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In the present last part of our paper we apply the abstract results obtained in [7],
[8] to a unilateral boundary value problem for a system of modified Navier-Stokes
equations which has been studied in [3], [6] (under zero boundary conditions).
The unilateral boundary conditions we are going to consider, arise from the problem
of the motion of a fluid through a tube: we only prescribe the direction of velocity
(completed by certain natural boundary conditions) at the orifices at which the
fluid runs into or leaves the tube.

Section 1 presents the statement of our boundary-initial value problem. We then
introduce in the following section the function spaces needed and the concept of
weak solution to the boundary-initial value problem stated. In Section 3 we collect
the existence, uniqueness and regularity results for the problem under consideration.

1. STATEMENT OF THE PROBLEM

Let Q be a bounded domain in B*. The boundary I' of Q is assumed to be Lipschit-
zian (cf. [9] for details). Let x = {x,, x,, X3} denote the generic point in &>.

We then consider in  x [0, T] the following system of partial differential equa-
tions for the unknown functions u = {ul, u,, u3} and p:

. l
[ u; _ (_l:('uo + HIIV”

(1.1)l a ox,

r-2y 0U; du;  dp 1 (i
A+ u,— + L=, i=1,2,3);
)0xj:| JOxj Jx; / )( )

divu =0.

Here f = {fl,fz,f3} is a given function, y, and u, are positive constants, while r
is a real number >2 (it will be specified in the following section). Further,

3 1/
[T
i,j=1\0Xy

1y We use the convention that a repeated subscript means summation over 1, 2, 3.
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The function u represents the velocity of the motion of a viscous, incompressible
fluid which runs through Q, whereas the function p describes the pressure existing

in the fluid. The term
0 ou;
—uy, — [ |vulm2 =
e (| | dx )

J J

arises from the concept of a motion with big gradient of velocity (cf. [3], [4], [5;
Appendix]). We also refer to the paper [ 1] where a related motivation for introducing
this term may be found. An “axiomatic” approach which yields similar nonlinearities
(of polynomial type with respect to certain tensor invariants), is presented in [2].

The system (1.1) thus represents a modification of the usual system of Navier-
Stokes equations, and it formally turns into the latter when neglecting the nonlinear

0 Jdu;
—py, — [ |Vulr—2 =),
term —p, (7x~<| u] 6x->

J J

The system (1.1) (under zero boundary conditions upon u) has been extensively
studied in [3] where basic existence, uniqueness and regularity results may be found.
An existence theorem for (1.1) under relatively mild conditions upon the data has
been proved in [6; Chap. 2.5].

The boundary conditions upon u and p considered in the present paper, arise
from the problem of the flow of a fluid (whose motion in Q is governed by (1.1))
through a tube: the fluid runs into Q along a certain part of I', while it leaves Q along
another one.

In order to give a precise formulation of this situation we suppose that the boundary
I' is decomposed into three mutually disjoint parts I', such that mes (I',) > 0 (k =
= 1, 2, 3). Let v = ¥(x) denote the unit outer normal at a point x € I'.?) The boundary
conditions imposed upon u and p are then as follows:

_n 0
(1.22) (1o + pa|Vu|" 2)£-v—p§0 on Iy x[0,T],

(po + u1|Vu]"2)g—l:—-u —pu.v=0;

2) Note that v exists a. e. (with respect to the surface measure) on I (see [9] for details).
3 ou Ouy; On, Ouy .
Ju-v=up;,, —=I{—,—=,—=%; u, = u— (u-v)v (tangential component of u).
129 dv 9y oOv
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_ Ou
(1.2b) (,u0+p,‘Vu’ “)6—v-v~—p20 on I, x[0,T],
(,uo+;1,|Vu’"2)gﬁ-u—pu'v=0;
v
(1.2¢) u=0 on Iyx][0,T].

