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SVAZEK 25 (1980) A P LI K A C E M ATE M A T I K Y ČÍSLO 2 

CONTACT PROBLEM OF TWO ELASTIC BODIES - Part III 

VLADIMIR JANOVSKY, PETR PROCHAZKA 

(Received September 1, 1977) 

INTRODUCTION 

In Part I and Part II of this paper the problem was formulated and its solution 
was proposed. Uniqueness and solvability of the original problem were proved and 
convergence of the finite element solution to the solution of the main problem was 
established. 

In this Part III the implementation of p, A-Algorithm (see Part I) will be presented 
and a practical analysis of convergence will be shown. While the first and second 
parts of this paper were written for a mathematician, this part containsmostly 
remarks concerning practical applications. 

The results presented were obtained by programs running on HP 2100 S computer. 

7. NUMERICAL ANALYSIS 

We shall restrict our considerations to the finite element method with linear 
displacement elements, which has been published in many papers (see [2]). From the 
above paragraphs we can conclude: The Problems are linear over each of regions 
Q' and Q", respectively. The linearity fails along the contact line F, where the condition 
of "continuity" of displacements appears at the artificial bolt A only, while at the 
nodal points from the set $l(p) — A the balance condition has to be satisfied. 

Implementation of p, A-Algorithm consists of two problems iterated and described 
as STEP 1 and STEP 2. 

If the choice of A is proper, p-Algorithm and p, A-Algorithm coincide. We choose 
a point A considering our choice is a proper one. 

STEP 1: Using the terminology of "finite dimensional" elasticity, the relevant 
problem can be formulated as follows: 

For distributed external forces g' and g" on Q' and Q" (caused by F, P and the 
boundary condition on F5) and distributed contact forces i' and i" = — f on F 
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(caused by X(p,k) — see STEP 2) given in each iteration step, find the field of displace­
ments u' and u", respectively, of the bodies Q' and Q" (2 degrees of freedom at each 
nodal point) such that the potential energy of Q' and Q", respectively, is minimal and 
the geometrical boundary conditions on F2, F3 and F4 on u' and u" are satisfied 
(restrictions on the corresponding degrees of freedom).*) Moreover, the side con­
dition has to be satisfied: The normal displacements of u' and u" at the point A are 
continuous (i.e. [u]v = 0 at A). 

This problem leads to the solution of two linear algebraic systems given by square 
stiffness matrices K' and K". 

(7.1) K'u' = g' + r , 

(7.2) K"u" = g" + f" . 

The matrix K' is regular, while the matrix K" is singular, i.e. the system (7.2) is 
solvable for "suitable" right hand sides only and a solution u" (if it exists) is not uni­
que. Nevertheless, it can be shown that g" + f" is always "suitable" iff" is a distrib­
uted force given by X(p,k\ where X(p,k) solves STEP 2 (because of balance condition, 
see Remark 3.4) and u" is uniquely determined up to a rigid displacement in the 
x2-direction. 

The general strategy of solving STEP 1: 

(A) solve (7.1); 

(B) find the particular solution ~u" to the system (7.2) using the condition that 
there is no v-displacement at A (then " u" is uniquely determined — the body Q" 
is statically determined); 

(C) make the superposition of ~u" and a rigid admissible displacement ~u" of Q" 
in the x2-direction, i.e. set 

(7.3) u" = "u" + ~u" 

so that u" satisfies the side condition [u]v = 0 at A. 

The way of finding ~u" becomes clear from Fig. 10, where A' and A" are the 
positions of A after the deformation of Q' and Q" via (A) and (B) and A" is the 
position of A after the superposition (7.3). The point A" exists uniquely by virtue 
of the assumption that A e N(

0
P), i.e. the v-direction is not perpendicular to the x2-axis. 

The direction of the outward normal to Q' at a nodal point Ni>p will be chosen 
as the axis of the angle which is defined by points Nf_1>p, Ni+1>p, for i = 
= 1, . . . , k{p) — 1. For nodal points belonging to the x2-axis the outward normal 
has the direction of the positive or the negative x2-axis. With respect to small defor­
mation theory, this is a sufficiently suitable choice. 

