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DUAL FINITE ELEMENT ANALYSIS FOR SEMI-COERCIVE
UNILATERAL BOUNDARY VALUE PROBLEMS

IvAN HLAVACEK

(Received December 10, 1976)

A dual finite element procedure for unilateral coercive boundary value problems
with homogeneous and inhomogeneous obstacles on the boundary has been presented
in [1] and [2]. Some a priori error estimates have been shown provided the solutions
were sufficiently regular. A posteriori error estimates and two-sided bounds for the
energy follow from the duality approach.

In the present paper the dual analysis is extended to semi-coercive problems with
homogeneous unilateral constraints on the boundary. Using the idea of Falk [7]
and Mosco, Strang [3], analogous a priori error estimates are deduced, as previously.
Moreover, the convergence of the finite element approximations to the primary
problem is proved without any regularity assumption.

1. THE DUAL VARIATIONAL FORMULATIONS

Let us consider the following model problem

(1.1) —Au=f in QcR",
(12) wz0, 20, u® -0 on r=o0,
v Ov

where Q is a bounded domain with Lipschitz boundary I, f e Ly(Q), ou[ov is the
derivative with respect to the outward normal to I.

We shall use the Sobolev spaces H¥(Q) (= W*?*(Q)) with the usual norm |||,
H%(Q) = L,(Q) and denote x = (xy, ..., X,),

(u, v)o =J uv dx ,
2

(grad u, grad v) = J‘ ﬂ @— dx, (u,v); = (u, ) + (grad u, grad v).
20
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H'?(I') is the space of traces yv of functions v € H'(®) on the boundary I'. We define
the functional of potential energy

Z(v) = Ho|t = (/. 0)o -
where

Mf = (grad v, grad v),

and the convex cone
A ={veH'(Q)|y=0onT}.

Instead of the classical version (1.1), (1.2) of the problem, we introduce the following
variational formulation:

to find u € & such that
(1.3) L(u) £ L(v) Yvex .

The problem (1.3) will be called primary. It is easy to verify that any solution of
(1.3) satisfies (1.1) in the sense of distributions and (1.2) in a functional sense. In
fact, (1.3) is equivalent with

(1.4) (grad u, grad (v — u)) = (f,v — u)y VvedA .

Inserting v = u + ¢, ¢ € C5(Q) (an infinitely smooth function with a compact
support in ), we obtain (1.1) in the sense of distributions. Then the normal derivative
du/dv represents a linear continuous functional on H'/*(I'), if we define

(1.5) <gﬁ w> = (grad u, grad v) — (f, v)y. Vwe H'*(I)
oV

where v e H'(Q) is such that yo = w. ‘
Inserting v = 0 and v = 2u into (1.4), we obtain, using also (1.5),

(1.6) 0 = (grad u, grad u) — (f. u)o = <»63, u> .

dv

Then

(1.7) 0 < (grad u, grad v) — (f, v)o = <Z—u , yv> Vve A .
v

The conditions (1.6) and (1.7) represent a weak form of the unilateral boundary
- conditions (1.2).

Conversely, if u is a classical (sufficiently smooth) solution of (1.1), (1.2), then
multiplying (1.1) by a ve # and integrating by parts, we derive (1.7) and (1.6),
which in turn imply (1.4).
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Lemma L.1. Assume that
(1.8) (f,1)o <0.

Then there exists a unique solution of the primary problem (1.3). The solution
of (1.3) exists only if

(1.9) (/i) £0.

Proof. (cf. [4] — chpt. 1) 1. Existence. Let I'y = I' be any open part of the
boundary with positive measure. Define

i = (mes I‘O)"f yodI' Voe H(Q).

o
Then for
i=v—7
we have
.[ yodll =0,
I'o
I3 = C|a]ls

We may write

L(v) = %lﬁ

1= (i 9)o = #(f. Do = 3C?[3]7 — ei[[5]l — (£ 1)o -

If ve A, |v]]; > oo, then at least one of the norms ||§]|; and |[5]; = #(mes Q)"/?
goes to infinity. Hence (1.8) implies #(v) » + 00, £ is coercive over #". As the set
is convex and closed in H'(Q), the minimizing element exists.

