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SVAZEK 23 (1978) A P L I K A C E M A T E M A T I K Y ČÍSLO 1 

DUAL FINITE ELEMENT ANALYSIS FOR SEMI-COERCIVE 
UNILATERAL BOUNDARY VALUE PROBLEMS 

IVAN HLAVACEK 

(Received December 10, 1976) 

A dual finite element procedure for unilateral coercive boundary value problems 
with homogeneous and inhomogeneous obstacles on the boundary has been presented 
in [1] and [2] . Some a priori error estimates have been shown provided the solutions 
were sufficiently regular. A posteriori error estimates and two-sided bounds for the 
energy follow from the duality approach. 

In the present paper the dual analysis is extended to semi-coercive problems with 
homogeneous unilateral constraints on the boundary. Using the idea of Falk [7] 
and Mosco, Strang [3], analogous a priori error estimates are deduced, as previously. 
Moreover, the convergence of the finite element approximations to the primary 
problem is proved without any regularity assumption. 

1. THE DUAL VARIATIONAL FORMULATIONS 

Let us consider the following model problem 

(1.1) - A u = / in Q cz R\ 

(1.2) II = 0 , — = 0 , u —, = 0 on r = dQ , 
dv dv> 

where Q is a bounded domain with Lipschitz boundary T, f e L2(Q), dujdv is the 
derivative with respect to the outward normal to F, 

We shall use the Sobolev spaces Hk(Q) ( = Wk,2(Q)) with the usual norm | | ' | | k , 
H°(Q) = L2(Q) and denote x = (xx, ..., xn), 

(u, v)0 = uv dx , 
JQ 

n /• o a 

(grad u, grad v) = j M — — dx , (u, v)t = (u, v)0 + (grad u, grad v) . 
t=i }QdXi dXi 
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H1/2(F) is the space of traces yv of functions v e H^Q) on the boundary F. We define 
the functional of potential energy 

-?(») = *|«|i - ( L f ) 0 , 
where 

H i == (grad v, grad v) , 

and the convex cone 

JT = {v e HX(Q) | yv ̂  0 on F] . 

Instead of the classical version (1.1), (1.2) of the problem, we introduce the following 
variational formulation: 

to find u e J f such that 

(1.3) S£(u) ^ S£(v) Vv e Jf . 

The problem (1.3) will be called primary. It is easy to verify that any solution of 
(1.3) satisfies ( l . l ) in the sense of distributions and (1.2) in a functional sense. In 
fact, (1.3) is equivalent with 

(1.4) (grad u, grad (v - u)) ^ (/, v - u)0 Vv e tf . 

Inserting v = u ± cp, cp e CQ(Q) (an infinitely smooth function with a compact 
support in Q), we obtain (1.1) in the sense of distributions. Then the normal derivative 
dujdv represents a linear continuous functional on H1/2(F), if we define 

(1.5) / — , w \ = (grad u, grad v) - (/, v)0 , Vw e H1/2(F) 

where v e Hl(Q) is such that yv = w. 

Inserting v = 0 and v = 2u into (1.4), we obtain, using also (1.5), 

(1.6) 0 = (grad u, grad u) — (/, u)0 = / —, u 
\dv 

Then 

(1.7) 0 S (grad u, grad v) - (/, v)0 = / — , yv\ Vv e j f . 

The conditions (1.6) and (1.7) represent a weak form of the unilateral boundary 
conditions (1.2). 

Conversely, if u is a classical (sufficiently smooth) solution of (l . l) , (L2), then 
multiplying ( l . l ) by a v e Jf and integrating by parts, we derive (1.7) and (1.6), 
which in turn imply (V4). 
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Lemma 1.1. Assume that 

(1.8) (f, 1)0 < 0 . 

Then there exists a unique solution of the primary problem (1.3). The solution 
of (13) exists only if 

(1-9) (/, l)o S 0 . 

Proof, (cf. [4] — chpt. l) 1. Existence. Let F0 c F be any open part of the 
boundary with positive measure, Define 

= (mes Fo)"1 yv áГ Vv є Hl(Q) 
JГo 

Then for 

we have 

V = V — V 

yv dF = 0 , 
To 

Hi = cIMIt 
We may write 

<?(v) = i|S|J - (/, 6)0 - »(/, l)o ^ i C 2 | | v | | 2 - dlflll, - v(f l)o • 

If v e Jf, llvl! -> 00, then at least one of the norms \v\x and | |^ j | t = v(mes Q)1/2 

goes to infinity. Hence (1.8) implies JS?(v) -> + 00, S£ is coercive over Jf\ As the set J f 
is convex and closed in H1(Q), the minimizing element exists. 

2. Uniqueness. Let u' and w" be two solutions. Inserting them into (1.4) and 
subtracting, we obtain 

\u" - u'\\ <: 0 , 

consequently, u" — uf = const. Denote u" = w, u' = u + c and suppose that 
c 4= 0. We have 

J?(ii) = J^(M + c) => (/, 11)0 = (/, u + c)0 => (/, l)o = 0 , 

which contradicts (1.8). Hence c = 0. 

