X, + 03%_3);

equals log,o [(1 — 4) (1 — 2,) (1 = 43)].
From this it follows that in numerical calculation, in which every real number is
correctly rounded to d decimal places, the expression

d — flogyo [(1 = 2 (1 = 25) (1 = 43)]|
represents a number of significant digits while
|]0810 [(1 - }vx) (1 - /{z) (1 - '13):H

represents the loss of decimal places. In many practical cases this loss is not small
in the procedure B) nor in A). We suggest in such cases to take m > 1 since

{1 = 2037t < {110 = 237
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or to use the procedure A) and to calculate an initial approximation in double
precission arithmetics.

Remark 3. For s = 1 we obtain the well-known formulae

1
- f am 3
Ye = T/ lxk - /'Xxk‘!f ’
1 —m

(see [8]. [9]. [10)).

3. APPLICATION ON SUCCESSIVE OVERRELAXATION ITERATIVE METHOD

Suppose that we seek the solution of the matrix equation
(21) Ax =b,
where A is a given n X n positive definite matrix, n = 2. Let us write
A=D(I-L-U),

where D is the diagonal of A, Land U are strictly lower and upper triangular matrices
respectively. We rewrite the system (21) in the form

(22) x = Bx + ¢,

where B= L+ Uandc= D™'b.
Let the matrix B satisfy the following conditions:

(a) B is weakly cyclic of index 2;

(b) B is consistently ordered;

(¢) o(B) < 1.

The matrix B is normalizable with real eigenvalues since

DI/ZBD—-I/Z =] — D—l/ZAD—l/Z

and the matrix on the right hand side is Hermitian.
Let

(23) My Z 1ty

v

S22
be all positive eigenvalues of the matrix B. There exists a matrix U such that
UBU ™! = diag (Hy, -y fty — gy coos = 0, .., 0) .

Recall that we have used the symbol diag(...) for the diagonal matrix with dia-
gonal elements py, ..., f,, — iy, ..., —pt, and (n — 21)-times zero.
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From (22) we obtain an equivalent equation

(24) Xx=2x+d,

where

(25) Ly=(I—-owL) " (wU + (1l —w)I) and d = —ol) 'c.
It is

(26) o%,) <1 for we(0,2).

This follows immediately from Ostrowski’s theorem.

Now we recall two well-known assertions.
Lemma 1. If %, is the matrix from (25) then det (£,) = 0 if and only if w = 1.

Lemma 2. Let the matrix A of the system (21) be positive definite, let the Jacobi
matrix B derived from A satisfy the conditions (a), (b), (). Assume that w =+ 0, 1.

If wis an eigenvalue of B and 1 satisfies the relation
A+ow—-1
(27) H=- CU}.I/Z ’
then A is an eigenvalue of & ,,.
Conversely if A is an eigenvalue of £, and y satisfies (27) then u is an eigenva-

lue of B.
The proof is given for example in [4], [6], [11].

Theorem 3. Let A be an n x n positive definite matrix, n = 2. Suppose that the

n x n Jacobi matrix B derived from A satisfies conditions (a), (b) and (c). Let us

denote by
(28) Wy > s > o> q,
all positive, mutually different eigenvalues of B. Let r > 1, » % 0, 1.

Then

1) The numbers py, ..., fly — iy, - ..
mutually different eigenvalues of B.
2) For every admissible w the matrix &, is normalizable. The numbers

(29) Tar (@) = (wu,- + \/(wzuj — 4w — 1))>2’

(29) 2afw) = <(“’“f e RLCE 1»)2,

, =4, and 0, in virtue of det (B) = 0, are all
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fori=1,2 ..,r, and
(30) daivi(@) = ... = 2(0) =1 - w,
are eigenvalues of &%, while no other complex number is an eigenvalue of Z,,.

3) Let i be an integer, i € {1, r). In the interval (1, 2), there is just one root of the
equation

(31) o — 4w —1)=0.
If we denote it by w,, then

2
32) 0=
( 1+ y’/(l - H,Z)
and

2>w >0, > ... >, >1.

4) The eingevalues 4,(w;), A5(w)), ..., 2(w;) of the matrix %, are real,
Aais1(@,), ..., Ao ;) are not real and inequalities

(34) Ay(w) > A3(w) > ... > Ayios(@) = Ayf(@) > Ay y(@) > ... > Ly(w)

hold. If i = 1 then (34) reduces to A,(w,) = A,(w,). Moreover,

(35) Aaima(@) = Zai(w) = w; — 1,
(36) Aai-a(@) = Zy(;)
forl=i+1,..,r and

(37) |A21- (@) = o, — 1

forl=1ii+1,...,r.
Proof. It follows from the definition of the Jacobi matrix B that
D'?BDp~'?* =1 — D~'24D" 12,
This shows that B is similar to a Hermitian matrix. This together with (a) implies

the assertion 1).

2) The proof that #, is normalizable is due to G. J. Tee (see [5]). The other
assertion in 2) follows immediately from (a), (b) and Lemma 2 (see [11], [7]).

