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SVAZEK 25 (1980) APLI K ACE M ATEM ATI KY ČISLO 2 

TESTING O F CONVEX POLYHEDRON VISIBILITY 
BY MEANS O F GRAPHS 

JOZEF ZÁMOŽÍK, VlERA ZÁTKOVÁ 

(Received January 25, 1977) 

This paper follows the article [1] which solves the problem of finding the boundary 
of a convex polyhedron in both parallel and central projections. Our aim is to give 
a method which yields a simple algorithm for the automation of an arbitrary graphic 
projection of a convex polyhedron. 

To this aim we employ some concepts and features of the graph theory and their 
interpretation in terms of Boolean matrices. 

In the first section of this paper we recall some necessary concepts from the graph 
theory. The second section applies graphs in order to determine visibility of a convex 
polyhedron. The term "visibility" is understood in the current sense as used in 
descriptive geometry. 

1. SOME CONCEPTS AND FEATURES OF GRAPH THEORY 

An unoriented graph with vertices from a set X and with edges from a set U will 
be denoted by 9 = (X, U, R); R is here a relation defined on ordered triplets of 
elements x, u, y (x, y, e X and u e U) so that R(x, u, y) = R(y, u, x). 

Let X = {1, 2, ..., n) be the set of vertices of a graph 9 = (X, U, R) and let U = 
= \ux, u2, ..., um} be the set of its edges. 

A finite sequence 

IQ, Ul9 l1, U2, l2, ..., Ls-i, us 

s ^ 0, of elements of a graph 9 such that 

R(i0, uu it) A R(iu u2, i2) A ... A R(is~l9 us, is) 
is a walk from i0 to is and the number s is the length of this walk. 

The distance g(i,j) between two vertices i and j of the graph 9 = (X, U, R) is the 
length of their shortest walk. The number d(<$) : = max g(i,j) is the diameter of the 
graph <S. iJeX 

81 



N o t e 1. It is obvious that the diameter d(&) of a graph ^ fulfils d(%) = n - 1, 
where n = card {X}. 

The matrix of order n = card {X} with elements gu e {0, l} , i,j e {1, 2 , . . . , n} 
where # i7 = 1 if i is adjacent with j (i.e. the vertices i and j are in relation R) and 
# tJ- = 0 otherwise is called the adjacency matrix G of the graph $. 

In the next part of this paper we shall employ Boolean matrices of a graph only, 
i.e. matrices over Boolean algebra B{0, 1} (nevertheless we keep the usual symbols 
for sum, product and power of a matrix). 

We denote Sfe = E + G + G2 + ... + Gk, where G is a Boolean matrix of the 
graph <&, k is either a natural number or 0 and E is the unit matrix with the same 
order as the matrix G. 

It is obvious that 

S° = E, 

Sk = (E + Gf = Sfe_1 + Gk , k > 0 . 

The elements 1 of the matrix Sfe express that between the corresponding vertices 
of the graph there exists a walk whose length is less or equal to k. The equation 
S° = E means that each vertex is connected with itself by a walk with the length 0. 

N o t e 2. For a computer it is convenient to construct the matrix Sfc by 

Sfe = [S*"1 . G] + E, k = 1 . 

It is not difficult to prove this identity. 

For Boolean matrices A :g B is equivalent to atj g btj for all elements of both 
matrices; so we can write Sfe :g Sr for k < r. 

Theorem 1. For a finite graph & there always exists a number d, 0 <̂  d :g card {U} 
such that 

sd = sd+1 = sd+2 = 

The number d is the diameter of the graph ^ . 

Proof. From the definition of the graph diameter it follows that the matrix 
GJ(g) included in the matrix Sd describes a walk the exact length of which is d(^3) 
(d(y) > 0). For d(&) = 0 it is G° = E. As the walks with lengths s > d(<$) are 
constructed from walks with lengths less or equal to the diameter of the graph ^ , 
we find d(%) = d. 

