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SVAZEK 20 (1975) A P L I K A C E M ATE M A T I KY ČÍSLO 1 

OPTIMAL DISCRETE SIGNAL REPRESENTATION BY THE SYSTEM 
O F DISCRETE ORTHONORMAL EXPONENTIALS 

IN CONJUGATE PAIRS OF EXPONENTS 1) 

KAMILA GUTTENBERGEROVA 

(Received October 11, 1973) 

INTRODUCTION 

Increased attention has been paid recently to signal representation and impulse 
response of circuits by finite sums of exponentials. Huggins and Young [ l ] were the 
first to study the signal representation by orthonormal functions and to conclude that 
the most effective method of general signal representation was that based on complex 
orthonormal exponentials, the criterion of effectiveness being the quality of represen­
tation (minimization of leastsquared error) and signal processing on digital computer. 

Letf(t) stand for a real time function, zero for t < 0 and square integrable over the 
interval [0, oo). The error of the signal approximation by n orthonormal exponentials 
can be written in the form 

(1.1) e(t)=f(t)-fa(t)=f(t)-tckexp(pkt), t = 0, Rep, < 0 . 
k=l 

To minimize the error of signal approximation, we must find the values of n coef­
ficients ck and the values of n exponents (poles) pk so as to keep minimal the E error 
energy defined by 

/•oo 

(1.2) E= \e(t)\2dt. 

Essentially, it is no problem ot find the appropriate ck for fixed pk as fa(t) is linear 
in ch [ l ] . There are several ways of selecting optimal poles pk [1], [3] but none of them 
yields exact optimal poles. Signals with rapid changes of derivative require accurate 
pole positions. The method of selecting the optimum position of poles pk with respect 
to minimization of the error energy over both n coefficients ck and n exponents is 
described in Section 2. 

1 ) If so desired, the algorithm in FORTRAN IV language may be obtained from the author. 
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2. OPTIMAL CONDITION OF POLE SELECTION 

For the sake ofsimplicity let us consider simple poles in equation (1.1) and let ck, pk 

be real. Let us differentiate equation (1.2) with respect to the variables ck, pk and set 
the derivatives equal to zero. In this manner we obtain a system of 2n equations 

(2.1) e(t) exp (pkt) dř = 0 к = 1, 2,. . . , n 

Л 00 

(2.2) e(t) t exp (pкt) dt = 0 к = 1, 2, ..., n 

We can demonstrate that the above equations are valid for complex ch and pk 

occurring in comples conjugate pairs as the approximating function must be real. 

Equations (2.1) and (2.2) are nonlinear in pk and do not permit of analytical solution. 

Hence it is necessary to formulate conditions (2.1) and (2.2) so as to be appropriate 

for signal f(t) known analytically or on the basis of the table of sampled values f(i). 

For the purpose of this study, geometric concepts of the abstract vector space were 

employed. 

Signal f(t) may be considered a signal vector of the infinite-dimensional space S. 

Let any set 

(2.3) (exp(pkt), k = \,...,n) 

span the n-dimensional subspace Sn which is part of space S. The approximation 

proper fa(t) is the projection off(f) onto Sn. To satisfy condition (2.1), ck should be 

chosen so that the error e(t) be orthogonal to the subspace Sn. Equation (2.2) requires 

e(t) to be also orthogonal to the functions 

(2.4) (texp(p f ct), k= 1,2, ..., n). 

The 2n functions 

(2.5) (exp (pkt), t exp (pkt), k = 1, 2, ..., n) 

span also a subspace of space S which we shall denote by S2n. Consequently, con­

ditions (2.1) and (2.2) demand the error e(t) to be orthogonal to S2n. 

Assume that whatever the poles pk may be, coefficients ck are always chosen so as 

to ensure thatfa(t) be actually the projection off(r) onto Sn, i.e., that e(t) be ortho­

gonal to Sn. Accordingly, any component of e(t) in S2n must necessarily be in S2n — Sn, 

i.e., the subspace of those vectors in S2n whose only component in Sn is zero. Since 

fa(t), being a linear combination of the functions exp (pkt), is only in Sn, all com­

ponents of e(t) = f(t) - fa(*) in S2n - Sn must necessarily be part of f(t). 
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To ensure that (2.1) and (2.2) are satisfied simultaneously, pk should be chosen so 
thatf(t) have only zero components in S2n — Sn and ck so thatfa(t) be the projection 
of f(t) on subspace Sn of those pk. The mode of computing the appropriate coef­
ficients ck was reported in the literature [1], [2], [3], [4]. 