3. Let aeR\ a —> +00. Obviously, for v0 = a v0 e <?f. If a solution of (1.3) 
exists, J^(v0) is bounded below, 

lim J^(v0) = - l im a(f, l)0 > — 00 
a ~* + 00 

and (1.9) follows. 

For completeness, we discuss also the case, when the mean value of/ vanishes. 
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Lemma 1.2 ([4] — chpt. 1). Assume that 

(1.10) ( / , l )o = 0 

Let w e Hl(Q) be a weak solution to the following Neumann's problem 

(1.11) -Aw = f in O , dw/dv = 0 on F, | yw dF = 0 , 
J To 

where F0 is any Open parl (non-empty) of F. Then the primary problem (1.3) has 
a solution, if and only if yw is bounded below on F. If lhis condition is satisfied, 
then all solutions possess the form u = w + c, where c is any constant such that 
yw 4- c ^ 0 on F. 

R e m a r k 1.1. For a smooth boundary w e r /2(0), consequently yweH3 / 2(F) , 
which implies yw 6 C(F), provided the space dimension n :g 3. The same assertion is 
true for convex polygonal domains in R2. 

P roo f o f l e m m a 1.2. Let (1.10) hold. From (1.5) we obtain 

o-a. * - - ( £ . . 
As the function v0 = 1 belongs to JT and dujdv ^ 0, the condition dujdv = 0 on F 
follows. By comparison with the problem ( l . l l ) we deduce that u = w + c, where c 
is such that yw + c ^ 0 on F. 

Next we shall introduce the dwa/ variational formulation. To this end, we define 

Q = f q € [L2(0)]", div <, = £ dq^dx, e L2(Q)} , 
i=l 

where the operator div is defined in the sense of distributions: 

q . grad <p dx = — (p div q dx V(P e Co°(.Q) . 
ra Jr? 

For q e Q the linear continuous functional q . v e H~1/2(F) can be defined by means 
of the relation 

<q . v, w> = I (q . grad v + v div q) dx Vw e H1/2(F) , 
Jo 

where v e HX(iQ) is such that yv = w. 

We write q . v|r ^ 0 if 

< q . v , s> ^ 0 V . s e H 1 / 2 ( F ) , s ^ O . 
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Let us introduce the set of admissible functions 

*U == {q e Q | div q + / = 0 , q . v| r = 0] 

and the functional (complementary energy) 

•^) = i IN | 0 . 
i= 1 

The problem to find X° e % such that 

(1.12) Se(XQ)^Se(q) VqeW 

will be called dual to the primary problem (1.3). 

Lemma 1.3. The dual problem has a solution if and only if 

(1.13) {f, 1) S 0 . 

I/ (1.13) holds, the solution is unique. 

Proof. The condition (1.13) is necessary and sufficient for the set °U to be non­
empty. In fact, let a q e °U exist. As v0 = 1 belongs to X, we have 

0 ^ <q . v, 1> = (div q, 1)0 = - ( / , 1)0 , 

consequently, (1.13) is necessary. 
Conversely, let (1.13) be satisfied. Consider any solution of the Neumann's problem 

— Aw = / in Q , dwjdv — k on F , 
where 

fc= - ( / , l y m e s F . 1 ) 

írг+í fdx = 0 . 

As k = 0, q = grad w belongs to ^ and the set is non-empty. 
fy is closed and convex, the functional £f strictly convex in [L2(;Q)]" and conti­

nuously differentiate. Hence the existence and uniqueness of the minimizing element 
follows. 

Theorem 1.1. Let (1.13) hold and the primary problem have a solution u (or solu­
tions u + c in case of Lemma 1.2). Then the solution 2° of the dual problem satisfies 
the following relations 

(1.14) 1° = grad u , 

(1.15) Sf(k°) + se(u) = 0 . 

1) Then the solution exists, because 
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Proof. Let us introduce new parameters 

^ , - - - - • , / - l , 2 . . . . , n 
dxj 

as contraints and the notation 

M = [L2(Q)]fl, TT = / X M . 

Then we may write 

(1.16) Inf JSP (t>) - Inf Sup MT(v, ^V; //) , 
ue.^f [v,.Y"\eit' fieM 

where 

Jf(v, ^; p) = i £ II^IS- (/, o)0 + I L , ̂  ~ ^i) • 
i=i .= 1 \ dXi / o 

In fact 

S u p I ^ , ^ - ^ = < ° if "-e°*° , , 
neM i=i \ O\. /o x +00 if 3 i , ./V£ +- (dvjdXi) 

and consequently, 

Inf Sup ^f (v, J^; 11) = Inf Jf (v, yV; H/) - Inf J?(i>). 
lv,JT\eW neM lv ,,V]eW ,Jr = gwdv ve.TiT 

Let us investigate the problem dual to the problem (1.16), i.e., 

Sup Inf tf{v,Jf\\i). 
fieM lv,Jr]ei1~ 

First of all we may write 

-S ( / i ) = Inf je(v, JT; 11) ^ Inf JT(I?, ^V; H) = 
[y,.T]e#" [v ,J/"\eOr ,JT = gradt> 

= Inf i f (v) = JSf (11) V / i e M , 

consequently 

(1.17) Sup[-S(/L)] = jSf(u). 