The first two conditions in (1.2a) express the fact that the fluid runs into Q along I'y,
while the first two conditions in (1.2b) mean that it leaves Q along I',. The remaining
conditions in (1.2a, b) may be understood as ““natural boundary conditions” (with
respect to Green’s formula) of the problem under consideration. Condition (1.2c)
expresses the fact that no motion of the fluid takes place along I'; (the fluid ““adheres”
at I';).

We complete the boundary conditions (1.2a-c) by the initial condition

(1.3) u=uq in Q.

Let us finally refer to [10] where another type of unilateral boundary conditions
for the (usual) Navier-Stokes equations is considered.

2. DEFINITION OF THE WEAK SOLUTION
2.1. Notation. Preliminaries. Let W;(2) (1 £ s < + o) denote the usual Sobolev

space (cf. e.g. [9]). We then introduce the spaces

¥ ={ue[C?(Q)] :divu=0 in Q, u=0 on I}
and
H = closure of ¥ in [IX(Q)]?,

V = closure of ¥~ in [W)(Q)]*,
W = closure of ¥ in [W}(Q)]* .

H is a Hilbert space with respect to the scalar product
(u,v) = .[ up;dx (ju] = (u, u)'7?).
Q2

Further, observing that u = 0 a. e. on I'; (in the sense of traces), we have respectively
for any ue Vor ue W(cf. [9])

IIA

mylul £ Jullwi@pe < moful Vuev

nillelll = [l

IIA

n2H[u|H Yue W
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where m, and n, (k = 1, 2) denote positive constants, and

du; Ov;

(o) = [ 2

o 0x; 0x;

Ml = {[ [ £,(G) o)™ sor wew.

Thus, V is a Hilbert space with respect to the scalar product ((,)), while Wis a
separable, reflexive Banach space with respect to the norm Hl Hl The imbedding
V < H is compact (cf. [9]). According to our abstract framework of [7] we denote
by (u*, u) the dual pairing between u* € W* and u € W.

Let us finally introduce the set

dx, |u| = ((u, u))'?> for u,veV,

K={ueViu.v<0 a.eon Iy,
u.v=0 a.eon I,,
u, =0 a.e on Fl‘qu}.

It is readily verified that K is a closed, convex subset of V. Further, setting

Il

Vo= {ue[C2(Q)]*: divu =0 in Q},
W, = closure of ¥ in [WHQ)]’

we have u = 0 a. e. on I for any u € W, and thus W, < K.
Let us define, for sufficiently small n > 0,

Q1 = {xeQ: dist(x,I'3) <n},
P=T N nQY) (k=12).
The following result yields a further information about K.

Lemma. Suppose:
(i) @ is star-shaped with respect to the origin;
(ii) the surface I'y (k = 1,2) belongs to the class C* (for a sufficiently small
5 > 0).
Then there exists a function w € W such that
weK, wé¢W,.

Proof. 1° Let S denote a (closed) surface of class C* such that:

a) Sc(Iyul,uQd);

b) Sn(yul,)=TI?ury;

¢) 0<18<dist(x,I3) <25 forany xeSn Q°
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(note that such a surface exists by virtue of the fact that I is Lipschitzian*)). Let
denote the bounded domain whose boundary is S.

2° Let a e [W2~'/(I')]? be a vector field on I having the following properties:
«=0 aeon (IinQ)u(LnQPd)ur;y;
a + 0 onasubset of I3’ U T3 with positive surface measure ;
«.v<0 a.eon I3;
a.v=0 a.e on F;";

J
o, =0 a.e.on I'¥ourd;

J o.vdlr =0.
radlur:léz

) {oz a.e.on I“f"ul"%",

We then define

0 a.e.on S~ (I’uvry).
It is readily verified that

Be[w} (D)), fﬁ.vds =0.

N

3° From [5; Theorem 3, p. 102] we conclude the existence of a function
w e [W}(Q)]? such that

divw=0 a.e.in @, w=p a eon S.