Next we shall concentrate of finding a set of such poles pk to ensure thatf(t) has 
only zero components in the corresponding space,S2n — Sn. In fact, there may be 
more than one such set of poles pk since error energy E may have multiple local 
minima as function of pk. 

First, orthonormal functions <Pk(p)J k = n + V ..., 2n are constructed. So far, 
we have assumed approximation by orthonormal continuous exponentials. Since the 
optimal pole position will be found on a digital computer, we shall concentrate on 
the discrete domain. 

The procedure of generating discrete orthonormal exponentials which are ortho-
normal in z-plane was described in the literature, [2], [5]. 

Discrete orthonormal exponentials W*(z)9 k = n + 1, ..., 2n are computed ac­
cording to formula (2.6) by means of "complementary" operator and discrete ortho-
normal exponentials *¥k(z)9 k = 1, 2, ..., n. 

(2.6) <F„*+,(z) = G*(z)<F*(z), fc=l,2,...,n 

where 

, , , ) c.,z) = ?i|,|<LziMIi^M) 
k=l (z ~ zk)(z - zk) 

Zk - exp (pkt) , pk = <xk ± jpk. 

Poles zk should be chosen so that the signal given by samples f(i) have no com­
ponents common with functions *F*(z), k = n + 1 , . . . , 2n, i.e., that signal f(i) be 
orthogonal to the latter functions. 

In the time domain this orthonormal condition is expressed by the relation 

00 

(2.8) ak = £ / ( i ) i]/n+k(i) = 0 , k = 1, 2 , . . . , n . 
i = 0 

Obviously, ak may be expressed also by convolution 

00 

(2.9) dk(l) = ^h(l-i)^n+k(i), fc=l,2,...,n 
i = 0 

for I — 0, h(i) = f( — i), cik = dk(0). Equation (2.9) is represented schematically 
in Fig. 2.1. 
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The object of this work is to find parameters zk contained in functions G*(z), 
*P*(z) so that all dk(Q) equal at the same time zero. Consequently, a set of integral 
equations must be solved in z-plane: 

(2.10) (J) F*(l/z) G*(z) T*(z) — = 0 
Inj z 

Ғ*(l/z) G*(z) 4>*2(z) — = 0 
2л/z 

F*(l/z)G*(z)<P B *(z)-^- = 0 . 
ZTTjZ 

The solution of this particular system of integral equations is difficult even if 
discrete signal f(i) is given by sampling the analytically known signal f(t). 

Solution of the system of equations (2.10) by iterative method appears in the fol­

lowing section. 

%(гì — — • %(0)--0 
hii) hii) 

Ü(z) Чţb) — — • дг(0)--0 Ü(z) Чţb) — — • дг(0)--0 

%(z) — — • ân(0)--0 

Fig. 2.1. Operator expression of optimality criteria. 

3. ITERATIVE METHOD OF OPTIMAL POLE DISTRIBUTION 

For the sake of completeness let us assume Nt pairs of discrete exponentials with 
complex poles and N2 simple discrete exponentials with real poles. In this case the 
"complementary" operator will be expressed as follows: 

(3.1) ^•ntf('-"1!"'if'n"-I^ ! 

k=í [Z — Zk)\Z — Zk) i = Ni + í Z — Z ř 

Let us denote L = 2Ni + N2. The "complementary" operator G*(z) may be expres­
sed by operator G*(z) 

Ed.-' 
( ^ ) ^*(z) = - L-o _ _ _ . 

