Nguyen Van Ho
The 0 – 1 law generalized for non-denumerable families of events and of σ-algebras of events

Aplikace matematiky, Vol. 21 (1976), No. 4, 296–300

Persistent URL: http://dml.cz/dmlcz/103649

Terms of use:

© Institute of Mathematics AS CR, 1976

Institute of Mathematics of the Czech Academy of Sciences provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.
THE 0—1 LAW GENERALIZED FOR NON-DENUMERABLE FAMILIES OF EVENTS AND OF σ-ALGEBRAS OF EVENTS

NGUYEN-VAN-HO

(Received January 27, 1976)

INTRODUCTION

Let (Ω, \mathcal{A}, P) be a complete probability space. Let T be an arbitrary set of indices, $T = \{t\}$, such that

\[(1.1) \quad \text{card } T \geq \text{card } N, \quad \text{where } N = \{1, 2, 3, \ldots\}.
\]

Let $\{A_t, t \in T\} \subset \mathcal{A}$ and $\{\sigma_t, t \in T\}$ be a family of σ-algebras of events in \mathcal{A}. Let $\sigma(\cdot)$ denote the σ-algebra generated by $\{\cdot\}$.

In the case $\text{card } T = \text{card } N, t = \{t_n\}, n \in N$, the following definitions are well-known:

\[(1.2) \quad \limsup A_{t_n} = \bigcap_{n=1}^{\infty} \bigcup_{k=n}^{\infty} A_{t_k} \quad (\in \mathcal{A}),
\]

\[(1.3) \quad \liminf A_{t_n} = \bigcup_{n=1}^{\infty} \bigcap_{k=n}^{\infty} A_{t_k} \quad (\in \mathcal{A}),
\]

\[(1.4) \quad \limsup \sigma_{t_n} = \bigcap_{n=1}^{\infty} \sigma(\sigma_{t_n}, \sigma_{t_{n+1}}, \sigma_{t_{n+2}}, \ldots) \quad (\text{being a } \sigma\text{-algebra } \subset \mathcal{A}).
\]

It is clear that

\[(1.5) \quad \liminf A_n = \Omega \setminus \limsup \bar{A}_n, \quad \text{where } \bar{A}_n = \Omega \setminus A_n.
\]

The following two theorems are well known (see, e.g. [1], [2], [3], [4]).

The Borel-Cantelli Lemma. If $\{A_n\}, n \in N$, is a sequence of independent events in \mathcal{A}, then $P(\limsup A_n) = 0$, or $= 1$, according to $\sum_{n=1}^{\infty} P(A_n) < \infty$, or $= \infty$, respectively.

The 0—1 law of Kolmogorov. If $\{\sigma_n\}, n \in N$, is a sequence of independent σ-algebras in \mathcal{A}, then $\limsup \sigma_n$ is composed of events of probability 0 or 1.
In Section 2 the author will generalize the definitions in (1.2)—(1.4) to the definitions of $\text{SUP}_T A_t$, $\text{INF}_T A_t$, and $\text{SUP}_T \sigma_t$, respectively, for the case (1.1).

In Section 3 there will be given results generalizing the Borel-Cantelli Lemma and the $0-1$ law of Kolmogorov.

2. GENERAL DEFINITIONS

Let $T, N, \{A_t, t \in T\}, \{\sigma_t, t \in T\}$ be given as in Section 1. Let (1.1) be satisfied. Denote
\[
S(T) = \{\{t_n\} : n \in N, t_n \in T, t_i \neq t_j \text{ if } i \neq j \in N\},
\]
i.e. $S(T)$ is the set of all subsequences $\{t_n\}$ of distinct indices of T.

Let us define:
\[
\text{SUP}_T A_t = \bigcup_{\{t_n\} \in S(T)} \limsup_{n \to \infty} A_{t_n},
\]
\[
\text{INF}_T A_t = \bigcap_{\{t_n\} \in S(T)} \liminf_{n \to \infty} A_{t_n},
\]
and
\[
\text{SUP}_T \sigma_t = \sigma(\sigma_{\{t_n\}}, \{t_n\} \in S(T)),
\]
where $\sigma_{\{t_n\}}$ denotes $\limsup_{n} \sigma_{t_n}$.