Besides d(&) ^ n — 1, n = card {X} and therefore d g n — 1. The matrix Sd 

can be constructed by a finite number of steps. 

Definition 1. The matrix Sd from Theorem 1 will be called the stable matrix of the 
graph ^ . 
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N o t e 3. The construction of the matrix G implies symmetry of this matrix. So both 
the powers of G and the matrix Sd are symmetrical as well. 

Now we shall construct a certain decomposition of the graph <§ = (X, U, R) into 
disjoint subgraphs. Vertices x, y of the graph <§ are separated if there exists no walk 
that connects xy and they are unseparated if there exists at least one walk that con­
nects them. 

In accordance with the criterion of "separating" which is an equivalence on the 
set of vertices X of a graph <§ we can decompose the set X into classes Xl9 Xl9 ..., Xx, 
x ^ 1, in such a way that each two vertices are unseparated. Then the subgraphs 
<§{ = (Xi9 Uh R) generated by the sets Xh i e {l, 2, ..., x}9 have neither common 
vertices nor edges and we call them components (of connectivity) of the graph <§. 
The number of these components is x. We shall call the graph <§ a connected graph, 
when x = 1. 

We can find the components of a graph <§ by means of the matrix Sd. Two vertices 
xi9 Xj with s\f = 0 belong to different components. Therefore each set of all identical 
rows (columns) of the stable matrix Sd of the graph <§ corresponds to one component 
of <§. 

2. A METHOD OF TESTING THE VISIBILITY OF A POLYHEDRON 

A parallel or a central projection of a finite convex polyhedron (briefly poly­
hedron) is a convex polygon (we exclude the case when some points of the polyhedron 
are projected into infinite points), [1]. The boundary of this polygon is the boundary 
of the polyhedron in this projection. 

The set of vertices and edges of a polyhedron M can be interpreted in terms of the 
graph theory. Then the vertices and edges of the polyhedron M correspond to vertices 
and unoriented edges of a graph <§ and the relation R is generated by the list of ver­
tices and edges of polyhedron which determines the incidence between vertices and 
edges. 

We can interpret the projection of the set of vertices and edges of the polyhedron 
M i n the plane by the same graph <§ by observing the following rule: 

A vertex or an edge of the graph of the projection of the polyhedron will exist if 
and only if there exists a vertex or an edge of a graph of the polyhedron (regardless 
of the possible special position in the projection). 

Let us assume that we can determine the boundary of the projection Mx of the 
polyhedron M. The boundary is the set of sides and vertices of the polygon Mx. 
We shall construct the boundary according to [1]. If two vertices of the polyhedron 
are projected into the same vertex of the boundary, we take into account only one 
of the vertices of the boundary, while the other belongs either to visible or invisible 
vertices. Thus the boundary generates three disjoint sets of vertices of the poly­
hedron: 
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1. V0 — set of vertices of the boundary, 
2. V! — set of visible vertices, 
3. V2 — set of invisible vertices. 

Let us construct a subgraph <f, the so-called factor of the graph ^ , whose set of 
vertices coincides with that of the graph ^ while its set of edges includes only those 
edges of ^ that have no vertex on the boundary. The adjacency matrix G of the 
factor ^ from the matrix G by replacing all elements of all rows and columns which 
correspond to the vertices of the boundary by 0. Let the set of vertices V1 u V2 and 
the set of edges generated by these (and no other) vertices determine a graph ^* as 
a subgraph of the factor ^ . We obtain the matrix G* from the matrix G (or from the 
matrix G) by omitting those rows and columns that correspond to the vertices of the 
boundary. 

