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ON THE SOLVABILITY OF VON KARMAN EQUATIONS

OLDRICH JOHN and JINDRICH NECAS

(Received April 24, 1974)

The nonlinear operator equation connected with general boundary value problem
for von Karmdn equation is studied. In the paper there is proved the coerciveness
of corresponding operator and the properties which are sufficient for the existence
of the solution. The main idea is due to Knightly [3] who used it in case of Dirichlet
problem. The different approach to the same boundary value problem based on
Berger’s idea [1] is developed in the paper [2] of Hlavdéek and Naumann. Using
the technique of Knightly we are able to weaken in some way the restrictions put
on the behavior of boundary functions.

To avoid technical difficulties we restrict ourselves to consider the domains with
infinitely smooth boundary.

1. NOTATION AND PRELIMINARIES

Let w: @ - E,, © c E,. Denote w, = 0w[dx, w, = dw[dy. Let Q be a simply
connected bounded domain in E, with its boundary 0Q infinitely smooth. (See
section 4.) Let 02 be divided into three pairwise disjoint subsets I'y, I',, I'3, so that
0Q=r,vr,ur,.

Denote
(1.1) W, = W, + wyn,
the outward normal derivative,

(1.2) W, = —w.n, + wyn,

the tangential derivative at the generic point of boundary Q.
Denote further

(1.3) A*w = Wexxx T 2Weryy T Wy

(14) [WDf] = wxxfyy + Wyyfxx - 2nyfxy
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The boundary operators M, T are defined by

(1.5) Mw = v dw + (1 = v) (wen + 2w nen, + wynd
(1.6) Tw = —(dw), + (1 = v) (Weunen, — wo(n — nl) — wyn.n),
where v (the Poisson constant) is from the interval <0, }).
We deal with the bilinear forms
(1.7) (u, V)2 = J‘ (UerVex + U0y, + uyw,) dxdy,
o

(1.8) (w,v)y = (u, V)t vJ~ [u, v] dx dy

Q2

and with the expression
(1.9) B(v; u, ) = J‘ (Uey e @y + VU, — Vel — v, u @) dx dy .
2

If v, u e W*2, ¢ € Wg> we obtain (using the integration by parts)
(1.10) B(v; u, ) = B(v; @, u) = B(¢p; u, v)

Let the functions k,, ks, k3, have the following properties (with\p-an arbitrary
real number bigger than one):

(1.11) k, eL(I;), k, 20 on I, ae.
(1.12) kyy e L(I'3), ky; =20 on Iy ae.
(1.13) ks, eLi(T3), k3220 on I3 ae.

The right-hand sides of the equations and the boundary conditions of the problem
formulated in Section 2 are submitted to the conditions

(1.14) myeL,(I'y), myeL(l,), rseLy(l3), p>1
(1.15) PeL(Q), p>1,

(1.16) Dy e W3YY3Q), &, e W2TV(5Q) for some q > 2,
(1.16a) Py=®, =0 on I;.

We enlist here two assertions used in the following
Proposition 1. (Hardy’s inequality.) Let o > 0, p > 1, fe C'(€0, x)), f(0) = 0.
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Then

(1.17) L "dx < (p—%lyf:’f'(x)k dx .

(This is a corollary of a more general inequality due to Hardy — see e.g. [4]
Chapitre 2, Lemma 5.1).

To prove the existence of solution for the operator equation formulated in Section 3
we use the following result:

1)

X

Proposition 2. Let B be a reflexive separable Banach space. Let the mapping
I :B — B*be

(1.18) demicontinuous (i.e., ||x,, — x|z > 0= Tx,, = T x,

(1.19) bounded (i.e., 7 maps bounded sets in B onto bounded sets in B¥)

-
(1.20) coercive (i.e., lim 14 x,{x} =

Ixf—e  [x
(1.21) satisfying condition S i.e., x,, — x and

+ )

(T Xy = T, Xy = X> >0 implies |x, = x|} 0.

Then 7 (B) = B*and 7 ~' (which is in general multivalued mapping) is bounded.