On the other hand, 

(1.18) -S(/L) - Inf {^( .A^, /*) + *r2(v, ft)} , 
lv,jr-\eii~ 

where 
" " " / dv \ 

J f i ( ^ . A - ) - - i Z ll^'-lo - I 0*<> -^')o > ^ ( f . M) = - ( / , »)o + I (/.«, — • 
i = l ' = 1 * = 1 \ ^ i / 0 
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It is readily seen that the infimum of M\ is attained precisely if ,A'\ = fit Vi = 
= J , . . . , n and 

(119) inf^,(^,/.)=-ii;iHiJ. 
J"eM i = l 

Next we can show that 

(1.20) lnf.je2(v,,) = /0 i f " 6 * ' 
veX X - 0 0 if /i £ M - % . 

In fact, J f 2v
y> A*) *s a linear continuous functional on H1(Q). Let a v0 e X exist such 

that 2tf2(y0, pi) < 0. Then the infimum is - c o , as ^2(tv0, \i) -* - c o for t -> + co. 
For the infimum to be finite, it is therefore necessary that 

(1.21) / 2 ( i ; , / t ) ^ 0 V v e J T . 

Choosing v = ±(p, cp e C0(Q) CZ jf, we obtain 

0 = Jt?2(<p, LI) = - ( / (p)0 + f ( ^ , ^ VV e C?(Q) . 
1 = 1 V &Vo 

Hence [i e Q, f 4- div /I = 0 and we may write 

I (V;, - ^ ) = ~(div JI, i>)o + <A« • v, Cv> = ( / v)0 + O . v, yv> 

for all v e H1(Q). Hence we obtain 

(1.22) tf2(v, ix) = O . v, yv> Vv e H1^). 

Inserting (1.22) into (1.21), we conclude that \x . v| r ^ 0. Altogether the infimum in 
(1.20) is bounded only if \i e °lt. Conversely, if JLI G <%, then (1.22) and (1.21) hold, 
which lead to (1.20). 

Next from (1.18), (1.19) and (1.20) it follows 
n 

x - o o V / j e M - t . 

Finally, we have 

(1.23) Sup [-S(fi)] = Sup [-$"((1)] = - InfSffa) = - < % ° ) . 
MeM ^ e ? / / i6? / 

Let us set g = grad u and show that q = 2°. In fact, [w| J = ( / w)0 

(see (V6)) and therefore 

se(u)= - i | u | ? = - i l | | 9 , | | § - - - ^ ( q ) . 
/ = 1 
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i du 
Moreover, q e^U as q . v|r = — ^ 0 by virtue of (1.7). Consequently, 

dv r 

S u p [ - ^ ( / i ) ] ^ -Sr(q) = J?(u). 

With regard to (1.23) and (1.17) the equality holds, i.e., 

-£f(X°) = - inf £f(\x) = Se(u) = Inf JS?(i>). 

The uniqueness of the solution of the dual problem implies that q = A0. 

2. FINITE ELEMENT APPROXIMATIONS TO THE PRIMARY PROBLEM 

Assume that .0 c R2 is a bounded polygonal domain and let1) 

(2.1) (/, 1)0 < 0 

We carve Q into triangles ^generating a triangulation 3Th. Denote h the maximal side 
of all triangles in &~h and let Vh be the space of continuous piecewise linear functions 
on the triangulation 6Th. 

We say that a family of triangulations {&"h}, 0 < h g 1, is a-fl-regular, 
if there exist positive a and /?, such that for any h (i) the minimal angle of all triangles 
is not less than a and (ii) the ratio between any two sides in 3Th is less than /?. 

Let us introduce the set 

tfh = Vh n X = {v e Vh | v ^ 0 on F} . 

We say that ŵ  G Jf\ is a finite element approximation to the primary problem if 

(2.2) £e(uh) ^ ££(v) Vv G ^ . 

There exists a unique solution of (2.2). In fact, Xh is closed and convex subset of 
Hl(Q). ££ is coercive on JT (see the proof of Lemma 1.1), consequently, it is coercive 
on C/Ch, as well. As ££ is convex and differentiable, the solution uh exists. 

The uniqueness can be proved by the same argument as in Lemma 1.1. 
To find uh, we may employ e.g. the procedure of Gauss-Seidel with constraints 

(cf. [6] — chpt. 4 or [1]). Thus we obtain a sequence of iterations vm e JTft, which 
converges to uh for m -> oo. 

