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SVAZEK 19 (1974) A P L I K A C E M A T E M A T I K Y ČÍSLO 5 

EXPONENTIAL DECAY LAW AND IRREVERSIBILITY 
OF DECAY AND COLLISION PROCESSES 

VACLAY A L D A , VOJTECH K U N D R A T , M I L O S VACLAV LOKAJICF.K 

(Received July 18, 1973) 

1. I N T R O D U C T I O N 

A considerable attention has been devoted to the description of decay and colli­
sion processes in past years. A series of various assumptions and their consequences 
have been considered and confronted with the well-known experimental facts. How­
ever, in most cases only an approximate approach could be performed. It seems that 
a new period of rigorous mathematical formulation and solution of the whole pro­
blem has been started only by papers [1], [2], [3], 

These papers start from the basic approach in which a given decay (or collision) 
process is described by the pair {j^, U(t)} where the Jf is a corresponding Hilbert 
space of state vectors and the U(t) is the evolution operator determining time evolu­
tion of the given physical system. Consequences of various assumptions about the 
structure of the space «3f and about properties of the operator U(t) have been studied. 
It has been assumed in all these papers that the Hilbert space Jfv can be divided into 
two mutually orthogonal subspaces J^A and Jf D where the jfA corresponds to the 
unstable particle and the J^D to its decay products. 

The collection of the basic assumptions, which have been taken into account, 
can be listed as follows: 

(i) JP = *rA e J?D ; 

(2) 1/(0) = 1 , U(t + f) = 17(f) u(f), vt, r ^ o ; 

(3) U*(t) U(t) = 1 = U(t) U*(t), Vt = 0 

(4) A(t + f ) = A(t) A(t'), Vt, t' = 0 , 

where 
A(t) = PA L/(t) PA , 

and PA is the projection operator into the subspace 2tfA\ 
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(5) <* / / |H^>^0 , V ^ e J f , 

i.e. the spectrum of the operator H is bounded below and If is defined by 

(5') U(t) = e'iHt ; 

the condition (5) can be used, of course, only if the conditions (2) and (3) are taken 
into account at the same time. 

If the particle described by the subspace Jf}
A ought actually to decay, then the 

operator A(t) must not be unitary in this subspace; it must hold 

(6) Vu e :/fA, 3t > 0 : |]A(r) u\\ < \\u\\ . 

And finally, the system {jf, U(t)} should be minimal, i.e. it should hold 

(7) & = ( u [u(t) + wit)] seA)~. 

The states having no relation to the unstable particle are not included in JfD. 

In the mentioned papers a series of consequences following from different combina­
tions of the assumptions (1) —(7) and some other additional ones have been derived. 
In this paper we will deal with some further consequences which follow mainly from 
the assumption (4). They are contained in the following theorems. 

2. W EISSKOPF-WIGNER CONDITION AND THE STRUCTURE OF Jt D 

Theorem 1. Let the system [M\ U(t)} fulfil the conditions (l) and (2); then it 
follows from (4) that it is possible to write 

(8) jrD = ^ + e .^_ , 

where the two mutually orthogonal subspaces 9 + and Q)_ have the following 
properties (for VJ± e 9+ , Mu e J?A, Vt ^ 0) 

(9a) <d_ | U(t) u} =0, 

(9b) <J„ | U(t)d + ) = 0 , 

(9c) (u\U(t)d+y = 0 ; 

and on the contrary, the condition (4) follows from the existence of two mutually 
orthogonal subspaces <3+ and Q)_ the elements of which fulfil the conditions (9). 

Proof. Let us introduce the following reduced evolution operators 

(10) A(t) = PA U(t) PA , B(t) = PD U(t) PA , 

C(t) = PA U(t) PD , D(t) = PD U(t) PD , 
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where 

PD = 1 - PA • 

It follows from (2) and (10) 

(1 la) A(t + t') = A(t) A(t') + C(t) B(t'), 

(1 lb) B(t + t') = B(t) A(t') + D(t) B(t') , 

(1 lc) C(f + t') = C(t) D(t') + A(t) C(t') , 

( l id ) D(t + tf) = D(t) D(t') + B(t) C(f) , 

and if we add the condition (4) we obtain at once 

(12) C(t)B(t') = 0 , Vt, t ' ^ 0 . 