2. Uniqueness. Let u’ and u” be two solutions. Inserting them into (1.4) and
subtracting, we obtain
lul/ _ ul‘Z g 0’

consequently, u” — u’ = const. Denote u” =u, u' =u + ¢ and suppose that
¢ & 0. We have

g(u) = °(f(u + C) :>(f) u)O = (f; u + C)O :>(fs 1)0 = 0’
which contradicts (1.8). Hence ¢ = 0.

3. Let aeR', a > +o0. Obviously, for vy, = a vye . #. If a solution of (1.3)
exists, #(v,) is bounded below,

lim Z(vy) = —lima(f, 1) > — 0

a—+x
and (1.9) follows.

For completeness, we discuss also the case, when the mean value of f vanishes.
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Lemma 1.2 ([4] — chpt. 1). Assume that
(1.10) (f,1)o = 0

Let w e H'(Q) be a weak solution to the following Neumann’s problem

(1.11) —Aw = fin Q, Ow[ov =0 on I, J. ywdll =0,
o

where I'y is any open part (non-empty) of I'. Then the primary problem (1.3) has
a solution, if and only if yw is bounded below on T'. If this condition is satisfied,

then all solutions possess the form u = w + ¢, where ¢ is any constant such that
yw+c=0onT.

Remark 1.1. For a smooth boundary we H*(Q), consequently yw e H¥*(I),
which implies yw € C(I'), provided the space dimension n < 3. The same assertion is
true for convex polygonal domains in R2,

Proof of lemma 1.2. Let (1.10) hold. From (1.5) we obtain
X /Ou
0=(fi1)g=—(—, 1>.
\ v

As the function vy = 1 belongs to 4" and (3u/8v = 0, the condition 6u/6v =0onrl

follows. By comparison with the problem (1.11) we deduce that u = w + ¢, where ¢
is such that yw + ¢ = O on I.

Next we shall introduce the dual variational formulation. To this end, we define

n

0 = {qe[Ly(Q)]", divg E.Zlﬁq,-/éx[ e L,(Q)},

where the operator div is defined in the sense of distributions:
f q.grad ¢ dx = —j pdivgdx VoeCH(Q).
Q 0

For q € Q the linear continuous functional q.ve H™'/?(I') can be defined by means
of the relation

{q.v,w) = j‘ (9.grad v + vdivq)dx VYweHY*(I),
o

where v € H'(®) is such that yv
We write g v|p 2 0 if

Il

w.

{q.v,5)

1%

0 VseH'Xr), s=0.
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Let us introduce the set of admissible functions
U ={qeQ|divg+/=0, q.v| =0

and the functional (complementary energy)

20 =43 ladi
The problem to find A° € % such that
(1.12) F(°) < #(q) Vqeu
will be called dual to the primary problem (1.3).

Lemma 1.3. The dual problem has a solution if and only if

(1.13) (f,1)<0.
If (1.13) holds, the solution is unique.

Proof. The condition (1.13) is necessary and sufficient for the set % to be non-
empty. In fact, let a q € % exist. As v, = 1 belongs to A", we have

05¢g.n 1> =(diva )= ~(f o,

consequently, (1.13) is necessary.
Conversely, let (1.13) be satisfied. Consider any solution of the Neumann’s problem

—Aw=1fin Q, ow/ov=k on I,
where
k= —(f, 1)o/mes T .")

J\kdfﬁ—J‘ fdx =0.
r 2

As k = 0, ¢ = grad w belongs to % and the set is non-empty.

% is closed and convex, the functional & strictly convex in [L,(2)]" and conti-
nuously differentiable. Hence the existence and uniqueness of the minimizing element
follows.

Theorem 1.1. Let (1.13) hold and the primary problem have a solution u (or solu-
tions u + c in case of Lemma 1.2). Then the solution A° of the dual problem satisfies
the following relations

(1.14) 2% =gradu,
(1.15) F(°) + L(u) = 0.

1y Then the solution exists, because
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Proof. Let us introduce new parameters

as contraints and the notation
M = [LZ(Q)]" , W =KX x M.
Then we may write

(1.16) Inf #(v) = Inf Sup #(v, A p).
vex [v,/]JeH peM
where
n n au
W0 =3 AL (e + 5 (u = - 4/) .
i= i= i 0
In fact

Swi(

peM i=1

ov /0 if ¥ =gradv

iy — — Wi = { .