We remark that from the algebraic point of view the step (B) consists in replacing 
one of the equations (7.2), which are linearly dependent, by the condition "no 

*) We omit indices/), k. 
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v-displacement at A". We now briefly explain which equation from (7.2) has to be 

replaced: 

Each equation of (7.2) is "connected" with one degree of freedom of the body Q" 

and expresses the condition of the minimal energy, assuming that all degrees of 

freedom are "frozen" except the relevant one. It can be shown that the equation 

"connected" with the v-displacement at the point A (after geometrical transformation) 

is redundant and has to be replaced by the condition "no v-displacement at A". 

v-direcfion 

Fig. 10. 

The great advantage is the splitting of u' and u": 

(7.5) U = u + U, u = ua + U, 

where ug, u'f, ug, u"f solve linear algebraic systems 

(7-6) 

and 

(7.7) 

K X = g', 

к'U; = f , 

к -, = s 

•K" - u ; = P 

where " K" is the matrix K" adapted with respect to the condition "no v-displacement" 

at A. The linearity admits the superposition of the influence of the forces f and g, 

i.e. u^ and ~u"g can be computed once only and they do not change during iterations 

between STEP 1 and STEP 2. 

We briefly explain how to compute the values of vectors u^ and ~ug. At the 

beginning of iteration we fix the point A at the place before deformation and solving 
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the second equation(7.6) we obtain the solution ~u"g and the normal reaction at A. 
This reaction can be obtained either numerically or from the balance condition in 
the x2-axis direction. Denote the reaction by RA. Then do the same with the first 
equation (7.6) with a free (non-fixed point) A, considering RA as a known external 
force at the nodal point A with respect to Q'. We obtain the solution u^. 

To "feed" STEP 2 and hence to repeat the algorithm, we are actually interested in 
the values of u' and u" on F. Even, we have only to compute u'f and ~u"f on F. 
From this point of view we recommend the pre-eliruination (condensation of para­
meters) of both the matrices K' and ~ K", using Gaussian elimination in the following 
sense: We transform K' as well as ~K" to the form 

[**11 A j 2 

0 A2 2 

considering the renumerating of the nodal points as follows: The nodal points on the 
contact line F have the numbers K'(P) — k(P) + 1, ..., K'(p) with respect to Q' and 
K"(p) — k(p) + 1, ...,K"(p) with respect to Q", where K'(p) and K"(p) are the 
numbers of nodal points of triangulations of Q' and Q'\ respectively. This means that 
the last numbers of the numbering belong to the nodal points on the contact line F. 
The matrix A2 2 has the dimension (2k(p) x 2k(p)) i.e. it is a square matrix and A1X 

has zeros under the pivots and remains banded. The relevant values U} and ~ Uf of 
u^ and ~u"f on F are given by "small" linear algebraic systems 

(7.8) K'u; = F , K u; = F . 

The size of the regular square matrices K' and K" is now 2k(p) x 2k(p) and this 
elimination proceeds in such a way that we do not change the right hand sides of 
equations (7.7), i.e. the mappings 

(7.9) f ' - » F , T - + - F 

are just restrictions. 

Resume of STEP 1. 

The input to STEP 1 is X. The output is [w]v at nodal points on F. The actual 
computation consists of 

(1) computation off' (i.e. substitution in simple formulae), 
(2) solution of two "small" linear systems (7.8), 
(3) evolution of (7.5) on F, 
(4) finding of the shift ~u" at A — via Fig. 10, 
(5) superposition (7.3) on F, 
(6) calculation of [u]v on F. 

Hence the matrix inversion, which is the most time consuming operation, is reduced 
to two matrices having size 2k(p) x 2k(p). It is seen that p, A-Algorithm is extra-
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ordinarily advantageous when the relative number of nodal points on the contact line 
is small. 