(Here we denote by — the weak convergence in B, by {H, B) the pairing between
B and B*.)

This proposition follows immediately from [5], Theorem 2.1, which is due to
F. E. Browder.

2. CLASSICAL AND VARIATIONAL FORMULATIONS OF THE PROBLEM

Definition 1. The couple [w, ®| of functions from C*Q) is said to be a classical
solution of the problem if

(2.1) A*w = [w,®]+P on Q,
(2.2) A4*¢ = —[w,w] on Q,
(2.3) w=w,=0 on I,
(2.4) w=0, Mw+ kyw,=m, on I,,
(2.5)  Mw + kyyw, =ms, Tw+ (WP, — w,d.) + ksw =ry on I3')
(2.6) ®=¢,, &, =& on 0Q.
1) We write here the nonlinear part WPy — w, D, ;)btained in course of the deduction of von

Karman equations. To get our existence result we must formulate further the conditions on @
under which w @ . — w,®, = 0. (See condition (5.3)).
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Let us denote

(2.7) ¥V ={ueC®Q);u=u,=0o0nI'y,u=0onTl,}.

If [w, @/ is a classical solution of the problem and ¢ e 7", Y € C3(2) we can
obtain — using the standard procedure of integration by parts and the relation
(1.16a) — the identities

(2.8) (w, @)y + a(w, @) = B(w; ®, ¢) + J‘ Podxdy +

+J‘ (r3¢p + m3,)dS + f m,p, dS,
rs

I
(29) ((P’ l//)Woz.z = _B(W, w, lp) H
where .
(210) (I(W, (P) = J’ kZWn(Pn dS + J\ (k32Wq) + k31“’n(pn) dS .
I I;

Definition 2. Let us denote by V the closure of the set ¥ in the norm of W**(Q).
Definition 3. Let (1,14)—(1,16a) be satisfied. The couple |w, ®| eV x W>*(Q)
is said to be a variational solution of the problem if
(i) for each ¢ €V, (2.8) holds,

(ii) for each y e W5*(Q), (2.9) holds,
(ini) @ satisfies (2.6) in the sense of traces.

3. THE IDEA OF KNIGHTLY
Let F be a function from C*(Q) which satisfies the conditions
(3.1) F=¢&,, F,=¢, on 0Q.

(The assumptions on ®,, &; and 0Q formulated in Section 1 are sufficient for the
existence of such a function — see e.g. [4], Chapitre 2 Théoréme 5.8 and Théoréme
3.8. In fact we could demand immediately that ®,, &, be such functions that there
exists a function F e C*(Q) satisfying (3.1)).

Instead of the variational solution /w, <15/ in sense of Definition 2 we consider the
couple of functions /w, g/ where g and @ are connected by the relation

(32) g=® —(F.
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Here ¢ is an auxiliary function of C*() chosen in such a way that
(3.3) (=1 on éQ, {,=0 on 0Q

(hence g € W;*(Q)) and that the “unpleasant™ nonlinear term B(w; (F, w) is sup-
pressed. (See formula (6.1).)

Substituting for @ from (3.2) to (2.8), (2.9) we get

(3.4) (w, @)y + a(w, @) = B(w; g, ¢) + B(w; (F. ¢) +
J Pp dxdy + J\ (rs + ms@,) dS + j m,, ds,
Q2 I3 I,
(35) (gv 'ﬂ)woz,z = _(CF’ ‘//>Woz,z - B(W; w, lﬁ) .

Definition 3, {.") The couple [w, g/ € V x W issaid to be a solution of the problem

K(¢) if
(i) for each ¢ €V, (3.4) holds
(ii) for each y e W5 (), (3.5) holds.

Remark. Let there exist a solution of the problem K({) for some { e C*(Q)
for which (3.3) holds. Then, thanks to (3.2), there exists a variational solution of the
problem in sense of Definition 3.

Proposition 3. (See [2], Lemma 3,1) Let the following implication hold:
(3.8) weV, (ww)y +alw,w)=0=w=0.
Then [(w, W)y + a(w, w)]"/? is an equivalent norm to ||*||p.2 in V.