Now, let Q) + be a subspace of J^D which is defined by the condition 

(13) Q)+ = {d+ e ffD : C(t) d+ = 0 , Vt ^ 0} ; 

and let £^_ be its orthogonal complement in Jf D, 

0 - - ^ D e ®+; 

the mutually orthogonal subspaces Q)+ and £^„ defined by (13) fulfil the condition (8). 

It follows from (10), (12) and (13) 

(14) B(t) J f = B(t) JPA <Z QJ + , 

and one obtains immediately that (9a) is fulfilled, as 

(15) < d _ | d + > = 0 . 

We get further from (lie) and (13) 

C(i) D(f) d+ = 0 , Vd+e@+9 Vt, t ' ^ 0 , 

and therefore, 

(16) U(t) d+ = D(t) d+ e ®+ , V t ^ O , 

which leads at once to (9bc) and the proof of the first part is finished. 

On the contrary, from (9c) we obtain (13) and from (9a) and (15) also (14); the 
condition (4) is a direct consequence of (13) and (14). 

From (9a) we can also derive that 

(17) B*(t) Q)_ = {0} , Vt *-> 0 ; 

and similarly that 
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(18a) U*(t)9_ c 9„ , Vt = 0 , 

(18b) C*(t) jeAa 9_ , Vt = 0 ; 

these relations will be useful later on. 

It follows from Theorem 1 that the exponential decay law (i.e. Eq. (4)) implies 
that such a decay process should be described as an irreversible one. We shall see from 
the following that the subspaces 9+ and 9_ have the properties identical with the 
outgoing and incoming subspaces D+ and D_ of Lax and Phillips [4], p. 45. 

The evolution operator U(t) of Theorem 1 may be, of course, non-unitary. In the 
next theorems we will derive some additional consequence following from adding 
the assumption (3). 

Theorem 2. Let the system { f̂, U(t)} fulfil the conditions (l) —(4); then it holds 

(19a) U*(t) U(t') 9+ = U(t' - t)9+ c. 9+ , 

(19b) U(t) U*(t') 9_ = U*(t' - t)9_ c 9_ , 

for any t' = t. 

Proof . Using (2) it is possible to write 

U(t + T) d+ = U(t) U(T) d+ ; 

then (19a) follows immediately from conditions (3) and (16). Eq. (19b) can be derived 
in a similar way. 

Let us mention the physical meaning of Eqs. (19). If we take a finite t, then it follows 
e.g. from (19b) that it is possible to define a subset U*(t) 9_ in 9_, the states of which 
have the following properties: if we start from such a state it is not possible to get 
any state from 3tf A or 9 + by a further evolution given by U(t) before the given time 
t is over. 

It is useful to introduce the following symbols. 

(20a) 9+(T) = U(T) 9+ = D(T) 9+ , VT = 0 ; 

(20b) 9_(T) = U*(-T) 9_ = D(T) 9_ , VT _5 0 . 

R e m a r k . All results of the Theorem 1 and 2 do not depend on the condition (6). 
If the (6) is not fulfilled the division of J^ into 9+ and 9„ may be quite arbitrary 
and may loose a reasonable physical meaning. However, much more can be said 
about the system { f̂, U(?)} if also the condition (6) is taken into account (see further 
theorems). 
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Theorem 3. Let the system {jf, U(t)} fulfil the conditions (1) —(4) and (6); then 
the subspaces _# + (r) and <3„(T) form strongly decreasing sequences with increasing 

H = 
(21a) # + ( T ) 3 _? + (T ' ) , §+(T) + £?+(T') , |T'| > |T| ; 

(21b) £?_(T) =D _?_(T') , £?_(T) + _2_(T') , \T'\ > \T\ . 

Proof . The proof can be performed by contradiction. Suppose that for some 
fixed T' = 0 the following holds: 

§+(T + T') => §+(T') ; 

using the condition (20a) and (19a) one gets 

Q)+ ZD U*(T)® + . 

And since 

L/*(T) ®+ = J5*(T) £F+ + D*(T) ^ + , 

we should get 
B*(r)£^+ = {0}; 

this combined with (17) gives £*(T) Jfp = {0} , which contradicts the assumption (6) 
and the condition (21a) is proved. The condition (21b) can be proved in a similar way. 

As the subspaces §}+(r) form a decreasing sequence, it is possible to introduce 
the non-empty subspaces 

(22a) §+(T, AT) = §+(T) Q Q)+ (T + AT) , AT > 0 ; 

the elements of which are denoted by d+(r, a). And similarly 

(22b) 9_(T, AT) = § _(T) 0 ^ _ ( T -AT), AT > 0 ; 

with the elements d_ (T, a). 