U(z-zk)(z-zt) J ] ( - - * , ) 
k=l i = Ni + l 
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Multiply both the numerator and denominator of (3.2) by z L : 

(3.3) G ^ z " 1 ) = 
Gţjz-1) =  G:^"ñ (.-(,+2 

fc = i 

Lø.--' 

Dz-1^ |ztPz-2) П (i , ,-n 

Using operator G*(z *) and function *F*(z *), we obtain ak on z-plane 

dz 
(3.4) в*--ф-г*(-"1)ф 

L 

Z g i z ~ 
i = 0 

c*^1) 
П*(z- ') 

2яjz 

A set of poles (z l 5 z2, ..., zL) is determined as to obtain ak = 0 for k = 1, 2, 
and to satisfy simultaneously the condition 

L, 

(3.5) 
L N, N1+/Y2 

S f i f , í - ' - - n ( « - l - ^ ( * - 1 - - r ) n ( - i - - - 1 ) . 
i = 0 i = l i = Ni + l 

Let us denote the number of iterations by g. Let us have a set of poles (zf)€, selected 
so that they all lie within the unit circle. We use these poles in equations (3.4) which 
assume consequently the form 

(3-6) 
L-1 

I 

I 

J Gi9(z ) 2яjzJ J G lв(z x) 

J G l g (z x) 2тг/zJ J G1?(z x) 

2тy'z 

2njz 

áz 

2njz 

Li ["<£F'i*-1)-^ y ^ " 1 ) ^ - l * * - - in*-1)^j, m*-1 

*=° L J Glfl(z ) 2TT/ZJ J G*,(z x) 
Thus we obtained a system of linear equations of L unknowns g0r glq, ..., Q(L-1)q 

the solution of which presents no problem. Next we determine whether the solution 
of this particular system of equations satisfies equation (3.5). If this is the case, then 

G^z" 1 ) = G^z-1) 

and poles (zk)q and (pk)q are optimal for minimization of the error energy over 
coefficients ck and poles pk for k = 1, 2, ..., L. If condition (3.5) is not satisfied for 
go«r giq? •••> gLq> a new set of poles (zk)q+1 is obtained by decomposition of G^z'1) 
into root factors 

(3-7) G*4(z-1) = ia,.9z-^ = 
i = 0 

Ni NI+N2 

^-irn^ 1 -^. , )^" 1 -^. . ) n (z-1-*«,+„). 
i = l i = Ni + l 
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The whole process is repeated for the new set of poles (zk)q+1. The poles so obtained 
may be expected to converge quickly to optimal poles for the "nearly" exponential 
input signal. 

4. EXAMPLES 

The following results were obtained on MINSK 22 digital computer (5000 opera­
tions/sec), using the FORTRAN IV programming language. 

The iterative method described in the preceding section was applied to a series of 
concrete signals known not analytically but on the basis of sample value tables. 

To verify convergence of the iterative method used, let us consider a time-limited 
discrete signal exponential in character. It can be expressed by the relation 

(4.1) fN(iT) = L • £ {exp [(-yk + j8k) iT] + exp [(-yk - j8k) «T] | 
2N k=l 

where yk9 Sk are poles of exponential functions, Tthe sampling period. 

Let us assume that the signal is obtained only from the table of sampling values 
and that poles ylo Sk are unknown. 

First, let us consider exponential function fN(iT) for N = 3 containing complex 
poles in 3 conjugate pairs. 

Let us take yx = 15, dx = 230, y2 = 20, 32 = 160, y3 = 30, <53 - 110. 

The following are the initial pole values for the iterative method: 

(xx = 30, px = 115, a2 = 10, p2 = 80, a3 = 60, fi3 = 220, T= 0.002 sec . 

There are 200 samples. The iterative procedure employed is shown in Table I. 

Table I 

iter ai ßí a2 ßi a3 ßз 

0 30000 115000 10000 80-000 60000 220-000 

1 14-819 230009 20-253 160-073 29-938 109-954 

2 15-003 230000 19-997 160010 30-003 110-001 

3 15-005 229-998 20006 160-017 29-997 109-980 

4 15-006 229000 19-996 160-006 30-001 109-998 

5 15-004 230000 19-996 160-001 30005 110000 

6 15-004 230000 19-997 160-002 30000 109-997 
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The ak, Pk poles approach yk, Sk poles after the second iteration, the time of one 
teration being approximately 18 sec. 