X; o S +oo if 3iL A % (Ovfox;)
and consequently,

Inf Sup #(v, N 1) = Inf H(v, /5 p) = Inf L(v).
veX”

v,/ eW peM [v, 4 JeW 4/ =gradv
Let us investigate the problem dual to the problem (1.16), i.e.,

Sup Inf ]f(u, N5 u).

HeM [v A JeW”

First of all we may write

—S(g) = Inf Ao, /;p) < Inf H(v, N ) =

[v.A4JeW [v, A JeW 4 =gradv

=Inf L(v) = L(u) VueM,
veX

consequently
(1.17) fiﬁ’ [-S)] = £(u).
On the other hand,
(1.18) —S(n) =[u}‘p];r{«”1(~4”- 1) + Ao, )}
where
AL ) = AT VA = E o Ao Holon) = (o) + 5, <u %’)
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It is readily seen that the infimum of 5, is attained precisely if .4'; = u; Vi =
=1,....,n and

(1.19) Inf () = 1S i
Ve i=1
Next we can show that

0 if pueau,

1.20 Inf #,(v, pt) = ¢
(1.20) vex 0 1) N—oo if peM =~ %.

In fact, 5 ,(v, p) is a linear continuous functional on H'(Q). Let a v, € #" exist such
that 3 ,(vo, #) < 0. Then the infimum is — oo, as #,(tv,, y) » — oo for t — +oo.
For the infimum to be finite, it is therefore necessary that

(1.21) Hoon) 20 Voes .
Choosing v = +¢, ¢ € C5(2) = A", we obtain

)

0 = A0, 1) = —(f. 0)o le (:“i, ;f> Vo e C7(Q) .
= 0

Hence ue Q, / + div u = 0 and we may write
" v .
S (e 5o ) = ~(@ivie oo + v g> = (£ 0)y + v, >
i=1 xi/o

for all v e H'(Q2). Hence we obtain
(1.22) HoH(v, 1) = v, 0y Voe H'(Q).

Inserting (1.22) into (1.21), we conclude that x. v|; = 0. Altogether the infimum in
(1.20) is bounded only if pe . Conversely, if ye %, then (1.22) and (1.21) hold,

which lead to (1.20).
Next from (1.18), (1.19) and (1.20) it follows

y -3 ; leillo = —(w) Vuew.
AN VueM =~ 9 .
Finally, we have
(1.23) Sup [—=S(w)] = Sup [~ Z(w)] = — Inf P(u) = —#(q°).
neM pne Hel
Let us set g = grad u and show that § = 2°. In fact, fulz = (f, u)o

(see (1.6)) and therefore
20 = el = ~15 [ali - ~ (@)
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0 .
Moreover, ge% as q . v[,— = 7—” = 0 by virtue of(l.7). Consequently,
ov |r

Sup [~ ()] 2 (@) = #(0).
ne
With regard to (1.23) and (1.17) the equality holds, i.e.,

-P(%) = - inofu‘y(u) = ,?(u) = lr;f L(v).
e ve,

The uniqueness of the solution of the dual problem implies that g = 2°.

2. FINITE ELEMENT APPROXIMATIONS TO THE PRIMARY PROBLEM

Assume that @ = R? is a bounded polygonal domain and let")

@.1) (f.1)y <0

We carve Q into triangles T generating a triangulation 7 ,. Denote h the maximal side
of all triangles in 7, and let ¥, be the space of continuous piecewise linear functions
on the triangulation 7.

We say that a family of triangulations {7,}, 0 < h <1, is oa-B-regular,
if there exist positive o and B, such that for any h (i) the minimal angle of all triangles
is not less than a and (ii) the ratio between any two sides in 7, is less than f.

Let us introduce the set

Hy=Vyo A ={veV,|[v=0o0nT}.
We say that u, € A, is a finite element approximation to the primary problem if
(2.2) L(u,) < L(v) YoeA,.

There exists a unique solution of (2.2). In fact, ", is closed and convex subset of
H'(Q). & is coercive on A~ (see the proof of Lemma 1.1), consequently, it is coercive
on A, as well. As % is convex and differentiable, the solution u,, exists.

The uniqueness can be proved by the same argument as in Lemma 1.1.

