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SVAZEK 21 (1976) APLI K ACE M ATE M ATI KY ČÍSLO 6 

ASYMPTOTIC EXPANSIONS OF FUNCTIONS OF STATISTICS 

JAN HURT 

(Received March 4, 1976) 

1. INTRODUCTION 

For deriving the approximate value of expectation or variance of some function 
of random variables, there is often used the method of statistical differentials, or 
<$-method, cf. [6] 6a. 2. Such approximate values are usually given in the form 
of asymptotic expansions where the asymptotic is meant with respect to the size 
of random sample. Cramer [2], derived the asymptotic expansions of a function 
of two sample moments. In his theorem (27.7), the remainder term in the expansion 
of the expectation is 0(n~x) and that of the variance is 0(n~3/2). Later, Lomnicki 
and Zaremba [5] investigated the behavior of the first two moments of functions 
of vector statistics with the same order of approximation as Cramer. 

Sometimes, formulas of higher order as well as formulas expanding functions 
depending on n, the size of the underlying random sample, are needed. In the present 
paper, the asymptotic formulas for Eg(Tn, n) and var g(Tn, n) are derived, where g 
is a sufficiently smooth function (which may depend on n, as indicated), and Tn is 
a (multidimensional) statistic. The order of the remainder term depends both on 
the "smoothness" of g and on the behaviour of the moments of Tn. 

Presented formulas are general enough to be applied to a large variety of statistical 
problems, e.g., in estimation theory. Angstrom [ l ] pointed out how the asymptotic 
expansions may be utilized to calculate the bias of a non-linear function of sample 
characteristics. A further possible application is the comparison of two efficient 
estimates using the concept of deficiency, cf. [3]. 

2. ONE-DIMENSIONAL CASE 

We begin with the simpler case when Tn is a one-dimensional statistic. 

Theorem 1. Let g = g(t, n) be a function defined on R^ x N. Assume that, for 
all n and some q ^ 1, g admits the continuous (q + \)-st derivative for t e [0 — <5, 
0 + <5] where S > 0 is independent of n. Suppose that g is bounded on K, x N 
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and all the derivatives g\ . . .,g(q+l) are hounded on [6 — d, 9 + O*] x N. Let 

{Tn} be a sequence of statistics with finite moments up to the order 2(q + l) such 

that E\Tn - 0\2(q+X) = 0(n~(q+i)). Then 

(0 E[g(Tn, n) - g(9, n)] = 

- Z ^ n ) ^ , - ^ + 0(n-^+1>/2) 
j-ijl\dtJJt=ze 

and 

(2) var [a(T„, n) - g(6, nj] = 

" M l (Vg\ (dkg 
n • X 

j-i k~ijik\\дt>;tш,\дŕ/ta, 
j+k q+l 

cov [ ( Т . - Ø У , ( Т „ - 0 ) * ] + 0 ( и - ' " + 2)/2\ 

R e m a r k 1. In the sequel, we shall repeatedly make use of the fact that the assump

tion E\Tn - 0\2(q+l) = 0( tT ( « + 1 ) ) implies 

(3) F|T„ - 0p -= 0 ( n ^ ' / 2 ) , 1 S J ^ 2(q + 1), 

as follows from the familiar absolute moment inequality ylJs ^ yl+\+ }-

Proof. Denote 

(4) / = E[g(T„, n) - g(0, nj] = f \g(t, n) - g(0, nj] dF„ 

where F„ is the distribution function of T„. Fix an s, 0 < £ < S. Denote M = 

= {t : \t - 6\ < e], Mc = R, - M. Then 

(5) / = f [a(f, n) - g(0, nj] dF„ + f [g(t, n) - g(0, nj] dF„ = / , + I2, 
J M J Mc 

say. The boundedness of g and Chebyschev inequality imply 

2 | ^ const j dF„ g const E|T„ - (?|«+1 == 0 ( r T u + 1 , / 2 ) , 
J Mc 

hence / = / , + 0(tV ("+ 1 ) /2). For teM using Taylor formula we obtain 

g(t,n)-g(e,nj = il-(d^) (t-oy + 
j=ij\ \dxj;x=e 

+ -±-(^li) {t-or* 
(q + l)»V^,+ 1A=. + «.-« 
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where Q = £(0, /, /?) e (0, 1). Throughout the proof we shall use the notation 