Remark. In the following we suppose that (3.8) holds. A wide class of conditions
concerning k,, ks;, k3, and the geometry of I'y, I',, I'; which are reasonable from
the point of view of mechanics and which guarantee the validity of (3.8) is deduced

in [2].

Definition 4. Let H be the Hilbert space V x Wg'*(Q) with the norm generated
by the scalar product ((, )) defined by

(39) U=|wgl, V=0,
(U, #)) = (w, 9)y + a(w, ) + (g, ¥)woz.z -

1y Let (1.14)—(1.16a) be satisfied.
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Adding now the relations (3.4), (3.5) and denoting

(100 o[v] - j

Ppdxdy —i—j (r30 + msp,)dS + J m,p, dS
0 Is

(3.11) T (U)[¥] = (U, ¥)) — B(w; g, @) +
+ B(w; w, ) — B(w (F. @) + ((F, )wo2,2

we can write 7 (U)[¥] = Q[ ¥].

It is easy to see that Q is a continuous linear functional on H given by the
functions P, m,, my and rs, and for each fixed U € H, 7 (U) is a continuous linear
functional depending upon {, too. (See e.g. (5.17)).

Hence the solvability of the problem K({) is equivalent to the solvability of the
operator equation

(3.12) T (U) =0

in the space H.

4. DEFINITION OF 2 € C*. THE AUXILIARY FUNCTION ¢

Definition 5. Let Q < E, be a simply connected bounded domain with its boundary
0Q being a simple curve with a parametrization @. @ is a one-to-one mapping
of <0, R) onto 0Q defined by

(4.1) Ot (0(1), w,(1))

with the properties

(4.2) w;e C*({O,R)), i=12,
(4.3) o®(0) =limo®(t), i=1,2 k=01,...
t—>R—

The parameter t is the length of arc so that
(4.4) (0i(1))* + (04(1))* =1, 1e<0,R).

Let the orientation be such that (—w)(1), (1)) is the unit vector of the inner
normal to 0Q.

Then we say that Q is of the class C*.

Definition 6. Let 6 > 0. Let the mapping
(4.5) : (x,): <0, R) x <0,6) > E,
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be defined by

(4.6) x (1, 5) = o(1) — swi(t),

yi(t,5) > wyt) + soi(1) .
Denote by Q; the image of <0, R) x (0, &) in this mapping.

Lemma 1. Let Q € C®. Then there exists 3, > O such that the mapping (x, y)
has the following properties:

(4.7) Q;, < Q,
(4.8) (x, y) is a one-to-one mapping of <0, R) x <0, 8,> onto Q.
(4.9) There exist two positive constants K, K, so that

ot s)

(4.10) 0Q corresponds to s = 0, 8(Q,,) \ 9Q corresponds to s = 5,.")

<K, on <0,R) x (0, d,),

Proof follows from the properties formulated in Definitions 5 and 6.

Remark. It is obvious that for each 6 € (0, 5,) (4.7) —(4.10) hold with the same
constants K, K, in (4.9).

Lemma 2. Let Qe C*, let 6, be the number defined in Lemma 1. Then for
each § € (0, o) and each ¢ > O there exists a function { € C*(Q) for which

(4.11) supp{ < Q; U 0Q,

(4.12) (=1 on 02, {,=(=0 on 09,
(4.13) K| =1 on @,
(4.14) {1, s) = ¢(x(t, s), ¥(t, 5)) depends only on s,

@) e =22

Proof. Choose 6 €(0, 84, & > 0. Fix d € (0, min {1, 4}) and define the function
Z: E, - E by

Z(s) = 1 for se(—oo,de %),
(4.16) Z(s) = ¢[2logd[s for sedlde *%d),
Z(s) =0 for se(d, + ).