Next we shall estimate the distance between the solution u of the primary problem 
(1.3) and the finite element approximation uh. To this end we employ a modified 
approach by Falk [7], which is based on the following 

1) If (f l)o = 0, Theorem 1.1 and Lemma 1.2 yield that we can solve the classical Neumann 
problem and its dual formulation (cf. [5]). 
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Lemma 2.1. It holds 

(2.3) |u - uh\\ g (/, u - vk)0 + (grad u, grad (v„ - u)) + 

+ (grad (u,. - u), grad (vh - u)) \fvh e Jfh. 

Proof. Inserting v = uh into (1.4), we obtain 

|u |2 g (grad u, grad u^) + (/, u - uh)0 . 

By a similar argument, we deduce 

\uh\\ S (grad uA, grad vh) + (/, uA - v„)0 . 

Then we may write 

|u - uft|
2 = |u |2 + |u^|i - 2(grad u, grad uh) S 

S (/, u - vh)0 + (grad u, grad uft) + (grad uh, grad v,.) - 2(grad u, grad uA) = 

= (/, u - v^)0 + (grad u, grad (v,, - u)) + (grad (uh - u), grad (v,, - u)) . 

Theorem 2.1. Let u e H2(Q) and yu e H2(Fm) for any side Fm, m = 1, 2 , . . . , G 
of the polygonal boundary F. Then it holds 

G 

(2-4) \u ~ uh\x S Ch{\\u\\2 + £ bUnrJ 
m— 1 

where C is independent of h and u. 

Proof. Integrating by parts, we obtain 

(grad u, grad (v^ - u)) + (/, u - v,.)0 = 

= ( - A u , vA - u)0 + - ^ (vh - u) ds + (/, u - v^)0 = ~ (vh ~ u) ds . 
Jrdv Jrdv 

From (2.3) it follows for any vh e Jfh 

(2.5) |u - uh\\ ^ i\uh ~ u\\ + i|v„ - u\\ + 
ÕU 

дv 
\\vh - u\ L2(П * 

L2(E) 

Let US insert vh = uf, i.e. the Lagrange linear interpolate of u with the nodes given 
by &~h. Then it holds 

(2.6) \uj - u|t S Ch\\u\\2 , | |u7 - u\\L2irni) S Ch2 | |u | !H2 ( r M i ) , - I ^ c | | u | 
ðv Łi(Г) 

and the assertion (2.4) follows from (2.5), (2.6). 
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Lemma 2.2. Let (2.1) hold. Then 

(2.7) ch = min uh(x) = 0 . 

Proof. Assume that ch > 0 and set uh — uh — ch. Then 

u„ e X , , <£(uh) = J?(iifc) + c,(f, 1)0 < <S?(nA) , 

which is a contradiction. 

R e m a r k 2.1. According to (2.4) we conclude that 

(2.8) inf ||H-. + c - IIHi = 0(h). 
ceR1 

With respect to (2.7), if the "optimal" constant in (2.8) c #= 0, the minimum of 
uh + c over F differs from zero. It is well-known, however, (cf. [4]) that the trace yu 
vanishes on a set of positive measure. Therefore the violation of (2.7) may be un­
suitable. Consequently, we are satisfied by uh itself. 

3. CONVERGENCE OF THE FINITE ELEMENT APPROXIMATIONS 
WITHOUT ANY REGULARITY ASSUMPTION 

The a priori estimate (2.4) has been obtained under strong regularity assumptions. 
In general, however, such a regularity cannot be expected for domains with angular 
boundary points (cf. [8]). Therefore we have to study the convergence of uh to 
a general u e Jf. To this end, we employ the following abstract theorem. 

Theorem 3.1 (cf. [6] — chpt. 4). Let V be a Hilbert space with the norm || * || and 
a seminorm | • |, JT CZ Va closed convex subset, h e (0, 1> a real parameter, Xh cz X 
convex closed sets for any h. 

Let a differentiable functional f on V be given which is coercive on X, the 
second differential (in the sense of Gateaux) exists and satisfies the following 
inequalities 

(3.1) oc0\z\2 ^ D2f(u;z,z) ^ C\\z\\2 Vu e j f , z e V . 

Denote u and uh the minimizing elements of f over the sets JT and Jfh, respectively. 
Let them be unique. Assume that vh e 3Ch exist such that 

(3.2) lim ||n - vh\\ = 0 for h -> 0 . 

Then it holds 

(3.3) lim |u — uh\ = 0 for h --> 0 . 

Proof. From (3.1) and the coerciveness of f the existence of u and uh follows. 
Let vhe Jf satisfy (3.2). Using the Taylor's theorem we may write 

f(vh) = f(u) + D f(u, vh - u) + \D2 f(u + 9h(vh - u); vh - u, vh ~ u) . 
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By virtue of (3.1), we conclude 

(3.4) lira f{v„) = / (w) . 

From the definition of uh it follows 

(3-5) /(«„) ^ f{vh) , 

consequently, 
f(uh) ^ C < + oo Vfc . 