Let us now define

- W a.e.in ﬁ,
Y2 aein N0

Observing that W = f = Oa.e.on S \ (I'1’ U I'3%) we readily obtain w e [W}(Q)]°.
Further, it is easy to see that

w.v=0 a.e.on I,;

w.v=0 a.e.on TI,;

w, =0 agq.eon I'jul,;

w =+ 0 ‘onasubsetof I'y vI, with positive surface measure ;

w =0 ageon Ij.

4) Without any further reference, d is assumed to be so small that no overlapping of the subsets
of I" which are considered in the course of the proof occurs.

85



4° It remains to show that there exists a sequence of functions {w,} = 7~ such
that w, — win [W}(Q)]® as n — oo. But this can be achieved by using two standard
techniques: firstly, carrying out the transformation x |+ Ax (O < A < 1; cf. hypo-
thesis (i)) (cf. [9; Theorem 3.2, p. 67]), and secondly, using mollifiers for the trans-
formed function (cf. [11; p. 22]). We may therefore drop further details.

Remark. The assertion of the above lemma continues to hold in the case of two
dimensions. The argument in the third step of our above proof can then be simplified

(cf. [5; p. 41]).
2.2. Definition of the weak solution. Let r = 12/5. Further, let fe L*(0, T; W*)
(s"=s/(s — 1), s = 2) and u, € H.

Definition. The function u € (0, T; W) is called a weak solution to (1.1)—(1.3)
if the following conditions are satisfied:

(2.1) u(tye K fora.e. te[0,T];
(2.2) u' e (0, T; W*);

T
J (u’,v - u)dt +

0

T
(2.3) + J (1o + py|Vu|~ 2) ( v, iu_,) dx dt +
ox;

0x;

LL ,- — ) dxdi 3£‘(f,v — u)dt

Yoe IXO, T; W) with v(t)eK fora.a. tel0,T];
(2.4 u(0) = u, .

Let us note that the third term on the left hand side in (2.3) is well-defined.®)
Indeed, since r = 12/5 one may find a number g such that

. 9)

~ |-

1
+-=-, l<g=
> q

1
q 3—r

Observing the imbedding W, (Q) = [%Q) we then obtain by Hélder’s inequality

u —(zv—wdx
a 0x;

5) The second term will be considered in the next section.
6) We assume that 12/5 = r << 3. In case r = 3 our conclusions obviously continue to hold,
they even get simplified and may be strengthened (cf. the following section).

= ”““wm ”““ Wri(Q) ||W||U(n> = const ”“”Lz(m ”””Wr'(m HW”W(Q)
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for any u, v, we W}(Q) (j = 1, 2, 3). Hence

juj% w; dx
o) axl

for any u, v, w € W. Thus, the function

s f u (1) a—‘;x(—‘) (o) — u 1)) dx

(2.5)

< const [u] [[o][] [ ]l

belongs to L'(0, T), where u is a weak solution to (1.1)—(1.3), v e (0, T; W) being
arbitrary.

Let fe I*(0, T; H), and let {u, p} be a sufficiently regular solution to (1.1)—(1.3)
(i-e. both u and p are sufficiently smooth, their derivatives are integrable to appro-
priate powers in Q x [0, T], (1.1), (1.2a-c) are satisfied a. e.). We show that u is
a weak solution to (1.1)—(1.3).

To this end, let v e I¥(0, T; W) with v(r) e K for a. a. t € [0, T]. We then multiply
the i-th equation in (1.1) by v; — u;, integrate over Q and sumon i = 1, 2, 3. Integra-
tion by parts of the second and fourth terms of the integral identity obtained yields

j u(v; — u;)dx + J u; Ou;
Q Q axj
(ﬂo+,u,|Vu’ 2) _ dx =
6x 0x;
Jf ;) dx +f [(/10 + u,|Vu ,_2)_14 .(v—u) = plv—u). v]dS
riul, ov

Since v(f) e K for a. a. t€[0, T] (i.e. in particular v(f) = 0 a. e. on I'; U I', where
v(t) = o(t) — (v(r) . v) v) there exists a real non-negative function 4, = 4(f) on
I, (k = 1, 2) (depending on v) such that

oty = =A,(t)v fora.a. 1€[0,T], a.e.on T,
uty=A)(t)v fora.a. te[0,T]. a.e.on T,.