To find u,, we may employ e.g. the procedure of Gauss-Seidel with constraints
(cf. [6] — chpt. 4 or [1]). Thus we obtain a sequence of iterations v™ € 2", which
converges to u, for m — oo.

Next we shall estimate the distance between the solution u of the primary problem
(1.3) and the finite element approximation u,. To this end we employ a modified
approach by Falk [7], which is based on the following

1) If (f, 1) = 0, Theorem 1.1 and Lemma 1.2 yield that we can solve the classical Neumann
problem and its dual formulation (cf. [5]).
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Lemma 2.1. It holds
(2.3) [u - u,,lf < (f,u — v)o + (grad u, grad (v, — u)) +
+ (grad (u;, — u), grad (v, — u)) Yo, e A, .
Proof. Inserting v = u,, into (1.4), we obtain
|u]} < (grad u, grad u,) + (fsu — u,), -
By a similar argument, we deduce
|us| < (grad uy, grad v,) + (/s uy — v4)o -
Then we may write
[u = |} = |u|} + |w|i — 2(erad u, grad u,) <
< (fiu — v)o + (grad u, grad u,) + (grad w,, grad v,) — 2(grad u, grad u,) =

= (f,u — v,)o + (grad u, grad (v, — u)) + (grad (u, — u), grad (v, — u)).

Theorem 2.1. Let u € H*(Q) and yue HXI',) for any side I',, m = 1,2,...,G
of the polygonal boundary I'. Then it holds

G
(2.4) [u — w| = Ch{[u], + ;Jl“”wrm)}
where C is independent of h and u.

Proof. Integrating by parts, we obtain
(grad u, grad (v, — u)) + (fiu — v3)o =

0 0
= (—Au, v, — u) + r(g(v,,—u)ds—f—(f,u—v,,)o = —Lf(vh—u)ds_
0 rov

r ov

From (2.3) it follows for any v, € &,

ou
~ ””h =t -
Lx(I')

(25)  Ju— wpli < Hun — uff + Yo~ uff +

Let us insert v, = uy, i.e. the Lagrange linear interpolate of u with the nodes given
by 7. Then it holds
ou

<
A < clul,

La(T)

(2.6) |uy — u|y < Ch|ul,, |ur — ul|isir,y < CR|ufluar,, -

and the assertion (2.4) follows from (2.5), (2.6).
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Lemma 2.2. Let (2.1) hold. Then
(2.7) ¢y = minu,(x) = 0.

xel’

Proof. Assume that ¢, > 0 and set @, = u, — ¢,. Then
ey, L) = L)+ c(f, 1) < L(uy),
which is a contradiction.

Remark 2.1. According to (2.4) we conclude that
(2.8) inf [|u, + ¢ — ul|; = 0(h).
ceR!

With respect to (2.7), if the “optimal” constant in (2.8) ¢ =% 0, the minimum of
u, + c over I' differs from zero. It is well-known, however, (cf. [4]) that the trace yu
vanishes on a set of positive measure. Therefore the violation of (2.7) may be un-
suitable. Consequently, we are satisfied by u, itself.

3. CONVERGENCE OF THE FINITE ELEMENT APPROXIMATIONS
WITHOUT ANY REGULARITY ASSUMPTION

The a priori estimate (2.4) has been obtained under strong regularity assumptions.
In general, however, such a regularity cannot be expected for domains with angular
boundary points (cf. [8]). Therefore we have to study the convergence of u, to
a general u € A#". To this end, we employ the following abstract theorem.

Theorem 3.1 (cf. [6] — chpt. 4). Let V be a Hilbert space with the norm ||| and
a seminorm H, H < Va closed convex subset, h € (0, 1> a real parameter, A, = A
convex closed sets for any h.

Let a differentiable functional ¢ on V be given which is coercive on A, the
second differential (in the sense of Gadteaux) exists and satisfies the following
inequalities
(3.1) a0|z!2 <D*J(u;z,2) £ C|z|* Vuex, zeV.

Denote u and u,, the minimizing elements of ¢ over the sets X" and A, respectively.
Let them be unique. Assume that v, € A ), exist such that

(3-2) limju — v, =0 for h—0.
Then it holds
(3.3) lim|u —w| =0 for h—0.