Since / is coercive on ,tf and uA e J f ft c: J T , 

||«*|| g C! < +00 vh 

and we can choose a subsequence (denote it again by {uh}), such that u,. e Jf,,, uA tends 
to u* weakly. As Jf is weakly closed, u* e JT. We have 

/ ( u * ) g lim f(uh) = / ( u ) , 

consequently, u* = u. 

There exist Xh e (0, 1) such that 

f(uh) = / ( « ) + Df(u; uh - u) + iD 2 / ( u + ^(i#fc - u); u, - u, u,, - u) 

and by virtue of (3.1) 

/ («*) ~ / ( " ) - -0 / ( « , «* ~ «) = i«o|w* ~ u\2 • 

From (3.4), (3.5) and the weak convergence uh -- u, the assertion (3.3) follows for 
the subsequence. Since the solution u is unique, the whole sequence satisfies (3.3). 

Q.E.D. 
Setting / = ££, V = W1,2(Q), and assuming (2.1), we have the coerciveness of / 

over Jf, (see the proof of Lemma 1.1) and (3.1) is satisfied for |z| = \z\t with a0 = 
= c = 1. It remains to verify (3.2). 

Lemma 3.1. The set 

Jf n C°°(.Q) 

is dense in JT. 

Proof. Let u e X be any fixed function. There exists a function v e H*(Q) such 
that yv = yu on F and v ^ 0 in £2 (see [9] - dipt. 2. Th. 5.7). Then 

u = v + z , 

where z e HQ(Q) can be approximated by functions from Co°(-3) c jf . Hence it 
suffices to find a suitable approximation of v. To this end we extend v as follows. 
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Let the system {BJ, i = 0, 1, ..., r of open domains cover Q and {<pj be the 
r 

corresponding partition of unity, (i.e., cpt e Co°(B/), 0 _ (pt _ 1, £ <?.(*) = 1 
r i = 0 

Vx G O). Let B0 c Q and (J Bf- cover the boundary F. Denoting Vj = vcpj, we have 
t = i 

r 

v = ._• y 1 > y 1 G ^ G 0 ) > S U P P VJ e BJ VI • 
J = o 

Consider any fixed Vj in Bj. We map Bj n Q into the upper halfplane {(£, r/)| >/ = 0} 
by means of the mapping 

^Xi , .]--(«.».)=-t(*i.*-)l 
rj = x2 - a(xx)J 

where x2 = a(xx) represents the "angle" By n F. Then defining Vj(^, r/) = Vj(£, r\ + 
+ a(£)), we have ve Hl(BjQ), where Bj0 = T(Bj n Q). The extension Pvy will be 
defined through 

PD/cj, +iy) = Pfi/{, -17). 

Finally, we define 

Pvj(xu x2 - fl(Xj)) = Pvj(xu x2) . 

Then Pv^GH^B,). 

Let us consider the regularized function 

RxPvj(x) = co(x — x', x) PVJ(X) dx' , x' = (xi, x 2 ) , 
JB,-

where 

ÁX 2 exp ( , J* ' - ) , foг ІXІ < X , 

Oj(x, x) = \ 

X 0 for |x| _ x , 

A and x are positive constants, x = (xt, x 2 ). As Pvy _ 0 and co _ 0, we have 

vix = I^Pv,- _ 0 Vx e r , 

vjx e C00(i0) and ||vJX — Vj\\ i —> 0 for x -> 0. For B0, v0 e Ho(B0)
 w^^ ^ e approximated 

by a v0x e Ct?(B0). Setting 
r 

x̂ = £ Vjx , 
1 = 0 

we obtain 
r 

Ik - HI- = I Ik* - ^||i - ° for * -> o . 
1 = 0 

vx e C°°(.Q), vx _ 0 on F. The proof is complete. 
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Theorem 3.2. The finite element approximations converge "in the seminorm" 
to the solution u, i.e. 

(3.6) lim \u — uh\i -* 0 for h -> 0 . 

Proof. There exists a function ux e Jf n C°°(.Q) such that 

Let uxJ be the Lagrange linear interpolate of ux over ^ h, consequently, uxI e Jfh. 
For sufficiently small h it holds 

IK/ - "||l -S ||w*I - Wx||l + | K ~ "||t < £ 

and (3.2) is satisfied by vh = MX/. Then (3.6) follows from Theorem 3.1. 

4. FINITE ELEMENT APPROXIMATIONS TO THE DUAL PROBLEM 

Instead of the dual problem (1.12) we introduce an equivalent problem. To this 
end, we find a vector le Q such that 

div I + / = 0 in Q . 

We show that a vector z° e Q exists such that 

(4.1) divz° = 0 in Q, 

z° . v| r = - I . v - g0 , 

where 

go = (/> l ) o / m e s V = const < 0 . 

Then the sum Xs = X + z° e Q satisfies the conditions 

(4.2) div J / + / = 0 in Q, 

*f-v\r = " g o , 

hence A-** 6 ^ . 