FUTJ,XCTT) 
ORIGINAL SIGNRL 

QPPROXIMP.TING SIGNRL 

\0.2 0 .4 0.6 0.8 1.0 1.2 1. 

FCrTJ -XCTT) 

ERROR SIGNfíL 

XTCSЄCJ 

0.4 0.6 ^T.O 1.2 "7.4 

Fig. 4.1. Triangle impulse approximation 

a t = 5-250 p1 = 41-995 
a 2 = 2-989 P2 = 2-229 

a, = 6-958 ßъ = 21-251 

Another signal is the shifted triangular impulse of 70 samples of sampling period 
T = 0.02 sec. For its approximation let us choose a system of discrete orthonormal 
exponentials with complex poles in 3 conjugate pairs. The iteration procedure 
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employed is depicted in Table II, the time of one iteration being 10 sec. The triangular 
impulse approximation by a system of orthonormal exponentials with complex poles 
in 3 conjugate pairs is represented in Fig. 4.1. 

Table II 

iter * i ßl GC2 ßl a з ßз 

0 7-200 45-000 5-000 2-500 4-400 10-600 
1 1-501 41-634 1-985 2-325 5-646 14-954 
2 7-083 41-849 2-805 2-249 6-972 19-222 
3 3-972 41-166 2-867 2-246 7-481 20-142 
4 6-530 41-086 2-857 2-256 6-590 19-873 
5 4-564 41-130 2-894 2-251 6-714 20-394 
6 6-109 41-247 2-904 2-242 7-346 20-450 
7 4-870 41-289 2-915 2-246 6-827 20-589 
8 5-824 41-390 2-924 2-240 7-217 20-633 
9 5-250 41-999 2-989 2-229 6-958 21-251 

5. CONCLUSION 

In signal representation by discrete orthonormal function an error is as a rule 

made in the practical application of the approximation error as we limit ourselves to 

the finite sum of functions. However, this error may be minimized, as desired, by 

augmenting the sum of functions. 

The main advantage of the method of optimal choice of exponents is the minimum 

number of parameters characteristic of the given signal without adversely affecting 

the required accuracy of signal approximation. On the other hand, the method can 

be used for empiric signals not known analytically. 

A model of signals with optimal poles of discrete orthonormal exponentials chosen 

from a series of definite signals may be used for the representation of any signal of 

the series selected. Individual signals of the series differ only in their coefficients ck. 

This method may find many applications for example in medicine, speech and 

icture transmission, and so on. 
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S o u h r n 

OPTIMÁLNÍ REPREZENTACE DISKRÉTNÍCH SIGNÁLŮ 
SYSTÉMEM DISKRÉTNÍCH ORTONORMÁLNÍCH EXPONENCIÁL 

S KOMPLEXNĚ SDRUŽENÝMI EXPONENTY 

KAMILA GUTTENBERGEROVÁ 

Článek se zabývá problémem optimálního výběru exponentů v reprezentaci 
diskrétních signálů soustavou diskrétních ortonormálních exponenciál s komplexně 
sdruženými exponenty na číslicovém počítači. Nutná podmínka pro minimalizaci 
aproximační chyby energie signálu jak přes n koeficientů, tak přes // exponentů, 
vede na soustavu 2n rovnic. Tyto rovnice jsou nelineární v exponentech. Pomocí 
interpretace v abstraktním vektorovém prostoru je nalezena ekvivalentní podmínka, 
která však ještě vyžaduje řešení soustavy nelineárních algebraických rovnic. Pro 
řešení této soustavy rovnic byla navržena lineární iterační metoda. Teoretické závěry 
této metody jsou ilustrovány na několika příkladech. 

Hlavní přednost této metody spočívá v tom, že jednak poskytuje minimální počet 
parametrů charakterizujících daný signál při zachování předepsané přesnosti aproxi­
mace signálu, jednak lze tuto metodu použít na empirické diskrétní signály, které 
nejsou analyticky zadány. 

Authoťs address: Ing. Kamila Guttenbergerová, CSc, Institut klinické a experimentální medi­
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