1 y! \3x7»-» 

iVi. = 
1 / ^ + , « 

(a+ l)!V^+7*-.+ í ( . - . ) 

y,. = í {t-eydFB, ./= l , . . . ,2a . 
JM 

We have 

(6) l. = i Vu+ f b,+ .(t-^+ 'dE„. 
1=1 J Af 

The last integral is 0(n~(q+n/2) since bq+1 is bounded on M x N. Further, 

(7) itj = E(Tn-oy - f ( r - e y d F . . 
J Mc 

Applying both Cauchy and Chebyschev inequalities we obtain 

f (t-0)jdFn S E\Tn - 0\2j P(\Tn - 0\2q^ s2«) = 0(n~^+X)), 
JM C 

/ „ = E(rn-ey + 0(n-<'+"/2). 
hence 

Altogether we have 

(8) / = І > , E ( T „ - 0) J+ ö(и-(ł+п/2) 
/'=. 

which is the desired formula (l). 
Concerning the variance, denote 

J = var [g(Tm9 n) - g(0, n)] = 

= E[g(Tn, n) - g(f?, n)]2 - [Eg(T„ n) - g(0. n)f = Jt-J2 

say. Applying (1), 

J2 = t t bjbk E(Tn - ey E(Tn - Of + 
1 = 1 * = 1 

+ o(n-<«+"/2)x ь, E(T„ _ y + o(«- («+"). 

Thus 

(9) J2 = I I &A £(T - 0)J E(T„ - 0)* + 0(»-<«+->l-) 

since E(T„ - Of = 0(/i ~1/2) for j •> 1. 
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The integral J, may be expressed as 

(10) J , = f [g(t, n) - g(0, n)f dF„ + f [g(t, n) - g(6, n)f dE„ = 
J M J Mc 

~ Jl1 + JI2 9 

say. Obviously J12 = 0(n_(<5f + 2 ) / 2), Expanding g we observe that 

( H ) j t t = i ibjbkitj+k + 2ibjf b , + 1 ( / - e ) " + j + i d E „ + 
k=ii=i j=i J M 

+ f ^ 2

+ 1 ( t - - 9 ) 2 ( " + 1 ) d E „ = J u l + J U 2 + J 1 1 3 , 
J M 

say. Recalling that bq+l is bounded, we have 

J U 3 = 0(n-<" + »), 

f 6, + 1 (! - 0)«+ J + 1 dE„ = O ^ " ^ 2 ' 7 2 ) 

J M 

since j = V and thus 

Write p = j + k. Then 

(12) 

Suppose first 2 ^ p ^ q + \. Then 

Ј U 2 + Ј U З = O ( И - < " + 2 > / 2 ) . 

Iíp = E(T„ - 0)p - ľ ( ř - ö ) " d E , 
Ј мc 

ii (13) ( t - ö ) " d E , 

If <j + 2 ^ p ^ 2q, 

(14) 

g E|T„ - |2 pҒ(|T„ - Є|2" ^ є2«) = 0( И - < ч + 2 >) . 

ľ ( ř - 0 ) P d E , = 0(И-<« + 2>/2) 
Јмc 

holds. Summarizing (13) and (14) we get 

Ilp = E(Tn - 0)* + 0(rT (« + 2 ) / 2 

for p = 2, . . ., 2q. 

Now Jj reduces to 

(15) Jt = 1 Z ь л ^ . - ö У + k + o(и-<"+2>/2) 
. ; = i i = i 
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which, together with (9) provides the formula (2) in the theorem except that the 
summation is now not restricted to j + k = q + 1. Since, however, the bjS are 
bounded and the moments E(7; - 6)j+k are 0(n~(q+2)/2) for j + k > q + 1, the 
summands with j + k > q + 1 may be included in the remainder term. Q.E.D. 