1) From lemma 1 follows immediately that the inverse to the mapping (v, y) is infinitely
smooth,

%) Here as well as in the following ¢ = 9{/0s, {, = o(/ot.
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For an arbitrary fixed number h € (0, min {3 — d, de™?/*/2}) define
(4.17) 2:40, +0) > E;, z(s) = Z,(s)

(the regularized function Z restricted to <0, + o) — for the definition see e.g. [4]).

Function z has the following properties:

(i) supp = < <0, 9),
(4.18) (i) 20) =1, z(0)=0,
(iir) |zl =1 on <0, +w),
(iv) |z(s)] < &s on <0, +0).
Defining now
(4.19) Ux, y) = z(s(x, y)) on Q,uUoQ
{x,y)=0 on QN Q

we can see easily that this function satisfies (4.11)—(4.15).

5. THE MAIN RESULT
Let

(5.1) QeC”
and let the sets I'y, I',, I'3 of (2.3)—(2.5) be expressed as
(5.2) Ii=0(), i=1,23

where O is the mapping from Definition 5 and y;, i = 1, 2, 3 are pairwise disjoint
measurable subsets of <0, R). (The situation that some y; or a pair of them are empty
is not excluded provided the condition (3,8) still holds).

Theorem. Let (5.1), (5.2) hold. Let

(5.3) &, =d, =0 on Iy (ie (1.16a)holds)
(5.4) Sex$,)? + 5,(5,)7 — 25,,5,5, =0 on I,.

Xy x

Then there exists { e C*(Q) satisfying (3.3) such that the equation (3.12) has
a solution.

Proof. Lemmas 3—7 assert that there exists a function { € C*(Q) satisfying (3.3)

such that the operator 7 satisfies the assumptions (1.18)—(1.21). Hence the existence
of a solution of (3.12) follows from Proposition 2.
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Lemma 3. For each { € C*(Q) the operator J . is demicontinuous.
Proof. Denote
(5.5) U= |w,g"leH, n=1203,...,

U =|w.gleH, ¥=]|p,yleH,
and éuppose

(5.6) ~U"-U in H.
It is obvious from (5.6) that

(5.7) (U= U, %) >0, B(w"(F,¢)— B(w;(F, ¢)—0.
Thus, to establish the relation

(5.8) lim {7 (U [¥] - 7(U)[¥]} =0, V¥eH

we need to prove

(5.9) lim [B(w"; g", @) — B(w; g, 9)] =0, VopeV
(5.10) lim [B(w"; w", /) — B(w; w,§)] = 0, V¢ e W5 Q).

It follows from the inequality |B(w", g", @) — B(w;g, o) < |B(w"; ¢", @) —
— B(w"; g, 9)| + |B(w"; g, ¢) — B(w; g, ¢)| and the definition (1.9) that we must
estimate eight expressions of the type

(5.11) n= | bl ol

¢, dx dy

13=J;KW“-ka'wJ~W4dxdy-

Using the Sobolev immersion theorem (see e.g. [4], Chapitre 2, Théoréme 3.8)
we have

(5.12) (9" = 9) e L(@), [(g" = 9. = cllg” = gllw=2
and the same estimate for ¢,. Hence

(5.13) I < o [wwez o7 = glwen [o]wea

< o]0} [0 = Ul ol

IIA
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The integral I3 from (5.11) can be estimated analogously. (5.6), (5.13) imply
limIf =limI} = 0.

Thus we get (5.9). The proof of (5.10) is quite similar.

Lemma 4. For each { € C*(Q) the operator 7 . is bounded on H.The following
estimation holds

f
H*_S_ 1

514 7du)

+ (I lu + JUJE -
Proof. From (1.7) Definition 4 and Proposition 3 we obtain immediately

(5.15) (O )] < (U] [P

(5.16) [(CF p)wee| < ¢

According to (1.9) all estimations of ““B-terms” are reduced to the estimation
of integrals of the type ‘p u.vw,dx dy. Thus we have

xyYxy

1] -

(5.17) |B(w; (F. @) < ...L]wxy] |(CF),| |ox] dxdy ... <

< e eFler w2 lollw=2 = EcFfe (UL ]

(5.18) IB(W; g, q))i < j |wxy| ‘gyl f(px[ dxdy... £
2
< [the same estimation as in the proof of (5.9)] <
. S 1/2 1/4 1/4
< (j Wi ) (f |g,,|4> ([ lwxl“‘) S
2 / Q2 J 2

< e w2z lglws: [olwe < Ul [#] -
Analogously

(5.19) |B(w: w. )| < €U|lh [ ¥]la
From (5.15)—(5.19) the inequality (5.14) follows.