Taking into account the third and fourth boundary conditions in (1.2a), (1.2b),

we get
f [(#o + 111|V“
ryurjp

r—2 au
=—| A (;10+/11qu| )—.v—p|dS +
ry v .

ro2\ OU _
)a—v.(v—u)—p(v——u).v]dS-
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+J‘ Az [(l‘o + lhlvulr_z)a—u RS p] dS = 0.
r. ov

The inequality in (2.3) is now immediate.

Remark. Let fe I*(0, T; H). Suppose that u is a weak solution to (1.1)—_1.3)
possessing appropriate regularity properties (e.g. u e (0, T; W [W2(2)]*) (for
a suitable g > 1), u’ € [*(0, T; H)). Then it can be shown that there exists a function
pe L (Q) with op/ox; e IX(Q) (i = 1,2, 3) such that {u, p} satisfies the equations
(1.1) a.e.in @ x [0, T]. If in addition the conditions of the lemma in 2.1 are satisfied
then it can be proved that {u, p} fulfils the second and third boundary conditions in
(1.2a) and (1.2b)a.e.on I'; x [0, T]and a. e. on I', x [0, T], respectively.

3. RESULTS

Let us introduce mappings A4,: W— W* (k = 0, 1) by

(Aou, v) = o —a—ui@idx, u,ve W;
0 0x; 0x;

0
’zauw'd u,ve W.
5 0x;

(Ayu, v) = ,ulf |V
A simple calculation shows that

(AJU, “) = My

WAsullle = mlllull =t Vuew

i.e. A, is the duality mapping from W into W* with respect to the gauge function
Y(o) = p,0" "', Further, it can be easily verified that A, is the gradient of the function-
alu l—+ (1/r) u,H|u|l|" (u € W). Thus, setting

1
A=A0+A1, F(u)=5(Aou,u)+lu1
r

the operator 4 and the functional F satisfy the conditions (1.1)—(1.5) in [8] (suppose
r > 3;cf. the remark at the end of [7]).

Further, the estimate (2.5) implies that for each pair u, v € Wthere exists a (uniquely
determined) element B(u, v) € W* such that

(B(u,v),w) = j
(note that the estimates (1.4) in [7] are obviously satisfied).
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Under the assumption r > 3 the estimate (2.5) may be sharpened as follows.
Firstly, we obtain by virtue of the imbedding W3(Q) = L°(®) the estimates

u—al—)wdx
o 0Xx;

< const [[ull i) v

= H””LG(Q) “UHer(Q} “wHLZ(Q) =

W, (Q) HWHL2<9>

for arbitrary u, v, we W}H(Q) (j = 1, 2, 3). Secondly, using the imbedding W}(Q) =

<= C(Q) we obtain
j‘u?lwdx §max\u\j
Q aXj ko] Q

< const [[ullw,ic) [vlwaroy [W]Lao

u —aiwdx
o 0x;

|(B(u, ©). w)| = const Jul| [[[o]]| jw]
|(B(us 0). w| = const [[[ull] f[e] ||
|(Bu v). w)| = const[u] fjo] |[jw]}

for all u, v, w e W, i.e. the bilinear mapping B satisfies (1.6) in [8].

dx <

ov
—w
0x;

and

< const |[ul| 20 [0]wyio) |W]w,10) -

Thus

Finally, set ¢ = Iy where Ix denotes the indicator function of K, i.e.

0 if uek,
IK(u)—{+oo if ueVNK.

The functional Iy is proper, convex and semi-continuous on V. Condition (1,5) in
[7] is immediate.

Thus, taking into account the definition of the mappings 4 and B it is easily seen

that the evolution problem (2.1)—(2.4) is a special case of our abstract theory de-
veloped in the preceding two parts of our paper.