Note that the covariances are usually calculated as 

(i6) cov [(T„ - ey, (T„ - of] = T(T„ - ey+k - £(T„ - oy T(T„ - of. 

Remark 2. In practice, we often need an asymptotic expansion of the expected 
squared error. If w(0) is the parametric function involved then a recommendable 
formula is 

(17) E[g(Ttn n) - w(6)]2 = var g(Tn, n) + [Eg(Tn, n) - w(0)f . 

This formula is highly suitable in situations when Eg(TiV n) = w(0) + 0(n~l) 
which is often the case. 

Example 1. Suppose that Xt, . . . , I „ i s a random sample from the rectangular 
parent population on (0, 6) where 6 is an unknown parameter. The best unbiased 
estimate of 6 is 6 = (n + ljn)X(n) where X(n) is the maximum of the observations. 
For the parametric function w(9; y) = exp ( — 2y/0), y fixed, we can use the estimate 

est w(6, y) = vv(6\ y) = exp ( — ] . 
V w + 1 X(n)J 

We shall investigate the bias and mean squared error of such estimate up to the 
order 0(n~3), Put Tn = X(n) and 

/ ^ / 2yn { \ g(t,n) = exp - -
V n + It/ 

in our Theorem. For the moments of Tn we have ETn = nOjl(n + j ) ; hence 

using the result in [7], Ex. I, p. 47. Thus we have 

£(T„ - 6) = -

- 1 

E(T„ - Ö)2 = 

n + 1 

2Ö2 

(n + 2)(n + 1) 

It is obvious that E(T„ — 0)j = 0(n j) so that to achieve the order 0(n 3) in the 
expansions of Ew and var vv we need q = 5 in the expansion of Ew and q = 4 
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in that of var w. All the derivatives of g are bounded however, and E(Tn — 0)j = 

= 0(n~j); hence it suffices to consider the terms with j ^ 2 in the expansion of 

expectation and withj = 1, k = 1 in that of variance. The derivatives of g are 

g'(t, n) = — ^ - t 2 e. 
n + 

2yn 

n + 1 

,»(,, „) = ̂ L r * e x p l ; _ _ ^ L r A f ^ L , - ' - 2V 
n + l \ n + 1 J\n + 1 / 

1 + 
n(l + 1/n)2 

Denote x = 2y/0. Applying the theorem we obtain 

/ 2yn 1 \ / x 
E exp J = exp 

V n + 1 K(J V 1 + 1/V L 
+ x„ (_^L_ __ 2Y] + 0(n~3) . 

n 2(l + 1/n) VI + \\n )_\ 

This expression may be substantially simplified using the fact 

e+7f7+++^>-2)] + 0("̂  
After some calculations we have 

E exp (-2y/S) = exp (~2y/0) | l + -
1 y Пy 

2 \ 
- 2 + 0(n-3). 

For calculating var w we need cov [(T„ — 0), (Tn — 6j\ = ET2 — (ETn)
2 = 

= 62[nl(n + 2) - n2\(n + l ) 2 ] = 02/n2 + 0(n~5). Taking into account the fact 

E(Tn — 0)j = 0(n~j) mentioned above, it follows from the theorem that 

var [exp ( - 2 , 0 ) ] = - I exp ( - ^ ) - ^ + 0 ( n " 3 ) . 

Sometimes the expected squared error may be of a greater practical interest. Due 

to the fact 

\E exp (~2ylS) - exp | 2 ^ j = 0 ( n " 4 ) , 

the expansion of the expected squared error coincides with that of variance, i.e. 

E[exp(-2W0) - e x p ( 2 ^ ) J = ± e x p ( - - ^ ) - ^ + 0 ( « - 3 ) . 
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Table 1 

(By first, respectively second, approximation we mean the approximation when in (18) are 
considered the terms up to the order 0 (n~ 2 ) , respectively 0(n~3).) 

n= 4 

-S True value Ф(-S) 1. approx. 2. approx. 