The vector-function z° can be defined e.g. as z° = grad w, where 

дw 
Aw = 0 in Q, — 

Ôv 

= - 1 . v - #0 . 
T 

Such function w exists, because we have 

{I. v + 0O, 1> = <I • v, 1> + (/, 1)0 = ( / + div I, 1)0 = 0 . 
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Since we need an explicit Xf in what follows (see Remark 4 below), a z° has to be 
constructed. In case that 1. v is piecewise linear on F, we are able to find a z° e 
e JTh{Q) (cf. [5] for the definition of Jfh{Q)) such that (4A) is satisfied. 

If 1. v is not piecewise linear on F, we can also use the following approach. Let us 
find a function co e H2(0) satisfying the relation 

æ(s) = - (l.v + g0)át Vs є F . 
Jso 

Then the vector z° = { — dcojdx2, dcojdx^ satisfies the boundary condition 

dco dco dco n T 

— = - — vt + — v2 = z u . v = - 2 . v - g0 . 
OS Ox2 OX i 

(The function co can be sought by a finite element method, using e.g. quintic poly­
nomials over a suitable triangulation with zero nodal parameters inside O.) 

It is readily seen that the problem to find a q° e f 0 = {q | q e Q, div q = 0 in O, 
(q + Xf) . v | r ^ 0} such that 

(4.3) J(q°)^J(q) V q e ^ 0 , 

where 

J(q) - i | | q | | 2 + ((A', «)) and (( , , p)) = £ (a,, pf)0, | , | - = ( ( , , , ) ) , 

is equivalent with the dual problem (1.12). 

The solutions satisfy the relation 

X° = Xf + q° . 

Let us introduce the convex set 

«* = {<f | q G A/~,(0), q . v|r = g0} = ^ 0 n ^ ( O ) . 

We say that a vector A/ + qfc, qn e ^ 0 is a finite element approximation to the 
dual problem, if 

(4.4) j(qh)S.J(q) V, e < . 

The problem (4.4) has a unique solution. In fact, °tth
0 is non-empty, containing the 

zero vector. J(q) is continuously differentiable and strictly convex in [L2(0)]2 , °Uh
0 

closed and convex. Hence the existence and uniqueness of qh follows. 

Lemma 4.1. Suppose there exists a Whe°Uh
0 such that 2q° - Wh e °U0. Then it 

holds 

(4.5) \\q° - qh\\ ^ \\q° - Wh\\ . 
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(For the proof - see Lemma 2A of [1], where B = [L2(rQ)]2, / = J, M = * 0 , 
Mft = «S, a0 = c = 1.) 

Lemma 4.2. Let q° e [H2(£)]2 , q ° . v e H2(Fm) for any side Fm, m = 1, ..., G of 
the polygonal boundary F. Then for sufficiently small h there exists a piece wise 
linear function i//h on F, with the nodes determined by the vertices of £Fh and such 
that 

(4.6) f ^ d s = f q ° . v d 5 = 0 , 

(4.7) . 9o^^h^ V . v - go on F , 

(4.8) | | ^ - (rhq°) . v||L2(r) £ C/z2 £ | , ° . v|2,r„s , 

where r̂  is the projection mapping q° into jVh(Q) (cf. [5] or [ l ] — Section 4) and 
[•|2>rm the seminorm generated by the second derivatives with respect to the arc-
parameter. 

R e m a r k 4.1. In comparison with [1], here the one-sided approximations of the 
flux q° . v cannot be used. In fact, setting 

#o ^ fa S q° • v on F, 

and (4.6), we obtain 

0 g f (q° . v - <A„) ds = 0 => ^ = q° . v 

which is impossible, in general, as q° . v need not be piecewise linear on F. 

P r o o f of lemma 4.2. For brevity, let us denote q° . v = t. According to the defini­
tion of rh9 the linear function (rhq°). v is determined by the L2(Sfc)-projection of t 
into Pi(Sfc)

 o n every side Sk a F of the triangulation fTh. Denote also (rhq°) . v = th. 
It is easy to see that the solution u of the primary problem has the following 

property, provided (f, 1)0 < 0: dujdv > 0 holds on E c F, mes E > 0. From 
Theorem 1.1 we conclude that A0 . v = dujdv > 0 on £, 

t = q° . v = (A0 - Xs) . v = X° . v + go > go on E , 

t = g0 on r — E . 