Proof. From (3.1) and the coerciveness of ¢ the existence of u and u, follows.
Let v, € A" satisfy (3.2). Using the Taylor’s theorem we may write

F(v) = @) + D g(u.v, — u) + 1D* #(u + (v, — u); v, — u, v, — u).
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By virtue of (3.1), we conclude

(3.4) lim #(v,) = #(u) -
From the definition of u, it follows
(3.5) Hw) = £(0) -

consequently,
Hu) £ C < +o00 Vh.

Since # is coercive on .4 and u,e A", < A,
lu] < €y < +o0 Vh

and we can choose a subsequence (denote it again by {u,,}), such that u,, € ), u, tends
to u* weakly. As " is weakly closed, u* € . We have

Au*) < lim #(u,) = #(u),
consequently, u* = u.
There exist 2, € (0, 1) such that
Hu) = #(u) + D #(usu, — u) + 3D* #(u + A(u, — u); u, — u, u, — u)
and by virtue of (3.1)
Hu) — Fw) — D J(u,u, —u) 2 %“ol“h - “lz .

From (3.4), (3.5) and the weak convergence u, — u, the assertion (3.3) follows for

the subsequence. Since the solution u is unique, the whole sequence satisfies (3.3).
Q.E.D.

Setting # = &, V = W"?(Q), and assuming (2.1), we have the coerciveness of #
over o, (see the proof of Lemma 1.1) and (3.1) is satisfied for |z| = |z|; with oy =
= ¢ = 1. It remains to verify (3.2).

Lemma 3.1. The set
‘ A N C*(Q)
is dense in J.

Proof. Let u e A be any fixed function. There exists a function v € H'(Q) such
that yo = yu on I' and v 2 0in Q (see [9] — chpt. 2. Th. 5.7). Then

u=v+z,

where z € Ho(Q) can be approximated by functions from Cg(Q) = . Hence it
suffices to find a suitable approximation of v. To this end we extend v as follows.
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Let the system {B;}, i = 0,1, ...,r of open domains cover @ and {¢;} be the
corresponding partition of unity, (ie., @, €CJ(B), 0= ¢, =1, Y ox) =1
r i=0

Vx e Q). Let B, = Q and |J B; cover the boundary I'. Denoting v; = vgp;, we have
i=1

v=>Yv;, vye H'(RQ), suppv;eB; Vj.
i=o

Consider any fixed v; in B;. We map B; n @ into the upper halfplane {(¢, n)| # = 0}
by means of the mapping

&= x } = (& n) = T[(xy, x5)]

n=x, — a(x)

where x, = a(x,) represents the “angle” B; n I'. Then defining 9,(¢, n) = v,(&, n +
+ a(&)), we have 9 e H'(B,,), where B;, = T(B; n Q). The extension P9, will be
defined through

Poy(&, +n) = PO(& —n).
Finally, we define
Poj(xy, x, — a(xy)) = Pvj(xy, X,) .
Then Pv; e H'(B;).
Let us consider the regularized function
RPo(x) = [ ofx = 5 Po¥)ax' . ¥ = (x1.x0).
JB;

where

A x"%exp <A|£lz——> , for |x| <%,
. 2 =
U)(X, x) = \

0 for |x| =%,
A and x are positive constants, x = (xq, x,). As Pv; 2 0 and w = 0, we have
vy, = R,Pv; 20 Vxel,

v, € C*(2)and ||v;, — v;]; — 0forx — 0. For By, v, € H{(B,) will be approximated
by a v,, € C3(B,). Setting

r
Ve =3 Ujs
i=o
we obtain

Jox = ol £ ¥ Jose — wifs 0 for %0,
j=o
v, € C*(Q), v, = 0 on I'. The proof is complete.
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Theorem 3.2. The finite element approximations converge “in the seminorm’
to the solution u, i.e.

(3.6) lim[u — w|; >0 for h—0.
Proof. There exists a function u, € # N C*(Q) such that
”u - u,,”, < Je.

Let u,; be the Lagrange linear interpolate of u, over J,, consequently, u,,; € X% ,.
For sufficiently small 4 it holds

luar =l = Juer = s + Jue — i <

and (3.2) is satisfied by v, = u,,. Then (3.6) follows from Theorem 3.1.