0-5 •67264 •69146 •66946 •67324 
10 •81442 •84135 •81110 •81488 
1-5 •91014 •93319 •90891 •91005 
2 0 •96318 •97725 •96375 •96291 
2-5 •98732 •99379 •98831 •98720 

я-= 10 

-S True value Ф(-S) 1. approx. 2. approx. 

0-5 •68317 •69146 •68266 •68327 
10 •82982 •84135 •82925 •82985 
1-5 •92367 •93319 •92348 •92366 
2-0 •97172 •97725 •97185 •97172 

2-5 •99143 99379 •99160 •99142 

n = 30 

-s True value Ф(-S) 1. approx. 2. approx. 

0-5 •68859 •69146 •68853 •68859 
10 •83738 •84135 •83731 •83738 

1-5 •92998 •93319 •92996 •92997 
2 0 •97543 •97725 •97545 •97543 

2-5 •99304 •99379 •99306 •99304 

The problem of estimation of the function exp( — 2y/6) arises e.g. in reliability 

theory. A system consists of two parts with the same average life-time 0/2, say. 

Suppose that the distribution of the time to failure of the first part is exponential 

and that of the second part is rectangular on (0, 0). When the second part fails down, 

the failure of the system is instantly observable. If the first part fails down, however, 
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the system operates mistakenly but its wrong function is not immediately observable. 

We want to estimate the reliability of the first part assuming that the observations 

of the times to failure Xt, . . ., Xn, of the second part are available. 

E x a m p l e 2. Let us study the reliability function in the normal case, i.e. 

R(x; \i, o2) = <P[(fi - x)\o] 

where <P(u) is the standard normal distribution function. We suppose that \i is an 
unknown parameter and that the standard deviation o is known. The maximum 
likelihood estimator of R is 

R(x) = <P[(X - x)\o] 

which has the expectation 

E R(x) = <P 
V n + 1, 

after denoting S = — (/i — x)\o, and the mean squared error 

E(R-RY-*(s I-JL-, sl-H-; -±-\ 
\ V n + 1 V n + l n + -/ 

2Ф(<5) Xfe)-1^ 
where <£(*, *; O) is the distribution function of the bivariate standard normal variable 
with the correlation coefficient O. For the last results see [8]. In this case, we have 
an opportunity to compare the asymptotic formulas for ER with the true values. 
Applying the theorem with g(t, n) = <&[t — x)\o] (in fact, g is independent of n), 
Tn = X and using E(X - ^if = 0 for k odd, E(X - fi)k = okn~k/2(k - 1) (k - 3) . . . 
... 1 for k even, we have 

(18) ER(x) = $(-d) + — q>'(-d) + -^r<p'"(-5) + °(n~3)' 
In Sn2 

where q> is normal density function. 

Some numerical results for n = 4, 10, and 30 are given in Table 1. One can see 
that the approximation is rather good even in the case n = 4. To express var R, 

we need the following covariances: 

cov [(X - /;), (X - fi)] = o2\n 

cov [(X - n), (X - ft)2] = 0 

cov [(X - fi), (X - ft)3] = 3o4\n2 

cov [(X - ft)2, (X - fl)
2] = 2o4\n2 . 
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Remaining covariances either vanish or are 0(n 3) . Thus, after an easy calculation, 
we obtain 

var R = - cp2(8) + - i [<p(-S) q>"(-5) + i<p'2(-<5)] + 0(n~3) . 
n n 

Using the well-known formulas cp'(y) = —y(p(y), <p"(y) = (y2 — -) <p(y) t n e ^ast 

expression may be reduced to 

var + 0(>-JY 

Simple calculation gives 

(ER - R)2 = - L O:2 </>2(O-) + O(/i~3) 
4rc2 

so that from (17) it follows that 

E(R - Rf = <*2(O) [~- + -1 ( ? b2 - 1)1 + O(n-3) . 
[_n nl \ 4 /_ 

The last expression is in fact more convenient for calculation than the exact one 
because it does not contain the two-dimensional normal probability integral. 