From the assumption t e H2(Fm) it follows t e C^F^,) for all m, consequently 

s u p p ( « - a 0 ) = U Ur ) m ) , 

iff — l j 

where I;m) c fm are closed intervals of positive length. 
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Consider an arbitrary interval I(jn) = <cr, <r> and let s0 ^ o < st < o, wh^ re 

<sfc_i,sfc> corresponds with a side 5fc e &*h, (k = 1, 2, . . . ) . Then we set ^ ^ go 
on <s0,s2>_ (In case that lim (mes if}) = 0, I^w) = <crJ, cfJ>, ffj ~> <r, ^ ^ ^ 

J->00 

lim (t - #0) (s) = 0, we also set i///, = g0 on a suitable interval <s0, sfc>, wh e r e 

_!-•<- + 

*(«*) > go). 
Let t — g0 > 0 a.X all vertices Qk e _/",, with parameters s- < s2 < ... < s„_., -- ° 

and let 6= <; on. We set ^ = g0 on <s,,_2, s„> and if/h = t,. + ^ in <sfc_,, sfc> f ° r 

fe = 3, 4, ..., n — 2, where 

(4.9) a, = (s„_2 - s2y» | p(< - a0) d.v + f (« - a0) dsl 

(provided S„_2 > s2). There exists a point 9 e <<r, s2> such that 

(4.10) P ( r - go) d.s = (r - a0) (S) (s2 - o) 

and it holds 

(4.11) ( I - * > ) ( « ) = r ^ | ( s H c ~ ^)^^ ^ (2/,)3/2 ||^|U2(^> Vce<o-,s2>. 

From there we obtain an upper bound for the first integral in (4A0). The second 
integral can be estimated in a similar way. Consequently, we have 

a , ^ 2 ^ ( S „ _ 2 - S 2 ) - 1 / , 5 / 2 | | r | | _ 2 ( r m ) . 

Denoting lj = o - o the length of lf\ we obtain for sufficiently small h 

(Sn-Z-SlY1 _ ( / y - 4 / , ) - 1 g 2 / / , . 

Without any loss of generality, a finite number of intervals I^m) can be considered 
and therefore 

lj ^ min lj = c > 0 . 

(In case that lj -> 0 for j -> oo, we substitute the interval I^m) by a suitable union 
00 

(J I$m)). Thus we obtain 
j = k 

(4-12) a ^ 2 ^ C - / ) ^ | | r " | | L 2 ( r „ i ) , 

where c does not depend on h. 

Let us consider the interval <s0, s2> = 5 r u S2. We have 

| | * „ - r . | _ | | . „ - .|| + H< - ' » U . 

with L2(S,)-norms, i = 1, 2. 
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Making use of (4.H), we deduce 

It - ffolk™ ^ ch2|^"||L2(rm) 

and a similar estimate is true for ||t — l/Jj^^.). Consequently, 

(4-13) Ik* - t*|U0>S2) g C/t2||t"||,2(rm, 

holds and an analogous estimate is true for the interval (s^_2, sn). Altogether, from 
(4.12) and (4.13) it follows that 

fSn-2 

Ik* - t*||t2(S0,s„) = Ik* - t*||i2(,„,s2) + Ik* - t*||i2(S„-2,s„) + a) ds ^ 
J S2 

<L 2Ch*\\f\\lirm) + CJj . hs\\f\\l(rm) ^ c 2 h 4 | | r | | 2 2 ( r m ) . 

Moreover, we set \j/h = g0 on Fw — UI;m)- % virtue of the finite number of intervals 
j 

considered above, we obtain a similar estimate for | | ^ — ^||i2(rm) and (4.8) follows. 

From (4.9) and the well-known relation 

(th - t) ds - 0 VSfc c r , 
JS )sk 

we obtain 
>a r>S2 (•& psn-2 

(il/h - t) ds = (g0 - t) ds + (g0 - t) ds + (il/h- th) ds = 
<T J <T J Sn-2 J 52 

= (go - 0 ds + (go ~ t)ds + cij(sn„2 - s2) = 0 . 
J <T J Sn-2 

Hence the condition (4.6) is satisfied. The inequalities (4.7) are also satisfied, if h is 
sufficiently small. 

Theorem 4.1. Let Q be simply connected, (2.1) hold and the assumptions of Lemma 
4.2 be satisfied. Denote kh = kf + qft, A0 = kf + q°, where Xs satisfies (4.2), qft and q° 
are solutions of the problems (4.4) and (4.3), respectively. Then for a-/?-regular 
triangulations it holds 

(4.14) ||A" - A°|| <L Ch3/2{|q°|2,n + £ |q° . v | 2 < r J , 
m^ 1 

where |q°|2j f i is the seminorm generated by second derivatives. 

Proof . Let \j/h be the approximation of the flux from Lemma 4.2. We set 

cp = (rhq°) . v - >\ih = t* - i//h . 
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There exists a function wh e J/*h(&) such that 

wh. v = cp on F , 

(4.15) !|w*|| = C h - 1 / 2 | k | l 2 ( o 

(see [1] - Lemma 5.3, where J = 1), because we have 

Г (Л - <Pь) ds = ((t-фh)ds = 0 

by virtue of (4.6). 

The the function Wh = rAq° — wh satisfies the conditions of Lemma 4.1. In fact, 

Whe^h(Q\ 

Wh.v = th - (p = \l/h^ g0 on F, 

consequently, Wh e <%h

0. From (4.7) it follows 

Wh . v £ 2q° . v - go => (2q° - WA) . v - g0 ^ 0 , 

2g° - Wh e %0 . 

