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SVAZEK 25 (1980) A P L I K A C E M A T E M A T I K Y ČÍSLO 4 

ON THE QUADRATIC DERIVATIVE 
OF EXPONENTIAL PROBABILITIES 

FRANTISEK RUBL1K 

(Received April 18, 1978) 

INTRODUCTION 

A statistician who needs to make a decision on measured data has to use different 
types of probability distributions. For example, the normal distribution is used in 
geodesy, the Poisson distribution is used for measuring the decay of nuclear particles 
and for measuring random electric signals, the lognormal distribution is used in 
geology. All these distributions belong to the class of exponential families, which 
is the reason for studying various properties of this class. 

Some statistical procedures can be described in the same way for all parametric 
families of probabilities which satisfy certain regularity conditions. This has been 
done for classes which have quadratic differentiable root of likelihood ratio e.g. in 
[2], [3], [4] and [7] .The following assumptions for testing hypotheses on a parameter 
of a distribution are made in [7]. The distribution of a random variable is supposed 
to belong to a parametric class of probabilities 0* = [Pe; 0 e 6)}, which are defined 
on (X, ,^), are mutually absolutely continuous and 0 is an open subset of Rk. 
Moreover, there exists a G-finite measure \i defined on (X, M) such that for the densities 

( i ) je(t) = ^ ( t ) 

d/i 

and for each 0o e (9, the functions 

(2) <Pe(t) = m 
ш. 

1/2 

have the quadratic derivative (p0o(t) with respect to the measure PQo. This derivative 

is defined in [7] to be a measurable function cp0o : X —» Rm, satisfying the condition 

(3) lim 
heRm,h-+0 

>80+í.(t) - i - fcWt)T 
• ~ ~ ~ u r f l 

h 
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The symbol h' means a row vector and h'z = h_zt + ... + hmzm. Further, the co-

variance matrix 

(4) Г( 0) = 4 cov (фв0) 

of the vector 2(p0o is supposed to be regular. 

Examples of some distributions satisfying these conditions are in [7]. The purpose 

of this paper is to prove that the exponential probabilities satisfy these conditions, 

which is done in Theorem 1. As is shown in [5], though the class of exponential 

families is very large, many usual distributions assume the exponential form after 

some reparametrization only. The explicit formula for calculation of the quadratic 

derivative of a probability reparametrized into an exponential family is given in 

Theorem 2. The paper is concluded by an example of such a calculation. 

MAIN RESULTS 

We shall suppose in this part that & = {PQ\ 9 e 0} are probabilities on (Rk, 3?k), 

0 c Rk and the densities (1) have the form 

(5) f,(t) = C(0)exp(cn), 

where 9't = 0_t_ + ... + Qktk . 

Theorem 1. Let 90 e 0 and in accordance with (2) let 

C(6) 
(6) <Pв(t) 

C( 0, 
exp ((0 - 0)' t) 

1/2 

Further, let 90 be an inner point of the set 0. 

(I) Let Tj(t) = tj be the projection into the j-th coordinate. The function 

Kti - Eeo(Tt)y 

(7) Фвo(t) 
i(t* - Eeo(Tk))_ 

is the quadratic derivative Of (6), i.e. it satisfies the relation (3). 

(II) If for each vector h e Rk there is a number _3 e (0, 1) such that the probabilities 

Pe0 + ph-> Poo a r e different, then the matrix r(90) defined by (4) and (7) is regular. 

Proof. Since 90 is an inner point of 6), there is G > 0 such that U = {9 e Rk; 

\\9 — 90\\ < s) is a subset of 0. According to Theorem 9, Chapter 2 in [5], the 

function 

(8) q(z1,...,zk)=\ exp ( £>,/ ,) án(t) 
JR, l 
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of complex variables z l5 ..., zk, has derivatives of all orders on the set 

o = {(c, + tyi,...,<Ek + < ) ; (fi &)ei/} 

and these derivatives may be computed by differentiating under the integration sign. 
Since the set D is homeomorphic to V x Rk and the topological product of connected 
spaces is connected according to Theorem 6J .4 in [1], the set D is connected and 
open, and Hartog's theorem (cf. [6] p. 277) implies that the derivatives are continuous. 
Thus, for 0 e ( 9 , 

(9) dji°ll^-lA = (V- ... & exp ( V Oft) Mt) 
v ; 30? . . . 5 0 ? J ] k j=i JJ) w 

which means that the function (p9o + h ~ 1 — h'(p0o belongs to L2(P6o) provided \\h\\ is 
sufficiently small. Further, the relation (9) implies that 

m = - C(0) Ee(Tj), - ? f = MO [tj - E,(T,)] , 

£ ^ = - ^ 0 W'« - £»(T»)) ^ - £ «^)) - cove (T, T,)] 
O0S O0y 

where cov0 (Ts, Tf) is the covariance of Ts, Tj with respect to the measure Pe. Hence, 
by means of Taylor's theorem for functions of k variables, we obtain 

<p9o+h(t) = i + i utj - E9O(TJ)) hj + i i ^ i hsh,, 
j=l S , j = l 2 O0S O0y 

0 = 0(h, t) e 0o, 0O + h . 