6. THE COERCIVENESS OF OPERATOR 7,

Lemma 5. Let the conditions (5.3), (5.4) be satisfied. Then there exists { € C*(Q)
such that the operator F , is coercive on H.

Proof. Let U = |w, g/ € H. From (1.10), (3.11) we have
(6.1) TAU) V] = U] — BOw: T, w) + (CF, gy
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According to the idea described in Section 3 we find the function { € C*(2) (among
the functions defined by Lemma 2) such that

(6.2) [B(w; (F.w)| < 4 |U|5, YUeH.
After that the remaining term in (6.1) can be estimated as

(CF. Ohwozz| = etz lgllworo= elFle [U]la-

From here, using the well-known inequality |ab| < (1/2¢) a* +:(¢/2) b% & > 0 we
obtain

(63 ICF. hwons] < EJCF I + HUJE -
(6.1)—(6.3) give then v

(6.4) 7 (U)[U] z 3|U]i - ¢cF|e
so that V
(6.5) im 24O

Ul ||U||,,

Consider a function { described by Lemma 2. Its parameters ¢ and ¢ will be specified
later. We can restrict ourselves to the functions we ¥ (see (2.7)). According to
(4.11), (1.9) we have

(6.6) B(w; CF, w) = f B¥(w; CF, w) dx dy

where "

(6.7) b3 9, 1) = 0¥y + Pyl — @uliylly — Pyl -
Denote

(6.8) w¥(t, 5) = w(x(1, s), ¥(1, 5)), (t, s) € €0, R) x.<0, 5) etc.

Rewriting b™(w; (F, w) in terms of w*, {*, F* and using the substitution theorem
in the right-hand side integral in (6.6) with the transformation (4.6) we obtain

(69) B(w: CF, w) = r rb"‘(w*;i*F* )[a((’; y))] dsdt +

+Zf f { *(CF¥),, wE 5923 25, 23) a(( i)) dsdt,

where z; = t or s for i = 1, 2, 3 and we summarize over all such triplets.
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To deal with the integrals in (6.9) we group them in the following way:

1** group. The subintegral function contains the expression
(6.10) (C*F*), .

As a representant of this group we estimate

(6.11) J, = f: J:ws*,(C*F*), w [‘2((‘[ 2'))]_1 ds dr .

According to (4.9), (4.13) and (4.14) we have

S
(i) (o) (e

(6.12) |7

w¥| ds dt < [Hélder inequality] <

|F

< [after the resubstitution in integrals containing w* and using (4.9), (4.7)] <

< e Fle []e

All other integrals from (6.9) belonging to the 1®* group can be estimated in the

same way.

2™ group. The subintegral function contains the expression

(6.13) (CFF*)gw

Concerning the sum (*F*w?¥ 4+ C*F*w! we notice that the first term can be estimated
in the same way as (6.12). Substantially different approach is required for the second

term. As a pattern we consider the integral

(6.14) /) _j Jw CEERWE (s s )(,(( ))d sdr.

According to (4.9), (4.6), (4.8), (4.15) we have

(d ame] J

7] L—I dsdr = ce(J; + Jy).