4. FINITE ELEMENT APPROXIMATIONS TO THE DUAL PROBLEM

Instead of the dual problem (1.12) we introduce an equivalent problem. To this
end, we find a vector 1 € Q such that

divi+f=0 in Q.
We show that a vector z° € Q exists such that
(4.1) divz°=0 in Q,

L T
where
go = (f, 1)o/mes I' = const < 0.

Then the sum A/ = 1 + z° € Q satisfies the conditions
(4.2) divly+f=0 in Q,
A v],- = —go,

hence 2 e %.
The vector-function z° can be defined e.g. as z° = grad w, where

Aw =0 in Q, ow =-1.v—g,-
aVr

Such function w exists, because we have
Av+geD=A v, 1D+ (f,1)=(f+divil), =0.
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Since we need an explicit A7 in what follows (see Remark 4 below), a z° has to be
constructed. In case that 1.v is piecewise linear on I', we are able to find a z° €
€ N () (cf. [5] for the definition of 4,()) such that (4.1) is satisfied.

If X . v is not piecewise linear on I', we can also use the following approach. Let us
find a function w € H*(Q) satisfying the relation

o(s) = ~Js(l.v+go)dt Vsel.

Then the vector z° = { —dw[dx,, dw|dx,} satisfies the boundary condition

0 0
_w:__ag‘)l +—w—v2=z°.v=—1.v—g0.

Js ('5x2 X1

(The function w can be sought by a finite element method, using e.g. quintic poly-
nomials over a suitable triangulation with zero nodal parameters inside Q.)

It is readily seen that the problem to find a §° € %, = {q| g€ Q,divg = 0in Q,
(9 + #%) . v|r 2 0} such that

(4.3) J(q°) =< J(q) Vqe,,

where

J(q) = 4lq]* + (#’.q)) and ((q.p)) = él(qi, P)os [4)* = (9, 9))

is equivalent with the dual problem (1.12).
The solutions satisfy the relation

2= +q°.
Let us introduce the convex set
Uy =1{q|qeN(Q), 9.v|r = go} = U N N4(Q).

We say that a vector A + q", q" € %% is a finite element approximation to the
dual problem, if

(44) J(q") = J(9) Vqeus.

The problem (4.4) has a unique solution. In fact, %% is non-empty, containing the
zero vector. J(q) is continuously differentiable and strictly convex in [L,(Q)]%, 4
closed and convex. Hence the existence and uniqueness of g* follows.

Lemma 4.1. Suppose there exists a W"e Ub such that 2q° — W"e %,. Then it
holds

(*5) la° - q'll = lla° — W[ .
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(For the proof — see Lemma 2.1 of [1], where B = [L,(Q)]*, J =J, M = %,,
M, = U, ot0=c=1.)

Lemma 4.2. Let q° e [H*(Q)]?, q°.ve H*(I',) for any side I',,, m = 1,..., G of
the polygonal boundary I'. Then for sufficiently small & there exists a piecewise
linear function ¥, on I', with the nodes determined by the vertices of 77, and such
that

(4.6) jwhm[qo.vd.\-:o.
r r
(4.7) : Jo <, £29°.v—g, on I,

G
Chz Z {qo . \’IzJ'm N

m=1

(4.8) ¥n = (m9°) - ]y

IA

where r, is the projection mapping q° into A7,(Q) (cf. [5] or [1] — Section 4) and
|'|2.Fm the seminorm generated by the second derivatives with respect to the arc-
parameter.

Remark 4.1. In comparison with [1], here the one-sided approximations of the
flux q° . v cannot be used. In fact, setting
go S, £4q°.v on TI.

and (4.6), we obtain

0_S_j(q°.v—x//,,)ds=0:|//,,:q°.v
r

which is impossible, in general, as q° . v need not be piecewise linear on I'.

Proof of lemma 4.2. For brevity, let us denote q° . v = t. According to the defini-
tion of r,, the linear function (r,9°). v is determined by the L,(S,)-projection of ¢
into Py(S,) on every side S, < I of the triangulation 7. Denote also (r,9°) . v = .

It is easy to see that the solution u of the primary problem has the following
property, provided (f, 1), < 0: du/ov >0 holds on E < I', mes E > 0. From
Theorem 1.1 we conclude that A°. v = du[dv > 0 on E,

1=q¢" . v=A-V).v=2".v+go>9g, on E.
t=go on I =~ E.