The assertions 3) and 4) follows immediately from the relations (27), (28) and (29).

The main result of this paper is the following theorem which we obtain immediately
from Theorems 1 and 3.
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Theorem 4. Let A be an n x n positive definite matrix, n > 2,
A=D(I -~ L-U),

where D is the diagonal of A, L and U are strictly lower and upper triangular
matrices respectively. Suppose that

B = L+ U is weakly cyclic of index 2,

B is consistently ordered,

o(B) < 1.
Let

Hy > [y > 0> [,

be all mutually different positive eigenvalues of the matrix B, r > 1. Let m, i be
integers,m > 0, i€ {1, r). Let x e V,(C) be a solution of the equation

Ax = b,
where beV,(C). Let us denote

(38) W; = ——r 2

RN/}

(39) 4 = <w,-u,- + (@} — Yo, —__Jl)_)z
’ 2

forj=1,2,...,r,

i—1

(40) SED = (=1 Y ARAL AT
Tiyla,e lj=1
h<ly<..<lj
forj=1,2,...,i—1,589 =0,
(41) S=1+S8FD 4+ . 48D,

Let P; be a projection of the spaceV,(C) on the subspace of eigenvectors correspond-
ing to the eigenvalue A; of £ ,,. Further, let us denote

(42) d = —wL) ' Db,
(43) X, = L, x_, +d,
where x,€V,(C), x, = @ and

Px, — Pdj(1 = A) + ©.
If we put

44 = X or k=1,2,..,i—1
( ) Yk v S
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and

1 . i~
(45) Y, = _§(x" + ST %+ oo+ SR = 1)
fork =i
then
Vi (wi—1) X.

Proof. Theorem 3 implies that the eigenvalues of the matrix B are real. If we take
eigenvalues A, ..., A;_, of the matrix &, then according to (34),

[A)] > |45 > o> Ainy]| > A = 0, — 1

and the absolute value of any other eigenvalue of the matrix &, is less or equal
to w; — 1.
From Theorem 1 it follows
(A9
Ye ——
However,

ERE)

Hi

which completes the proof.

4. NUMERICAL RESULTS

Now we consider a model problem. Let a rectangle G = ABCD in the plane be
given. Suppose the coordinates of the points A, B, C, D are A = (xq, o), B =
= (xn+1>Y0)» C = (X0, Ym+1)» D = (xy+ 1> Ym+1)- Moreover, assume that a uniform
mesh exists with the mesh size h such that

Xyi1 =X + (N+ 1) h, }*M+1=y0+(M+1)h.
Consider now the equation
~4u =0 on G°
u(x,y) =0 for (x,y)el

where T is the boundary of the rectangle G. By the five point difference approxima-
tion we obtain the system of linear algebraic equations

(46) Ax = 0.
Let us assume that diag (4) = I (unite matrix) and express

A=1-L-U.
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Let us rewrite the system (46) in the form

where

For the initial approximation x, we choose

x = Z.X,

Lo=(1I-o0L) ™" (oU + (1 — w)]).

Xo = (1, 1., DT

Now we compare the following three methods:
(I) Optimal S.O.R.

(11) Extrapolation of S.O.R. for s = 2.

(1) Extrapolation for s = 3.

We take M = 5, N = 7. It is well-known that the eigenvalues of the Jacobi matrix are

for

=1
Hy =
ki 2\

1=k=M,

kmn
COSs ————— + COs
M+ 1

In
N+ 1

I<I<N.

)

The vector y, is equal to the error vector while the right hand side of (46) is equal

to zero.

Table
~_ lals )
~_ Method (1) Method (1) | Method (IIT)
ko |
3 1.46332999 0.83364992 1.14735982
4 0.93064849 0.50714034 0.52746601
7 0.16818544 0.08956832 0.07079159
10 0.01158962 0.00354345 0.00348324
13 0.00094126 0.00005976 0.00001853
16 0.00007315 0.00000089 0.00000012
18 0.00001098 0.00000007 0
19 0.00000490 0.00000002 0
20 0.00000209 0 ; 0
25 0.00000002 0 0
27 0 0 ! 0

If we calculate the eigenvalues of the Jacobi matrix using Theorem 2’, we obtain
py = 0.89495247 [0.89495247]
Hy = 0.78527137 [0.78656609 ]
ps = 0.71527443 [0.71193977]
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Remark 3. We have calculated eigenvalues of the matrix % since the relation
A = pu? holds (see Lemma 2) for eigenvalues of the matrices % and B.
The numbers in brackets are the exact values.

Remark 4. All calculations were executed on the computer MINSK 22.

References

[11 A. S. Householder: The Theory of Matrices in Numerical Analysis, Blaisdell Publishing
Company 1965.

[2] D. K. Faddéjev - V. N. Faddéjevova: Numerical Methods in Linear Algebra (Numerické
mctody linearni algebry). SNTL, Praha 1964.

[3] A. Ralston: A First Course in Numerical Analysis. McGraw-Hill Book Company, 1965.