STEP 2: There is only one difficulty in the computation of A(p>k+1). This concerns 
the choice of the parameter O, which can dramatically influence the convergence 
of p, A-Algorithm. From the theoretical point of view, this algorithm can be re­
garded as a method for finding a fixed-point to an operator on the set VA

P) + A^. 
In the proof of Theorem 3.4 (see [3]) the "convergent" choice was theoretically 

guaranteed, namely the interval (3.15) is an optimal choice of O in a certain sense. 
Anyway, the interval (3.15) is not necessarily available in practice, as was said in 
Remark 3.5. We have carried out a lot of computations and Fig. 11 reflects our 
experience concerning the choice of O in our particular problem. Fig. 11 shows the 
typical dependence of the number of iterations needed to reach a given precision on 
the value of Q. 

SUFFICIENT NUMBER OF 
ITERATIONS OF SOLUTION 
P, A- ALGORITHM 

100 
35 40 45 50 

Fig. 11. 

^^ WE VALUE OF < 

8. RESULTS 

To check the accuracy and to determine the rate of convergence with respect to 
the number of elements employed (in particular with respect to the number of nodal 
points on the contact line) two problems with the same physical properties were 
analysed. To our great regret we cannot compare our results with some practical 
model because none is available to us. 

The general geometry of our model example is illustrated in Fig. 12. A plate with 
sides 40 m x 80 m and a circular contact line with the radius of 15 m and the tunnel 
wall of thickness equal to 3 m were symmetric with respect to both x t and x2 axes. 
The following physical properties are considered: EQ> = 2000 Mp/m2, EQ.. = 
= 2100000 Mp/m2, vQ, = 0.25 and vQ„ = 0.15. 

The construction was subjected along the line Fx to the uniformly distributed load 
q = 50 Mp/m. Along the parts of boundary F2, F3 and F4, there are no displace-
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ments in normal direction in the first case. In the second case the vertical part of F2 

is considered as a free edge, that means it is not prevented from moving. 

Ғig. 12. 

The mesh was automatically generated and was refined in the direction from point 
A to D (see Figs. 12 and 13). The mesh sizes used for computation are as follows: 
The first model contains 15 nodal points on the contact line, the second 31 and finally, 
the third model contains 39 nodal points on the contact line. The model with the 
finest division contains 1404 elements and 759 nodal points. The other models are 
divided proportionally to the number of nodes on F. The results corresponding to the 
mentioned models are given in Tables. Together with the results for displacements 
and forces evaluated in normal direction to the contact line the percentage errors 
are given in Tables. The percentage errors are calculated as 

solution of model — solution on finest mesh 

solution on finest mesh 
юo°/0 
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so that an overestimation will be shown by a positive sign and an underestimation 
by a negative sign. The finest mesh is that with 39 nodal points on the contact line. 

Fig. 13. 

Because of the symmetry of the construction about the xj-axis, only the upper part 
of the finest mesh is illustrated in Fig. 13. The refinement in the neighbourhood of the 
point D (according to the notation in Fig. 12) is obvious from Fig. 13. The situation 
of the points A, B, C and D at which the values are given is described in Fig. 12. The 
values at B and C are calculated as the arithmetic mean of the values obtained at the 
adjacent nodal points. 

Tables contain the results obtained for the first and second case of the supporting 
of the plate studied. The second case of supporting induces a dislocation on the contact 
line so that the displacements of the earth medium and the displacements of the wall 
of the tunnel (Q") are different along a certain line of the contact line. The normal 
forces are equal to zero over that part of F. 