From the assumption t € H*(I',,) it follows t € C'(I',,) for all m, consequently

G
supp (t — go) = U U™,

m=1 j

where 15-"" < TI,, are closed intervals of positive length.
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{Sx-1, Sy corresponds with a side S €7, (k = 1,2,...). Then we set ¥, = 9¢
on (so,5,). (In case that lim (mesI{”) =0, I!" = (6;,6;), 0; >0, ;2

Consider an arbitrary interval 1Y = (0,3) and let s, < 6 <s; <7, whe®

Jjm o

lim (1 — go)(s) = 0, we also set ¥, = g, on a suitable interval (so, sy, wWher®
s—a+
’(Sk) > Qo)-

Let t — g, > O at all vertices Q, € 7, with parameters 5; < 5, < ... < 5,-; < g

and let ¢ < 0, We set i, = gy on 5,5, S,» and ¥, = 1, + a; in {5,_1, 8 for
k=3,4,...,n — 2, where

(4'9) a; = (Sn—z —5;)7! {J (’ — go)ds + I (’ ~ 90) ds}
(provided s,_, > s,). There exists a point § € (g, 5,> such that
(4.10) j (1 = go)ds = (1 = g0) (9) (2~ 0)
and it holds

S dZE

(4.11) (1t — go) (&) = f e (s)(& = s)ds < (2n)*"2 1" cacry VE €O, 52) -

From there we obtain an upper bound for the first integral in (4.10). The second
integral can be estimated in a similar way. Consequently, we have

a; £ 2%P(s,-5 = 52) 7 R L -
Denoting /; = 6 — o the length of I{™, we obtain for sufficiently small h

ez = 27 S (1 — 4h)* < 21,

I

Without any loss of generality, a finite number of intervals 1}"’) can be considered
and therefore

l;Zminl; =¢>0.

(In case that [; - 0 for j — oo, we substitute the interval 15."') by a suitable union

U I{™). Thus we obtain
i=k

(4.12) a; £ 2722 Ly >

where ¢ does not depend on h.

Let us consider the interval {sy, s, = S; U S,. We have

lon = all = llgo =t + [t = ull,

with L,(S;)-norms, i = 1, 2.
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Making use of (4.11), we deduce

It = gollasy = CH[|"]|Lir

and a similar estimate is true for ||t — 1,],(s,. Consequently,

(413) “l//h - tlx”Lz(so,sz) é Ch2” t”“LZ(rm)

holds and an analogous estimate is true for the interval (s, ,, s,). Altogether, from
(4.12) and (4.13) it follows that

Sn-2

[¥s = tall Zaosm = 1¥n = tall ooy + [¥n = tallatsmonsm + J ajds <

52

< 2CH*| | Rairny + Cily - B3| Ry S Coh?*

n|2
|t | Lacrmy -
Moreover, we set Y, = goon I, =~ Ulﬂ-"'). By virtue of the finite number of intervals

J
considered above, we obtain a similar estimate for ||, — #]|,r.., and (4.8) follows.
From (4.9) and the well-known relation

J(t,,—t)ds=0 VS, T,
Sk

we obtain

_Er('//:. —1#)ds = f(go —1)ds + .E_z(go ~1)ds + an—z(wh ~4)ds =

82

“ [0 -nas e [ @0 nss+afo—s=o0.

a Sn-2

Hence the condition (4.6) is satisfied. The inequalities (4.7) are also satisfied, if h is
sufficiently small.

Theorem 4.1. Let Q be simply connected, (2.1) hold and the assumptions of Lemma
4.2 be satisfied. Denote A" = A7 + q*, A° = A/ + q°, where A/ satisfies (4.2), 4" and q°
are solutions of the problems (4.4) and (4.3), respectively. Then for o-B-regular
triangulations it holds

G
(419 I 2] = Olgn + 3 o e
where |q°| 2. is the seminorm generated by second derivatives.

Proof. Let , be the approximation of the flux from Lemma 4.2. We set
o =g’ v—Vn=1t,— V.