This equality means that 

k k 

(10) | |A| | - \<pto+h(t) - 1 - I i( t , - £9o(T,)) A,| ^ ||A|| I QSJ(h, t) 
J = l s . J = l 

Q.X*., 0 = MOI 0'* - E»(T*)\ \'J - ElTj)\ + |cova(T, T,)|] . 
Now we see that the relation (3) (cf. (7)) will be proved, if we find functions fsj(t) e 
eL2(Pdo) such that Qsj(h, t) = fsj(t) for all t and all h with \h\ sufficiently small. 
But the mentioned continuity of the quantities (9) implies that the functions C(0), 
Ee(Ts), cove (Ts, Tj) are continuous at 0 = 0O, hence for S > 0 sufficiently small and 
|| 0 — 0O|| _ S we have 

|C(0O) - C(5)\ < 1 , \E0o(Tj) - Es(Tj)\ < 1 , 

|cov9o(T, Tj) - co\s(Ts, Tj)\ < 1 

for all s,j. Thus for A e R\ ||A|| j£ <5 we may write 
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(ii) o ^ Qsj(h, t) g M O M t ) , 

U 0 = (Ii, - Eoo(Ts)\ + l)(\tj - Eeo{Tj)\ + 1) + 1 + |cov^(r f , Tj)\ 

where (9) and the Holder-Minkowski inequality imply that 

(12) qSJ(t)eL4(Pd0). 

Further, if \\h\\ £ S]2k, then 

Since 

(I4) e xP (— \tj\j = m a x | e xP ( ^ h ) > e xP 
<5 

and the points (0o(l), ..., 0o(i - 1), 0o(i) + 5, 0o(i + 1), ..., 0o(fc)) belong to U for 
5 e {(5, —(5} and i = 1, ... , k, the function (14) belongs to L4k(P6o). The generalized 
Holder-Minkowski inequality implies that the right hand side of (13) belongs to 
L4(Peo), which together with (11) and (12) completes the proof. 

(II) If the matrix T(00) is singular, then there exists a non-zero vector h e Rk such 
that 

ihj(Tj(t)-Eeo(Tj)) = 0 modP$0. 
1=i 

We may assume without loss of generality that the points 0O + /?h, /? e <0, 1> 
belong to 0 and for fi e (0, 1) we obtain 

d ^ , ( 0 = ^ ± ^ 0 exp (/ilVFJF)] mod PH , 
dP*0 C(0O) 

which contradicts the assumptions. 

Theorem 2. Let a class of probabilities {Qy;yeT}9 where f c Rm is an open 
subset, be defined on (X, gfi) by the densities 

dv 

where v is a a-finite measure. Let 0> — {Pe; Oe 0} be the class of probabilities 
defined by the densities (5) and let 0 = {0 e Rk; Jexp (d't) d/x(t) < oo}. If T: X -> 

-+ Rk is such a measurable transformation that ji(A) = v(T _ 1A ) and if L : F -> 0 
is such a mapping that 

(\)fy(x) = C[L(y)] exp [_L(y)' T(xJ] mod \x for each y belonging to some neigh­
bourhood V of y0; 
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(II) L(y) = (Lj(y), . . . , Lk(y)) and the functions L{, ..., Lk have all partial deriva­
tives of the first order on V, which are continuous at y0; 

(III) there exist numbers St < 0 < <5f such that the points (L^(y0), ..., L,-_ i(y0), 
Lf(y0) + $h L /+1(y0), ••, Lk(y0)) belong to 0 for 5; e {Sh £*} and for i = \, ..., k; 

then the function 

Py(x) 
_ (f_M 

ш. 
1/2 

has the quadratic derivative pyo at y = yo, and 

Kr.M - Êjr,))' 
(15) P*,(*) = J(ľo) 

к а д - Eľ0(T))_ 
where J(y0) is the jacobian of the mapping Lat the point y0. Moreover, if the point 
0o = L(y0) satisfies the condition (II) Of the preceding theorem and the rank of the 
matrix J(y0) is k, then the matrix 

П>o) = 4E ľ0(P ľ0(x) pУ0(x)') 

is regular. 

Proof. Since 0 is a convex set by Lemma 7, Chapter II in [5], it follows from the 
condition III of the theorem that 00 = L(y0) is an inner point of 0, therefore the 
function <pQo defined by the formula (7) is the quadratic derivative of the function 
(p0 (cf. (6)) with respect to P6o. The rest of the proof follows from the fact that the 
functions L l f ..., Lk are differentiable, the relation (3) holds and that the matrix J is 
of full rank. 

As an example of the particular situation described in Theorem 2, let F = Rx(0, oo) 

and for y = (M, d) e F let 

/,(*) = (2K d ) - ^ e x p ( - ^ ^ V xeR 

i.e. {Qy; y e F} are the normal distributions with the mean M and the dispersion d. 

If we denote 

Г(x) = (x,-x2), L(Уy = 
M 1 

á ' 2d 

and define a measure jn on (R2, &2) by the formula 

fi(A)= v ( T - M ) , 

where v is the Lebesque measure on the line, the formula (15) has the form 
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PтM 

x ~~ M 

~ 2d 

(x - M) 2 -

4d 2 
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S ú h r n 

O KVADRATICKÝCH DERIVÁCIÁCH POMĚRU VIEROHODNOSTÍ 

FRANTIŠEK RUBLÍK 

V článku sa dokazuje, že exponenciálně triedy pravděpodobností majú kvadraticky 
diferencovatelný poměr vierohodností a odvádzajú sa explicitně formuly pre tuto 
kvadratická deriváciu. 
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