Clearly,
\[
\text{INF}_T A_t = \Omega \setminus \text{SUP}_T \bar{A}_t.
\]

The following Lemma shows that the new definitions generalize the ones in (1.2) to (1.4) respectively.

Lemma 1. If
\[
\text{card } T = \text{card } N, \quad T = \{t_n\}, \quad n \in N,
\]
then
\[
\text{SUP}_T A_t = \limsup_{n} A_{t_n},
\]
\[
\text{INF}_T A_t = \liminf_{n} A_{t_n},
\]
and
\[
\text{SUP}_T \sigma_t = \limsup_{n} \sigma_{t_n}.
\]
Proof. a) Evidently, \(\limsup_{\omega} A_{\omega_{\omega}} \subset \sup_{T} A_{\omega} \). Now, let \(\omega \in \sup_{T} A_{\omega} \). There exists a subsequence \(\{t_{n(k)}\} \in S(T) \) such that \(\omega \in \limsup_{t_{n(k)}} A_{t_{n(k)}} \), by (2.2). On the other hand, \(\limsup_{A_{t_{n(k)}}} A_{t_{n(k)}} \subset \limsup_{T} A_{t_{n(k)}} \) by (1.2) and by \(\{t_{n(k)}\} \subset \{t_{n}\} \). Therefore \(\sup_{T} A_{\omega} \subset \limsup_{T} A_{\omega} \), and (2.7) is proved.

b) (2.8) follows from (1.5), (2.5), and (2.7).

c) Obviously, \(\limsup_{T} \sigma_{t_{n}} \subset \sup_{T} \sigma_{t} \).

Let \(m \in N \) be given. Let \(\{t_{n(k)}\} \in S(T) \). Hence \(\{t_{n(k)}\} \subset \{t_{n}\} \) and \(n(k) \to \infty \) as \(k \to \infty \). Thus there is a \(k(m) \in N \) such that \(n(k) \geq m \) for all \(k \geq k(m) \). One has successively

\[
\limsup_{t_{n(k)}} \sigma_{t_{n(k)}} \subset \sigma(\sigma_{t_{m}}, \sigma_{t_{m+1}}, \sigma_{t_{m+2}}, \ldots)
\]

for every \(\{t_{n(k)}\} \in S(T) \), by (1.4),

\[
\sup_{T} \sigma_{t} \subset \sigma(\sigma_{t_{m}}, \sigma_{t_{m+1}}, \sigma_{t_{m+2}}, \ldots)
\]

for every \(m \in N \), by (2.4),

\[
\sup_{T} \sigma_{t} \subset \limsup_{T} \sigma_{t_{n}}, \quad \text{by (1.4)}.
\]

This completes the proof of (2.9).

3. RESULTS

Note that when \(\text{card } T \geq \text{card } N \), \(\sup_{T} \sigma_{t} \) defined by (2.4) is always a \(\sigma \)-algebra of events in \(\mathcal{A} \), while \(\sup_{T} A_{t} \) or \(\inf_{T} A_{t} \) with \(\text{card } T > \text{card } N \) belongs to \(\mathcal{T} \) only under some conditions. However it will be proved in Theorem 1 below that one of them is always an event in \(\mathcal{T} \) having probability 1 or 0 respectively.

Theorem 1. Let \((\Omega, \mathcal{A}, P)\) be a complete probability space, and let \(\{A_{t}, t \in T\} \), with \(T \) satisfying (1.1), be a family of independent events in \(\mathcal{A} \). At least one of the following assertions is always valid:

\[
(3.1) \quad \sup_{T} A_{t} \in \mathcal{A}, \quad P(\sup_{T} A_{t}) = 1,
\]

\[
(3.2) \quad \inf_{T} A_{t} \in \mathcal{A}, \quad P(\inf_{T} A_{t}) = 0.
\]

More precisely,

(i) (3.1) is satisfied if there exists \(\{t_{n}\} \in S(T) \) such that

\[
(3.3) \quad \sum_{n=1}^{\infty} P(A_{t_{n}}) = \infty,
\]

298
(ii) (3.2) is satisfied if there exists \(\{t_n\} \in S(T) \) such that

\[
\sum_{n=1}^{\infty} P(A_{t_n}) < \infty \quad \text{or} \quad \sum_{n=1}^{\infty} \left(1 - P(A_{t_n}) \right) = \infty ,
\]

(iii) both (3.1) and (3.2) are satisfied if we have (3.3) for some \(\{t_n\} \in S(T) \) as well as (3.4) for some \(\{t'_n\} \in S(T) \).