Corollary 1. Let the system {jf\ U(t)} fulfil the conditions (1) —(4) and (6); then 
the vectors given by (22a) fulfil for any h ^ AT 

(23a) (d+(T, a) | J + ( T + h, j8)> = 0 , 

(23b) <d_(T, a) | J _ ( T - h, j8)> = 0 , 

and further 

(24a) U(t) J + ( T , a) = ^ + (T + t, a) , 

(24b) U*(t) d_(r, a) = J _ ( T - t, a) . 
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Proof. As Q)+(T, AT) is orthogonal complement to §)+{r -F AT) in 3>+(T), the states 
d+(T, a) and d+(T + AT, /?) belong always to two mutually orthogonal subspaces 
of Q)+ and the condition (23a) is fulfilled. Further, it follows from (19a) 

(25) §+(T) = U*(t) §+(T + t), VT, t = 0 . 

Therefore, there exists one-to-one correspondence between the subspaces S+(T, AT) 
characterized by different T and it is possible to introduce the parameter oc which denotes 
a given evolution line with increasing t in agreement with Eq. (24a). Eqs. (23b) and 
(24b) can be derived in a similar manner. 

Corollary 2. Let the system {<%?, U(t)} fulfil the conditions of Theorem 3; then there 
exist the subspaces 0 + in J f D 

(26a) ^ + = 0 S+(x) , 
T _ 0 

(26b) ^ _ = (\§_(x), 
r ^ O 

with the following properties 

(27a) B*(t) 0>+ = C(i) 0+ = {0} , Vt = 0 , 

(27b) B*(t) ^ _ = C(t) ^ _ = {0} , Vt = 0 . 

Proof . The condition C(f)^*+ = {0} follows immediately from (13) and (26a). 
According to (25) we can write 

(28) B*(f)^+(T) = {0} , Vf = T. 

Suppose now, that the condition (27a) is not fulfilled, i.e. that there exists p e 0 + 
for which 

<u | B*(t) p > 4= 0 ; 

and according to (28) 
pe@+ Q9+(t), 

which contradicts (26a). The condition (27b) can be proved in a similar way. 

R e m a r k . According to Corollary 2 there exist subspaces 0> + and 0_ in Jf D 

which develope quite separately from the other parts of the space 34?. These subspaces 
need not be empty if the condition (7) is not required. 

Corollary 3. In the system given by Theorem 3 each state 

d±(T, oc) G 3t?D , 
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is localized in time; i.e. it holds 

<d±(r, a) | U(i)d±(x9 a)> = 0 , 
for any t §: AT. 

This result follows immediately from the Corollary 1 and the mutual ortho­
gonality of the subspaces JfA , Q)+ and £^_. 

R e m a r k . If the condition (7) is added to the assumptions of Corollary 3 then the 
assertion is valid for any vector from 2+ or ^ _ which represents a stronger result 
than it was derived e.g. (1) (see Lemma l) under the same conditions. 

Theorem 4. Let the system { JT , U(t)} fulfil the conditions (1)-(4) , (6) and (7); 
then 

(29) 0>+ = {0} , ^ _ = {0} ; 

(30) tf - ( U U*(t) 9+)~ = ( U U(t) 9 J)~ 

Proof . If pe&+ c <3+, then according to (18b) 

(31) <p, U*(t) M> = 0 , Vu e ^ , Vt ^ 0 . 

And similarly, using (27a) we obtain 

<p, [7(f) u> - <p, B(l) M> = <B*(r) p, w> = 0 , 

which together with (31) leads to 

P i (\u(t) + u*(t)] jrA)-, vt, r ^ o ; 

and owing to (7) we get the first part of (29). The second part for 0>_ can be obtained 
in the same way. The conditions (30) can be also easily derived. 

R e m a r k . If we combine the results of Theorems 1, 3 and 4 we can conclude that 
the subspaces & + and Ql^ fulfil four assumptions on which the scattering theory 
of Lax and Phillips [4] is based. 

Till now the condition (5) has not been taken into account. It will be considered 
in the following theorem. 

Theorem 5. Let us suppose that the restrictions (1) —(5) are made concerning 
the system {jf, U(t)}; then 

(32) A*(t) A(t) = PA , D*(t)D(t) = PD, 

and the evolution in both the subspaces 34? A and JfD is quite separated and no 
transitions between them are possible. 
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This theorem can be derived directly from the results of papers [ l ] , [2], [3], [5]. 
However, for the sake of completness we will briefly sketch a proof. We will start 
from Eq. (12). For a fixed f this expression can be taken as a function/(t). 