(6.15) |J5| < ce

| dsdr +
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From (2.7) we have w*(1, 0) = w{(#,0) = 0 on y; U y,. Hence in case of J; we
can use Proposition 1:

o sz(]_fem) ([ [y
sorle([ Jor) ([ Jn) s el vl

According to (5.3) F*(t,0) = Fy(t,0) = 0 on y;. Hence we have IF*(t, s)/sl <
< |F|l¢t for se(0, 8y and

(6.17) hgquwahﬁwﬂ“wwéﬂwuwab

From (6.15), (6.16) and (6.17) we obtain

IIA

(6.19) 73] < cel Fles [l

Finally we estimate the two remaining terms of (6.9) which belong neither to the
1% nor to the 2™group. The integral

(6.19) r fw:",(c*F*)s W [M]_l ds dt

0Jo at, s)

can be transformed — by integrating by parts in ¢t — to

(6.20) - ﬁ: J.:wf [(C*F*)S W (%%>_l]t dsdt.

Thanks to the independence of function { of ¢ the integrals obtained after the
differentiation of the expression in squared brackets contain either the factor
wi((*FY), or wy((*F*),. In both cases it can be estimated as J, (see (6.18))
because w(t,0) = 0 on y, U y, and (5.3) implies Fy(t, 0) = 0 on y5.

The last term

R 5
(6.21) j J Wi (LEF*), w¥ b™(s5 s, 5) alx. y) ds dt
0J0 6(t, S)

splits into two integrals. The first one with {*F* can be estimated as (6.11). The second
one can be written in the form

(6.22) Js = j :J:

60
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*
Ysldgsde +
S

<[ [t e
71J 0

d xy( -
+j J|wf]2 (] [P 9) ggg +f f‘s(w;!‘)2 L dsdt) =
724 0 s 7340 $

=ce(Jg + J7 + Jg).
To estimate J we apply Proposition 1 to w), knowing that w}(z, 0) = 0 on y,
In J;, using (5.4) we can estimate |b™(s; s, s)|/s by a constant on y,. For Jg we us
again |F*|[s < |[F|c:.

Putting all this into (6.9) we get the inequality

(6.23) [B(w; CF, w)| = (@ + €6"%) [ Fllc» [w]

w2

with constants ¢, ¢ depending only on Q. Hence, choosing adequately the numbers &
and 6 and taking for { the corresponding function from Lemma 2 we obtain finally
(6.2) which completes the proof.

Lemma 6. Let the conditions (5.3), (5.4) be satisfied. Let { be the function from
lemma 5. Then T satisfies (1.21) (S-condition)

Proof. For each U" = [w", g"[, U = |w, g/ € H,
624) =7 U)[U - U] - TU) [0~ U] =
= |U, = U|& = B(w"; g", w" — w) + B(w; g, w" — w) +
+ B(w"; w", g" — g) — B(w;w, g" — g) — B(W" — w; {F, w" — w).

Let ¢ be a function for which (6.2) holds. Its existence was established in proof
of Lemma 5. In this case we have

(6.25) 0, + [B(W"; g", " — w) — B(w; g, " — w) —
— B(w;w', g" — g) + B(w;w, 9" — g)] 2 3 ||U" = U|%.

Let now U" — U in H and Q" — 0. If we show that the weak convergence implies
the convergence of the expression in squared brackets to zero then (6.25) implies
U" > U in H and (1.21) is valid.

However, U" — U in H implies w" — w in W**(Q) and both {g"} and {w"} are
bounded in W*'*(Q). Because of the compactness of the immersion

E: W>X(Q) - W'(Q)
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there exists a subsequence {w™}, w™ — u in W"*(Q). It is obvious that u = w.
Hence w" — w in W*(Q). Using the estimate

1B g7 w7 = )] < el s o7 [ =

we obtain finally lim B(w"; g", w" — w) = 0.
Similarly we prove that all the other terms in squared brackets in (6.25) tend
to zero.
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Souhrn

RESITELNOST VON KARMANOVYCH ROVNIC

OLDRICH JOHN, JINDRICH NECAS

V ¢lanku je zkoumana existence variaéniho feSeni obecného okrajového problému
pro von Karmanovu soustavu nelinearnich rovnic. Uloha je pfevedena na otazku
fesitelnosti jisté operatorové rovnice. Dokazuje se, Ze operator je koercitivni a spliiuje
nékteré dalsi podminky, které dohromady zarucuji existenci feSeni.
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