Applying the results of [7], [8] to the present case we obtain: Let r > 3. Then it
holds:

1° Let the data satisfy the conditions
f= i+ :f1el}(0, T;H), fofrel’(0, T; W*);

uoe Wnk.
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Then there exists exactly one function ue L*(0, T; W) n C([0, T']: H) such that
(3.1) u(t)eK fora.a. te[0,T];

(3.2) u' e 0, T; H) ;

T
J(u’,v—u)dl+
T 2) <5v - gui)dx dr +

ox; 0x;

j (/10 + ﬂxlvu
J

ff —ui)dxdtgL(f,v—u)dt

Yoe (0, T; W) with o(t)eK fora.a. te[0,T];

(3.4) u(0) = u, .

2° Suppose that the data fulfil the following conditions:

(3.3)

f=1 +f2:fIEL2(0, T, V*), fz,fZ’GE,(O, T; W*)l
uoe Wn K.

Then there exists exactly one function ue L(0, T; W) n C([0, T]; H) which
satisfies (3.1), (3.4) and the inequality

T
~f(v’,v—u)dt+

J J(uo+ﬂ1|Vu’ 2) =L ( J)dxdt-I—

+LL“ a:(“ ‘“)d"d”J (f, v — u)dt — 3o(0) — u,|?

Sor all ve L(0, T; W) with v' € L'(0, T; W*).
3° (i) Let
feX0, T;V*), f'eL'(0,T; W), t*f' el*0, T;V*);
uoe WnkK

where o = }. Then there exists exactly one function u e L*(0, T; W) n C([0, T]; H)
which satisfies (3.1)—(3.4). Furthermore, it holds

ueC([0,T}; V), r*u' eL”(0, T;H)nI*0,T;V).
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(ii) If the data satisfy the conditions
f,f’eLz(O, T, V*), uoe Wnk;
duy; Ov;

(ﬂo + Hy quO r= 2) —L dx +
0x;

Y ! j

+Juojiu-v dx
o  0x;

for all ve W, then the function u from (1) additionally satisfies

0.9+

< const lv|

ueC([0, T]; V), w'eL”0, T:H)nL}0,T; V).

For proving the results stated we only note that the uniqueness of the solution
to (3.1)—(3.4) follows by passing from (3.3) to the pointwise inequality and using

a standard device (cf. the proof of Theorem 2 in [8]). Finally, the functional I is
subdifferentiable at each point of K, and

l(ug) = {weV:((w,v —up)) <0 VoeK}.
Hence, Theorem 2, (ii) in [8] applies.

Remark. It is easy to see that the theorem in [7] also yields the existence of a weak
solution to (1.1)—(1.3) when y, = 0 (cf. [6; Chap. 2.5]).
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Souhrn

O EVOLUCNICH NEROVNOSTECH MODIFIKOVANEHO
NAVIEROVA-STOKESOVA TYPU, III

MANFRED MULLER, JOACHIM NAUMANN

V ¢lanku se aplikuji teoretické vysledky z pfedchozich dvou &asti na problém
jednostrannych okrajovych podminek pro modifikovanou Navier-Stokesovu rovnici
(1.1). UvaZované jednostranné okrajové podminky odpovidaji tloze o proud&ni
kapaliny trubici, pfi niZ je pfedepsan smér rychlosti v misté vtékani kapaliny do
trubice a u jejiho usti. Tyto podminky jsou popsany vztahy (1.2a) na &sti hranice
I'y (odpovidajici vtoku kapaliny) a (1.2b) na &asti hranice I', (odpovidajici vytoku),
pfiCemz tfeti rovnice v obou pfipadech znamena jisté dodatecné pfirozené podminky
(souvisejici s Greenovou formuli); (1.2¢) pfedstavuje podminku nulové rychlosti
na plasti trubice I';.

V prvnim odstavci je formulovan problém, v druhém jsou zavedeny potiebné
prostory a pojem slabého FeSeni a ve tfetim jsou shromazdény vysledky o existenci,
jednoznacnosti a regularité pro dany problém.
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