68



There exists a function w” e .47,(2) such that
wi.v=¢ on I,
(4.15) W'l = Ch™2]o] L)

(see [1] — Lemma 5.3, where J = 1), because we have

L(th — gu)ds = fr(z — Yy ds = 0

by virtue of (4.6).
The the function W, = r,q° — w" satisfies the conditions of Lemma 4.1. In fact,

W, e (),
W,.v==t,—9=yY,=2go on I,

consequently, W, e %/. From (4.7) it follows
W, v<2¢°.v—go=(29° = W,).v— g, 20,
2¢° -~ W, e, .
Making use of the estimate (cf. [5] — Th. 3.1)
lg - nal = Cr’lal.0 vae[HQ)

and of (4.15), (4.8), we obtain
“qo - wh“ = qu - ’"hqo” + ”"hq - Wh“ S Chzlqo’z,rz + ”Wh” =

G
< Chz,qolz’g + C R Z ,qo ) Vlz.rm'
m=1

Then the estimate (4. 14) follows from Lemma 4.1.

5. A POSTERIORI ERROR ESTIMATES AND TWO-SIDED BOUNDS OF ENERGY

The dual analysis enables us to find a posteriori error estimates for the finite element

approximations.
From (1.4) we obtain for any ve &
(5.1 [Z(v) — L(u)] = [v,f - fulf —2f,v—u) =

= Jo|t — |u]t — 2(grad u, grad (v — u)) = [v—ulf.
By virtue of (1.15) we may write
(5.2) — ) = F(°) < (A) Vieu.
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Theorem 5.1. Let ii, € A", be any approximation to the primary problem and
=2 + q" where §"e %", any approximation to the dual problem. Then it
holds

5

(5.3) [, — u|f = Z |'

(u,,

Th
L —

+ 2jih.vﬁ,,ds = E(d,, "),
] r

0x;

ou|?

0x;

< E(d,. ™).

0

Proof. From (5.1) and (5.2) it follows
i, — ulf < 2.2@@,) + 2207 = |@); — 2/ w)o + |F]* =
= |2 — grad @,|* + 2((#". grad ii,)) — 2(/, @i,), -
On the other hand, we have
(%, grad @) — (/. @)o = —(div 7* + £, @) + J 7 vy ds .
.
Using (4.2), we obtain
div? + f=divd + =0

and we are led to (5.3). ¢
The solution A° of (1.12) satisfies the inequality

((2°%4—=2%)20 View.
Consequently, for any 4 € % we may write
A () - #00)] = 217 - 2] = J4° - ((°. ) =
= (o h = 20) = (0% = ) + (0 = ) = |4 - 2
Inserting A = A" and using (1.14), (1.15), we obtain
[ — grad u|* £ 2. 2(2") + 2 L(u) £ 2P(2") + 2 L(d") = E(iF,, 1) .

Remark 5.1. The upper bound E(i,, 1*) consists of non-negative terms. It is not
the case for the bound 2 £(ii,) + 2 #(¥). In fact, L(d,) - L(u) = —3u|; (cf.
(3.4), (3.5) and (1.6)), and consequently, £(i,) is negative, in practice.

Theorem 5.2. Under the assumptions of Theorem 5.1 the following two-sided
energy estimates hold:

—-2%(,) < |ut £ 22(7),

—22(3,) £ (fru)o £29(1").

70




Proof. By virtue of (1.6) we may write
2.2(u) = |ulf = 2(fu)o = —|u} <2 2(a).
Using (1.15), we obtain

[uf = ~22(u) = 29(2°) 292 VIiew
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Souhrn

DUALNI ANALYZA SEMI-KOERCIVNICH ULOH
S JEDNOSTRANNYMI OKRAJOVYMI PODMINKAMI
METODOU KONECNYCH PRVKU

IvaN HLAVACEK

Dudlni analyza koercivnich jednostrannych tloh byla zavedena autorem v ¢ldncich
[1] a [2]. Tam byly odvozeny nékteré a priorni odhady chyb za pfedpokladu regula-
rity feSeni. A posteriorni odhady chyb plynou pak z dudlniho pfistupu. V této prdci
je dudlni analyza rozsifena na semi-koercivni tilohy s homogennimi jednostrannymi
podminkami na hranici oblasti. Pomoci metody Falkovy [7] a Moscovy-Strangovy
[3]1 odvozuji se analogické apriorni odhady jako v [1]. Déle je dokdzdna konvergence
aproximaci primdrni (lohy bez pfedpokladu regularity feSeni.
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