3. MULTI-DIMENSIONAL CASE 

Lemma 1. (Generalized Holder inequality) Let fit, . . ., f3r be positive real numbers 
such that !//>! + . . . + l//?r = 1. Suppose that Xl9 . . .,Xr are random variables. 
Then 

FIX!... xr\ ^ [F |XiH1/ /? i . . . [F|Xr|^]i//?r 

assuming only that the moments exist. 

Proof. The proof is a straightforward generalization of Holder inequality for 

r = 2. 

Lemma 2. Let iu . . ., ir be nonnegative real numbers, Ylk=\ lk — J > J > 0> and 
Tu . . ., Tr be random variables. Then 

EflTC' . . . |7,|'-] £ {[E |T ,p] ; i . . . [ E | T p ] ' ' } ' " 

assuming only that the moments exist. 
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Proof. Without loss of generality we may suppose that all the /,, . . ., ir are 
positive. Then in the preceeding lemma put Xk = \Tk\

lk, [3k = jjik. Q.E.D. 

Theorem .2. Let g = g(t{, . . ., tr, n) be a function defined on Rr x N. Assume that, 
1) for ail n, g is (q + \)-times totally differentiable with respect to t\s in the interval 

r 

K = X [#i ~ $h °i + 5J , St > 0, St independent of n, 
i-= 1 

2) g is bounded on Rr x N, 
3) a// t/?e derivatives up to the order q + 1 are bounded on K x N, 
4) {(Fi„, • • ., Pr/i)}r=i / s fl sequence of multidimensional statistics such that 

5) there exist absolute moments of Tin up to the order 2(q + l) 
6) for i = 1, . . . , r E|r fa - 0-|2(*+1) = 0( t i - ( g + 1 ) ) . 

T/7£>t7 

(19) E[g(T ln, . . . , T r / l , n ) - ^ ( 0 1 , . . . , 0 r , i i ) ] = 

Aji^...+AVatv...^A=. 
/ 1 + ... + ir ^ 0 

x £[(T l n - o.)- . . . (Trn - 0.)'-] + 0 ( K ^ + 1 " 2 ) , 

(20) var [fl(T]n, . . ., Trn, n) - g{0, 0r, n)] = 

= 1 I ^ I - . - I I - - - I >< 
j=1 fc=l j ! K ! i i + . . . + iV=-j m i + . . . + mr = fc 
/ + k :< q + 1 ii,...Jr^0 mi mr^0 

*£—) l—^-A x 
^t;; ...at;:yr=A^C • . < v U 

x cov [(T ln - 0,f . . . (Trii - Br)\ (Tln - fl.f . . . (Trn - 0 r)-J + 

+ 0 ( / 7 ^ + 2 ) / 2 ) , 

where t = (tu .... tr), 0 - (0,, , 0r). 

Proof. The proof is a straightforward generalization of the one-dimensional 
version. We point out only some technicalities of the multi-dimensional case. 

Let 0 < s < min (Su . . ., Sr)9 fixed in the sequel. The set M should be replaced 
r 

by M = H {t e Er '• \ta ~ 0a\ < s}. The integrals of the type 

J мc J 
(ť, - 0 , ) ' ' 1 • • • (t, - 0rf dT„ 
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for it + . . . + ir = q are estimated using Cauchy and Chebyshev inequalities 

and then applying Lemma 2. Let bq+i denote a (q + l)-st derivative at the point 

6 + c(t - 0). If i1 + . . . + ir = q + 1 then 

J м J 
W ' t ~°i)il ...(tr-ery-dFn $ 

= c o n s t F [ | r l w - 0 ^ ' . . . | T r w - 0 r | ' v ] „ 

= const {[E |T I n - 01 |«
+ 1]<1 . . . [E\Tn - 0 r | ^ + 1 ] ^ i / ( ^ D _ 

_ 0 ( , r ( « + 1 ) / 2 ) 

applying Lemma 2 again. 