In both cases the results are compared with the results given by the model containing 
39 nodal points on the contact line. The finest mesh solution is shown in the last col­
umn of Tables. 
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TABLES 

1. model case 

Nodal point displacements on T-line 

on T-line 15-approx % error 31-approx % error 39-approx 
A —0.0548 —46.80 —0.0983 —4.56 —0.1030 
B —0.0206 —56.08 —0.0452 —3.62 —0.0469 

c 0.0389 —35.38 0.0580 —3.65 0.0602 
D 0.0662 —43.52 0.1099 —6.23 0.1172 

Nodal point normal forces on T-line 

on T-line 15-approx % error 31-approx % error 39-approx 
A 0.1675 —14.89 0.1838 —6.61 0.1968 
B 0.5883 0.68 0.5782 —1.04 0.5843 

c 1.4048 2.42 1.3721 0.00 1.3716 
D 1.6263 - 2 . 8 0 1.6678 —0.32 1.6732 

2. model case 

Nodal point displacements with respect to earth 

on T-line 15-approx % error 31-approx % error 39-approx 
A —6.3954 — 5.30 —6.6487 —1.55 —6.7534 
B —1.5050 3.45 —1.5579 7.09 —1.4548 

c 0.0437 —44.54 0.0763 —3.30 0.0788 
D 0.0871 -44 .20 0.1424 —8.75 0.1561 

Nodal point displacements with respect to wall 

on T-line 15-approx % error 31-approx % error 39-approx 
A —0.0769 —46.45 —0.1357 —5.51 —0.1436 
B —0.0320 —53.62 —0.0687 —0.43 —0.0690 

c 0.0437 —44.54 0.0762 —3.30 0.0788 
D 0.0871 —44.20 0.1424 —8.75 0.1561 

Nodal point normal forces on T-line 

on T-line 15-approx % error 31-approx % error 39-approx 
A 0.0000 0.0000 0.0000 
B 0.0000 0.0000 0.0000 

c 1.3941 2.93 1.3535 —0.07 1.3544 
D 1.8074 —3.99 1.8713 —0.60 1.8826 

We can obviously deduce from Tables that at most of points belonging to the 
contact line the convergence is monotone. But, in some cases an enormly high error 
can occur. This is caused by circumstances, mainly by a choice of nodal points along 
the contact line. 
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Anyway, the convergence of nodal forces is much better than that of displacements. 
Even in the case of approximation with 15 nodal points on contact line we obtain 
sufficient agreement with the results of approximation with 39 nodal points on F. 

The practical implementation of the presented algorithm confirmed that it is very 
efficient if the relaxation parameter O is chosen in an "optimal way". Yet we have 
to rely more or less on our guess and experience. This lack of information might be 
improved in the future. 

CONCLUSION 

In this paper a contact problem of two elastic bodies has been investigated on an 
example of a tunnel wall surrounded by earth. The problem is formulated in terms 
of the constrained minimization of a potential energy functional in the first part [3] 
where also the solvability and uniqueness are proved and a finite element algorithm 
based on Uzawa's algorithm is proposed and discussed. 

In the second part [4], convergence of the numerical solution to the solution of the 
original problem has been proved. 

In the third part, convergence of the algorithm is investigated on some practical 
model examples and the practical implementation of the algorithm is discussed. 

We remark that in technical practice the model example described in the previous 
chapters could be generalized for more complicated geometry and mechanical 
parameters. In DP-Metroprojekt, Prague, a problem concerning the coefficient of 
Coulomb not equal to zero was examined. 

Acknowledgement. Thanks are due to Professor J. "Necas and I. Hlavacek for help­
ful suggestions. 
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S o u h r n 

KONTAKTNÍ PROBLÉM DVOU PRUŽNÝCH TĚLES 

VLADIMÍR JANOVSKÝ, PETR PROCHÁZKA 

V této práci je studován kontaktní problém dvou pružných těles s možnou aplikací 
na výpočet deformace a napjatosti horninového kontinua, oslabeného tunelem 
s obezdívkou. V prvé části práce [3] je podána variační formulace problému, navržen 
konečně-dimenzionální model a jeho řešení na bázi konečných prvků. Ve druhé části 
[4] je dokázána konvergence numerického řešení k řešení výchozí úlohy. Konečně 
třetí část práce je věnována praktickému užití navrženého algoritmu a je sledována 
konvergence na dvou příkladech s ohledem na zhušťující se síť konečných prvků. 
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