Proof. a) If (3.3) is satisfied for some \(\{t_n\} \in S(T) \), then from the Borel-Cantelli Lemma we get \(P(\limsup_t A_{t_n}) = 1 \), i.e.

\[P(\Omega \setminus \limsup_t A_{t_n}) = 0. \]

Since \(\limsup_t A_{t_n} \subset \bigcup_t A_t \), or equivalently \(\Omega \setminus \bigcup_t A_t \subset \Omega \setminus \limsup_t A_{t_n} \), one has \(\Omega \setminus \bigcup_t A_t \in \mathcal{A} \) and \(P(\Omega \setminus \bigcup_t A_t) = 0 \), by the completeness of the probability space.

Therefore (3.1) is valid.

b) If one of the conditions in (3.4) is satisfied for some \(\{t_n\} \in S(T) \), we have then

\[\sum_{n=1}^{\infty} P(\overline{A}_{t_n}) = \infty . \]

Now (3.2) follows from (2.5) and the proof above for \(\overline{A}_t, t \in T \).

The following Theorem generalizes the 0—1 law of Kolmogorov.

Theorem 2. Let \(\{\sigma_t, t \in T\} \) with \(\text{card } T \geq \text{card } \mathbb{N} \) be a family of independent \(\sigma \)-algebras contained in \(\mathcal{A} \). Then

\[P(A) = 0 \text{ or } 1 \quad \text{for all } A \in \bigcup_t \sigma_t. \]

Proof. Denote

\[\mathcal{M} = \{ A : A \in \mathcal{A}, P(A) = 0 \text{ or } 1 \}. \]

The 0—1 law of Kolmogorov implies

\[\mathcal{M} \supseteq \sigma_{\{t_n\}} \quad \text{for every } \{t_n\} \in S(T). \]

It follows from (3.6) that

\[\mathcal{M} \supseteq \{ t_n \}. \]

Hence \(\mathcal{M} \) is an algebra containing the family \(\{ \sigma_{\{t_n\}}, \{t_n\} \in S(T) \} \). Moreover, \(\mathcal{M} \) is a monotone class. In fact, let \(\{ A_n \} \subset \mathcal{M}, A_n \uparrow \), then

\[P(\lim_n A_n) = \lim_n P(A_n) = \begin{cases} 1 & \text{if there is } A_k \text{ such that } P(A) = 1, \\ 0 & \text{if } P(A_n) = 0 \quad \text{for all } n \in \mathbb{N}. \end{cases} \]
Hence \(\lim \uparrow A_n \in \mathcal{M} \). Similarly, one has also \(\lim \downarrow A_n \in \mathcal{M} \) for \(A_n \downarrow \) in \(\mathcal{M} \).
Therefore \(\mathcal{M} \) is a \(\sigma \)-algebra containing

\[
\sigma(\sigma(\{t_n\}, \{t_n\} \in S(T)) = \sup_T \sigma_t.
\]

This completes the proof.

References

Souhrn

ZÁKON 0—1 ZOBECNĚNÝ PRO NESPÔČETNÉ SYSTÉMY JEVŮ
A JEVOVÝCH \(\sigma \)-ALGEBER

Nguyen-van-Ho

Pojmy \(\lim \sup A_n \), \(\lim \inf A_n \) pro posloupnosti množin \(A_n \) a pojem \(\lim \sup \sigma_n \)
pro posloupnosti \(\sigma \)-algeber \(\sigma_n \) jsou v článku zobecněny pro nespočetné systémy
množin, resp. \(\sigma \)-algeber. Na základě těchto zobecněných definic se pak dokazuje
určitá slabší obdoba Borelova-Cantelliho lemmatu pro nespočetné systémy množin
\(A_n, t \in T \), a přímé zobecnění Kolmogorovova 0—1 zákona pro nespočetné systémy
\(\sigma \)-algeber \(\sigma_t, t \in T \).

Author’s address: Nguyen-van-Ho, Khoa Toan-ly Dai-hoc Bach-khoa, Hanoi, VDR.