Obviously, we can decompose the graph ^* into two components ^* and ^* s o 

that X1 = V! and X2 = V2. 
The diameter d(^*) of the graph ^* is max \_d(&*, d(^2)~\. Therefore we construct 

the stable matrix S*d and distinguish the vertices belonging to the classes Xt and X2 

by comparing the rows (columns). 
For example, Fig. 1 shows a projection of a dodecahedron with fifteen vertices; it 

has the set of vertices of the boundary V0 = {3, 4, 5, 10, 15, 11, 12, 13, 8} and there­
fore the graph ^* has the matrix 

1 2 6 7 9 14 

1 0 1 1 0 0 0 
2 1 0 0 1 0 0 

G* = = 6 1 0 0 1 0 0 ; 
7 0 1 1 0 0 0 
9 0 0 0 0 0 1 

14 0 0 0 0 1 0 

this results from the matrix G of the graph 'S by omitting those rows and columns 
that belong to the vertices of the set V0. 

A 
D5 
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The stable matrix of the graph ^ * is the matrix 

1 2 6 7 9 14 

1 1 1 1 1 0 0 
2 1 1 1 1 0 0 

S*2 = = 6 1 1 1 1 0 0 . 
7 1 1 1 1 0 0 
9 0 0 0 0 1 1 

14 0 0 0 0 1 1 

Vertices connected by a walk in the graph ^ * belong to one of the two disjoint 
subsets V1 = {1, 2, 6, 7}, V2 = {9, 14}. 

Let i be a visible vertex (by definition or determined in an elementary way), i.e. 
i e Vj.The matrix Gx arises from the matrix G in such a way that all its elements 
corresponding to the vertices of the set V2 are replaced by 0. The matrix Gl is the 
matrix of the graph containing all visible edges and vertices and all "neutral" edges 
and vertices, i.e. those which are practically drawn as "visible". 

AH the other edges are invisible (i.e. drawn by dashed lines) and they are determined 
by the matrix G2 which fulfils Gx + G2 = G. 

N o t e 4. When solving the visibility, the following special cases may occur: 

(a) If one of the components ^ * and ^ * is empty and the other contains at least 
one vertex then x = 1 and all elements in the matrix S*d are 1. 

(b) If both these graphs are empty, then all vertices belong to the boundary. 
(c) The case of the (so-called) isolated edges, i.e. edges which are not incident 

with the boundary but join vertices of the boundary. The visibility of an isolated 
edge cannot be solved by our method. Therefore we substitute the elements cor­
responding to the isolated edges in the matrix of the graph by 0. 

N o t e 5. From the point of view of computer working storage, the use of Boolean 
matrices of a graph in the current form is not too suitable. There exist, however, 
various algorithms especially with regard to the operational system of the computer. 
Nonetheless, independently of it we can use the property that the matrix of a graph 
is symmetric and that the elements of its diagonal are 0. We can use this latter pro­
perty e.g. in Fortrans record so that we write the variable corresponding to the 
element gu by the type COMPLEX and then assign the values of the first and second 
coordinate of the projection of the vertex x, to its real and imaginary parts respectively. 
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S ú h r n 

TESTOVANIE VIDITELNOSTI KONVEXNÉHO MNOHOSTENA 
POMOCOU GRAFOV 

JOZEF ZÁMOŽÍK, VlERA ZÁTKOVÁ 

Tento príspevok navazuje na článok [1], v ktorom sa rieši úloha o testovaní obrysu 
konvexného mnohostena v rovnobežnom a stredovom premietaní. Našim ciePom 
je podať metodu, pomocou ktorej možno skonštruovať jednoduchý algoritmus pre 
automatizáciu kreslenia priemetu konvexného mnohostena v fubovoínom pre­
mietaní. 

V prvej časti příspěvku sú uvedené niektoré pojmy z teorie grafov, ktoré sa ďalej 
používajú. Druhá časť je aplikáciou grafov na určenie viditelnosti priemetu konvex­
ného mnohostena. 

Authoťs address: D o c RNDr. Jozef Zámožík, CSc, RNDr. Viera Zaťková, Katedra mate­
matiky a deskriptívnej geometrie, Stavebná fakulta SVŠT, Radlinského 11,884 20 Bratislava. 
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