No new ideas are used when handling the variance. Q.E.D. 

E x a m p l e 3. (Estimation of the reliability function in the truncated exponential 

distribution when the point of truncation is not known.) Consider a population with 

the density 

f(x; 6, A) = - exp j - - (x - A) 1 if x > A , 

= 0 otherwise , 

where 6 and A are unknown parameters. The corresponding reliability function is 

R(x, 6, A) = exp - - (x - A)\ if x > A , 

= 1 otherwise. 

The maximum likelihood estimators of the parameters 0, A based on the sample 

X!, . . ., Xn are 

* A* = K(1) = mm (__",, . . . , _ * „ ) , 0* = K - A 

This leads to the following estimator of reliability: 

R-(x) = e x p ( - | ^ ) if A*<x, 

= 1 otherweise. 

We shall investigate expectation and variance of R. We have to distinguish two 

possible ranges of the true parameter A, namely A — x and A < x. If A ^ x then 

P(K(i, _ i4) = 1, and hence P(K0) _ x) = 1 which results in P(P(x) = 1) = 1, 
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in this case. To manage the case A < x we employ Theorem 2 for q = 1. Introduce 
new parameters 6t = 6 + A, 62 = A and put Tl7J = K, T2„ = K(i). Further, define 
for x fixed 

x — t 2 g(tu t2) = ЄXp - Іf tл > t2 , t 2 < X 

= 1 if tj > t 2 , t 2 = x 

= 0 otherwise. 

We can observe that, for n = 2, R(x) = g(TXn, T2n) with probability one because 
X > A* with probability one. After some algebra we come to desired moments of 
TXn and T2/I, namely 

E(TU - 0.) = 0 , E(Tln - 0,) 2 = (0, - 02)
2/n , 

and generally 

£ ( ^ - 0 , ) " = 0(n~k), fc^l 

(for the last appraisal see [2], 27.3.1), 

E(T2n-e2y = 0 ( n " s ) , s = l . 

From the above relations we deduce 

cov [(T ln - 0 , ) , ( T 2 „ - 0 2 ) ] = O ( « - 3 / 2 ) . 

The true value 02 < x so that in some neighbourhood of (0U 62) all the derivatives 
of g exist and obviously fulfil the conditions of the theorem. We shall, however, 
need only dgjdt^ because the terms standing at the other derivatives are of higher 
orders than considered here. We have 

Õg\ - X - 0 2 expf 
x -

t 

- 0 2 

ßhj,= ( t- .y^У 
x -

t - 02. 

so that 

ER(X) = e x p ( - ^ z A ) + 0(n~>) = e x p ( - ^ ) + 0(n~>), 

var R(x) = (^) var (Tln - 0,) + 0(n~^) = 
\dtj, = e 

after returning to the original parameters 0, A. 
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S o u h r n 

ASYMPTOTICKÉ ROZVOJE FUNKCÍ STATISTIK 

JAN HURT 

Nechť {7;} je posloupnost statistik taková, že E\Tn - 0\2(q+u = 0(n~iq+í)), 
g = g(t, n) reálná funkce definovaná na R x N. Ukazuje se, že za jistých předpokla-

q 

dů kladených na funkci g je E[g(Tn, n) - g(0, n)] = £ jí"\djgldtj)t=e E(Tn -

- ey + 0(n^q+X)l2) a vara(r w ,n) = f £ jrxkr\d^gldť)t^(dkgldtk)t^ x 
j = i k = i 

x cov [(Tn - e)J, (Tn - Of] + 0(n~iq + 2)/2). Jsou uvedeny i analogické vzorce v 
případě, kdy Tn je vektorová statistika a 0 vektorový parametr. 

Uvedené rozvoje jsou aplikovány na příkladech z teorie spolehlivosti. 

Authoťs address: RNDr. Jan Hurt, Matematicko-fysikální fakulta University Karlovy, 
Sokolovská 83, 186 00 Praha 8. 
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