[4] R. S. Varga: Matrix Iterative Analysis. Prentice-Hall, Englewood Cliffs, New Jersey 1962.

[5] G. J. Tee: Eigenvectors of the Successive Overrelaxation Process and its Combination with
Chebyshev Semi-Iteration. The Computer Journal, Vol. 6, No 3, October 1963, str. 250--263.

[6] D. M. Young: Iterative Method for Solving Partial Difference Equation of Elliptic Type.
Trans. Amer. Math, Soc. 76, 1954, 92—111.

[7]1 E. Humhal - J. Zitko: Contribution to the S.O.R. Method (Pozndmka k superrelaxacni
metod€). Aplikace matematiky 3, sv. 12, 1967, 161—170.

[8] JI. A. JTiocmepnuk: 3amMevanusi K YMCICHHOMY DEILIEHHMIO KPaeBbIX 3aljau ypaBHEHust Jlammaca
M BBIMHCJICHHSIM COOCTBEHHBIX 3HAYeHU MeToaoM ceTok. Tp. Matem. unctutyta AH CCCP,
1947, 20, 49—64.

[9] 1. Marek: On Ljusternik’s Method of Improving Convergence of Nonlinear Iterative Se-
quences. CMUC 6, 3, 1965, 371—380.

[10] H. Mapek: O6 0xHOM METOME YCKOPEHUS CXOAMMOCTH UTEPALMOHHBIX npoiecoB, JKBMuM®,
Tom 2, Ho 6, 1962, 963 —971.

[11] C. G. Broyden: Some Generalizations of the Theory of Successive Over-Relaxation. Numer.
Math. 6, Heft 4, 1964, 269 — 284.

[12] L. A. Hageman, R. B. Kellogg: Estimating Optimum Overrelaxation Parameter. Math.
of Comp., January 1968, Vol. 22, No 101, 60—68.

Souhrn

EXTRAPOLACE ITERACI PRI METODE S.O.R.

JAN ZiTKO

Méjme danu soustavu n linearnich algebraickych rovnic
x=Mx+b,

kde o matici M pfedpokladame, Ze je normalisovatelna a o(M) < 1. Definujme si
posloupnost
X, = Mx,_;+b pro k=12,...

Pfitom x, je libovolny nenulovy vektor z n-rozmérného komplexniho vektorového
prostoru ktery budeme znagit V,(C).
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Necht {y,}-, je posloupnost vektorit z V,(C), ueV,(C). Existuje-li &slo g,
0< lql < 1, kladna konstanta K a posloupnost vektorl {z,}i, takova, Ze pro

vSechna k je
|z]| < K, y.—u=4qg"z

a pro nekonetn& mnoho k je |z,] > 1/K pak fekneme, Ze posloupnost y, konverguje
k vektoru u rychlosti ¢ a budeme psat y, __, u.
Necht Ay, ..., 4, jsou vSechna nenulova a navzijem razna vlastni ¢isla matice M

a necht

M|z

>...z 4.

Obecné ziejmé plati x, 4, x. Pfedpokladame-li, Ze |4, > |4,|, pak posloupnost
(X — AyX ) 22 x

coz znadi, ze konverguje k vektoru x rychleji neZ poloupnost {x,}. Toto bylo vy-
Setfovano na priklad v pracich [8] a [9].

V predlozené praci tento vysledek nejprve zobeciiujeme a sestrojujeme posloupnost
aproximaci ¥y, ¥, ... takovou, Ze y, _*, x. Obecna tvrzeni jsou obsaZena ve vétach
1, 2, 2.

Uvedenou konstrukei aplikujeme na metodu horni relaxace. Toto tvoii hlavni
dast predlozené prace. Metodu, kterou obdrzime, nazyvame extrapolaci metody
horni relaxace. M&me danu soustavu n linearnich algebraickych rovnic

Ax = b,

kde A je positivné definitni matice. Pfedpokladame déle, Ze ptislusnd Jacobiho
matice je slabé cyklickd s indexem 2, shodné uspofadand a konvergentni. Necht

My > [y > 000>,

Jjsou viechna kladnd a navzijem riizna vlastni &isla Jacobiho matice, necht p¥irozené
¢islo s < r. Oznadime
2 2

Wy =, W=
1+ /(1 = pl) L+ (= pd)

Optimalni S.O.R. konverguje k feSeni x rychlosti w, — 1. Zname-li vlastni &isla
My, - 1 pak prislu$nd extrapolovana metoda sestrojena v této praci, diva posloup-
nost aproximaci, které konverguji k feSeni rovnice 4x = b rychlosti o, — 1. Pfitom
jew —1>w, — 1.

V clanku je dale diskuse k praktickému pouZiti pfedloZené metody. V zavéru je
uveden jeden numericky ptiklad a seznam pouzité literatury.

Author’s address: RNDr Jan Zitko, Katedra numerické matematiky na Matematicko-fyzikalni
fakult¢ KU, Malostranské nam. 25, 118 00 Praha 1.
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