Making use of the estimate (cf. [5] — Th. 3A) 

\\q - rhq\\ ^ Ch2\q\2,G Vq e [ / /2(OW 

and of (4.15), (4.8), we obtain 

\\q° - Wi| ^ 1*7° - rhq°\\ + \\rhq - Wh\\ ̂  Ch2\q%,Q + \\wh\\ g 

£ Ch*\q°\2J1 + Cth
3'2 % \q°.v\2,rm. 

m= 1 

Then the estimate (4A4) follows from Lemma 4.1. 

5. A POSTERIORI ERROR ESTIMATES AND TWO-SIDED BOUNDS OF ENERGY 

The dual analysis enables us to find a posteriori error estimates for the finite element 
approximations. 

From (1.4) we obtain for any v e J f 

(5.1) 2[£f(v) - jg?(«)] = |p|J - |«|J - 2(/, v - u)0 ^ 

= M» - l"|i ~ 2(g''ad "' § r a d (" ~ ")) = i1' ~ "I' • 

By virtue of (1.15) we may write 

(5.2) - se(u) = y(A°) ^ y ( l ) Vi e ^r. 
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Theorem 5.1. Let uh e JTh be any approximation to the primary problem and 
lh = Xf + q \ where qh e <?/0, any approximation to the dual problem. Then it 
holds 

(5-3) \uh - u\\ ^ £ 
ÔXІ •\r 

+ 2 \ X" . vuh d.s- = E(uh, P ) , 

x, 8u\ 
ÚE(uh,l

h). 
dxiWo 

Proof. From (5.1) and (5.2) it follows 

\uh ~u\\^2 S£(uh) + 2 Sf(lh) = \uh\\ - 2(f, uh)0 + ||A*||2 = 

= \)h - grad uh\\
2 + 2((A\ grad uh)) - 2(f, u„)0 . 

On the other hand, we have 

((A\ grad uh)) - (f uh)0 = - (div lh + f u„)0 + | A \ vuh ds . 

Using (4.2), we obtain 

div lh + f = div AJ + f = 0 

and we are led to (5.3). 

The solution A0 of (1.12) satisfies the inequality 

((A0, A - X0)) ^ 0 VA e * . 

Consequently, for any A e ^ we may write 

2[<^(A) - <^(A0)] = ||A||2 - ||A°||2 ^ ||A||2 - ((A0, A)) = 

= ((A, A - A0)) - ((A0, A - A0)) + ((A0, A - A0)) ^ ||A - A°||2 . 

Inserting A = Xh and using (1.14), (1.15), we obtain 

||I* - grad w||2 S 2 Se(lh) + 2 S£(u) S 2 Sf(Xh) + 2 i?(u*) = E(u„ lh) . 

R e m a r k 5.1. The upper bound E(uh, lh) consists of non-negative terms. It is not 
the case for the bound 2 S?(uh) + 2 Sf(lh\ In fact, S£(uh) -> S£(u) = - j | u | 2 (cf. 
(3.4), (3.5) and (1.6)), and consequently, S£(uh) is negative, in practice. 

Theorem 5.2. Under the assumptions of Theorem 5.1 the following two-sided 
energy estimates hold: 

-2Se(uh) <> \u\l _ 2Sf(lh), 

-2S£(uh)<(f,u)oH2Sf(lh). 
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Proof. By virtue of (1.6) we may write 

2 <e[u) = \u\\ - 2(/, I I ) 0 = - | i i | ? = 2 Jř(a*) . 

Using (1A5), we obtain 

| I I | ? = - 2 ^ ( u ) = 2 ,^(/l0) = 2 ^ ( i * ) Ví* e ^ . 
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S o u h r n 

DUÁLNÍ ANALÝZA SEMI-KOERCIVNÍCH ÚLOH 

S JEDNOSTRANNÝMI OKRAJOVÝMI PODMÍNKAMI 

METODOU KONEČNÝCH PRVKŮ 

IVAN HLAVÁČEK 

Duální analýza koercivních jednostranných úloh byla zavedena autorem v článcích 

[1] a [2]. Tam byly odvozeny některé a priorní odhady chyb za předpokladu regula-

rity řešení. A posteriorní odhady chyb plynou pak z duálního přístupu. V této práci 

je duální analýza rozšířena na semi-koercivní úlohy s homogenními jednostrannými 

podmínkami na hranici oblasti. Pomocí metody Falkovy [7] a Moscovy-Strangovy 

[3] odvozují se analogické apriorní odhady jako v [1]. Dále je dokázána konvergence 

aproximací primární úlohy bez předpokladu regularity řešení. 

Authoťs address: íng. Ivan Hlaváček, CSc, Matematický ústav ČSAV, Žitná 25, 115 67 
Praha 1. 

71 


		webmaster@dml.cz
	2020-07-02T03:07:08+0200
	CZ
	DML-CZ attests to the accuracy and integrity of this document