Since 

where Ek is the spectral decomposition of unity corresponding to U(t), we can 
conclude (with the help of assumption (5)) that the f(t) is holomorphic in the half-
-plane Im t > 0 and continuous in the half-plane Im t = 0. Being /( t) = 0 for real 
t > 0 we can define in a unique manner a holomorphic function cp in the half-plane 
Re t > 0 which is the holomorphic continuation of / ; and it must be cp(t) = 0. 
So we can conclude that/( t) = 0 for Im t > 0 and hence/(t) = 0 for — oo < t < oo. 

Therefore the condition (12) holds also for any t < 0, and as 

B*(t)=C(-t), 

we get immediately 
-9(0 = 0, Vt, 

from which the condition (31) can be easily derived. 

And we have obtained the known result that the first five basic assumptions are 
in a strict disagreement with the condition (6); or that a decay of an unstable particle 
cannot be described in a frame of the conditions (1) —(5). 

R e m a r k . The operator function given by (12) can be continued to negative values 
for t as well as for t'. Moreover, it is not necessary to start from the condition (12) 
holding for any positive t, t'. The proof and the result of Theorem 5 remains valid 
also in such a case, when the condition (4) (and (12) as well) are fulfilled only for t 
and t + t' lying in an interval (ti9 t2), where t2 > tx > 0 (see also [3]). 

3. CONCLUSION 

The requirement of an exponential decay law in combination with other reasonable 
assumptions leads to the conclusion that the Hilbert space as well as the evolution 
operator have the structures quite identical with those which represent the basis 
of the scattering theory of Lax and Phillips [4, p. 45]. 

It is, of course, necessary to mention a result of some papers in which it is shown 
that from the formal mathematical point of view the exponential decay law in some 
definite time interval can be obtained in a sufficient (at least for the present) approxi­
mation even if the strict validity of Eq. (4) is not required and one limits oneself 
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only to the conditions (1) — (3) and (5). On the other hand, it is necessary to take 
into account that the result of Theorem 5 cannot be avoided even if the validity 
of condition (4) is limited to a less interval of positive t. 

All of the basic assumptions (1) — (5) can be reasoned to some extent. It is, of course, 
no doubt that all these assumptions cannot hold strictly at the same time (see Theo­
rem 5) if a decay of an unstable particle is to be described. From an a-priori point 
of view the conditions (l) — (5) should be, however, regarded as a set of equally justified 
assumptions. A decision, which of them should be actullly released, ought to be 
done only after a careful comparison of individual consequences with the corre­
sponding experimental facts is performed. 

References 

[ll Williams D. ŻV.: Diffiсulty with a kinеmatiс сonсеpt of unѕtablе partiсlеѕ: thе SZ.-NAGY 
еxtеnѕion and thе Matthеwѕ-Salam-Zwanzigеr rеprеѕеntation. Comm. Math. Phyѕ. (1971), 
21, 314-333. 

[2] Horowitz L. P. et al: Thе invеrѕе dесay probiеm. J. Math. Phyѕ. (1971), 12, 2537—2543. 

[3] Sinha K: On thе dесay of an unѕtablе partiсlе. Hеlv. Phyѕ. Aсta (1972), 45, 619—628. 

[4] Lax P., Phillips R. S.: Sсattеring thеoгy. Aсadеmiс Prеѕѕ, Nеw York—London, 1967. 

[5] Fonda L., Ghirardi G. C: Somе rеmarkѕ on thе oгigin of thе dеviationѕ from thе еxponеntial 
dесay îaw ofan unѕtablе paгtiсlе. Nuovo Cimеnto (1972), 10 A, 850. 

S o u h r n 

EXPONENCIÁLNÍ ROZPADOVÝ ZÁKON A IRREVERSIBILITA 
ROZPADOVÝCH A KOLISNÍCH PROCESŮ 

VÁCLAV ALDA, VOJTĚCH KUNDRÁT, MILOŠ VÁCLAV LOKAJÍČEK 

Při popisu rozpadového procesu se používá Hilbertův prostor Jť = JťA © JťD, 
kde JťA odpovídá nestabilní částici a JťD rozpadovým produktům. V práci se odvozu­
jí důsledky pro strukturu prostoru Jť z postupně přidávaných předpokladů o procesu 
rozpadu. 
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