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SVAZEK 25 (1980) A P L I K A C E M A T E M A T I K Y ČlSLO 4 

REDUCING THE BANDWIDTH IN SOLVING LINEAR 
ALGEBRAIC SYSTEMS ARISING 

IN THE FINITE ELEMENT METHOD 

JlTKA SEGETHOVA 

(Received June 1, 1978) 

1. INTRODUCTION 

The matrix of the system of linear algebraic equations, arising in the application 
of the finite element method to one-dimensional problems, is a bandmatrix. In approx
imation of high order, the band is very wide but the elements situated far from the 
diagonal of the matrix are negligibly small as compared with the diagonal elements. 
The situation is similar but much more complex for two or three-dimensional 
problems. 

In numerical practice, the outer diagonals of the matrix influence the solution of 
the system very little. The aim of this paper is to show that it is possible to work with 
a matrix the bandwidth of which is reduced, i.e., some non-zero diagonals of the 
original matrix are replaced by zeros. For a sufficiently high order of approximation 
(i.e., for a sufficiently wide band) the error caused by this replacement may be 
negligible in comparison with the rounding errors involved in the numerical solution 
of the system. 

We choose the hill functions c% [ l ] , [5] for the trial functions in solving a model 
problem by the finite element method since we can study their asymptotic behavior 
for N -^ oo by means similar to those used in [4]. This as well as the formulation of 
the model problem is the contents of Section 2. 

In Section 3 we investigate the behavior of the elements of the matrix of the system 
as N -» oo. This study gives us a key to the introduction of a matrix the band of 
which is reduced. In conclusion, the difference of the original and the reduced matrices 
is estimated. 

Section 4 is devoted to the analysis of the rounding errors, which is based on [6], 
[7]. In this part of the paper we obtain error bounds for numerical solution of the 
original and the reduced systems. These bounds are quantities of the same order. 
Moreover, a simple numerical example illustrates the statements of Section 4. 
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2. ASYMPTOTIC BEHAVIOR OF THE HILL FUNCTIONS. 
THE MODEL PROBLEM 

We employ the following particular type of hill functions (called also B-splines) 
as trial functions. 

Definition 2.1. Let R be a one-dimensional Euclidean space. Let us put 

(2.1) 00^)= 1 , \ t \ £ i , 

= 0, | l |>± , 

(2.2) coN — coN_l * col 

where * denotes the convolution. 

The above introduced hill function o)N is a piecewise polynomial function of degree 
N — 1, it is continuous together with its derivatives up to the order N — 2 and its 
support is the interval < — -JN, -J-N) (see [ l ] , [5]). Further, 

(2.3) toN(-t) = coN(t), coN(-t) = -coN(t) . 

The asymptotic behavior of the hill functions coN for N -> oo is studied in [4]. Let 
us perform a more detailed analysis necessary for our further purposes. 

Theorem 2.1. Let coN be given by (2.1), (2.2). Then there exists a positive constant 
C independent of N such that 

(2.4) \toN(t VN) VN - sj^n'1) e~6t2\ ^ CN'1 , 

(2.5) \coN(ty/N)N + n^n-^te-6*^ S CN~X 

uniformly with respect to all t e R. 

Proof. The convolution formula (2.2) is analogous to the convolution formula of 
the probability theory describing the probability density of the sum of N independent 
random variables with the same density. The bound (2.4) follows immediately from 
the central limit theorem ([2] Ch. XV, Sec. 5, Theorem 2, and Ch. XVI, Sec. 2, 
Theorem 2, cf. also [4] Theorem 3.2). 

Moreover, we obtain (2.5) in the same way as (2.4) by substituting coN for c% in 
the proofs of the corresponding theorems of [2]. 

We confine ourselves to a simple model problem in order to be able to present the 
main idea of our investigation of reducing the bandwidth. The analysis can be done 
in an analogous way for a very wide class of problems. 

Definition 2.2. Let us put 

(2.6) Lu = -u" + cu , c > 0 , 

and consider the boundary-value problem 
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(2.7) Lu = / on (-in A*), 

(2.8) u'(-in) = II'(±TT) = 0 

where f e L2( — in, in). 

Let N, M be positive integers, 

(2.9) 2M > N . 

Let us put 

(2.10) Q = [i(N ~ 1)]*), 

(2.11) h = Ic/(2M), 

(2.12) P = 2M + 2Q + 1 . 

The/u/ictiOn 
M + Q 

WN(0 = Z XN.htj
a}N,hlJ{t) 

j=-M-Q 

where 

(2.13) <%.J.,/0 = M ^ ~I0 

is said to be the approximate Ritz-Galerkin solution of the problem (2.7), (2.8) 
if the coefficients xNhJ; j = —M — Q, . . . , M + Q, are the solution of the system 

(2.14) AN hxN h = sNth 

of P linear algebraic equations, where 

nN,h — \aN,h,j,k)j,k=-M-Q> 

Y _ fY \M + Q 
xN,h — \xN,h,jjj=-M-Q ' 

«, _ f„ \M + Q 
sN,h — \bN,h,k$k=-M-Q * 

The elements of the matrix ANh and of the vector sN h are given by the relations 

(2+5) aN,hJ,k — ^N,h,j,k + C^N,h,j,k ~ V°N,hJ^ ^ . f t . f c ) + C(C0/V,A,j5 ^/V.fc./c) > 

j,k = - M - g , . . . , M + Q, 

(2.16) sNfhtk =*(f9a>N,htk); k = -M - Q,...,M + Q, 

where (•, •) is the scalar product in L2(~in, in). 

We omit the subscripts N, h and write Ijfc, I)fc, ayfc, Xj, sfc, A, x, s wherever it is not 
ambiguous. 

The following theorem shows some basic properties of the elements of the matrix A. 

*) [zl denotes the largest integer which fulfils [zl ^ z. 
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Theorem 2.2. Let ajk be given by (2.15) Of Definition 2.2. Then 

(2.17) ' jk = 'kj = '-J,~k = l-k,-j-> 

(2.18) *jk = *кj = *~j,-к = I-к,-j ' 

(2.19) ajк = aкj = a-j^к = O-zc-y 

forj, k = - M - Q,- .., M + Q. Further, 

(2.20) Ijk = Ijk = aJк - 0 for \j - к\ ^ N; 

j,k = -M - Q,...,M+ Q, 

i.e., A is a symmetric bandmatrix of bandwidth 2N — 1. 

Proof. The symmetry relations (2.17), (2.1 8), (2.19) are an easy consequence of the 

substitution of the equalities (2.3) into (2A5). Since the support of coN is finite we obtain 

(2.20). • 

The relations (2.17), (2.18), (2A9) allow us to study only one quarter of 

the elements of the matrix A. In the following, we choose those pairs of indices j , 

k = -M - Q,...,M + Q for which 0 ^ k - j , 0 ^ k + j . With respect to (2.20) 

we introduce the following four sets of pairs of indices j , k. 

Definition 2.3. Let N, M be positive integers satisfying (2.9), let Q be given by 

(2A0). We put 

S++ = {(f k); | ; | S M + Q, \k\ ^ M + Q, 0 ^ k - j < N, 0 ^ k + ./} , 

S+- = {(f k); \j\ ^ M + Q, \k\ ^ M + Q, 0 g k - j < N, k + j S 0} , 

<T + = {(f k); | ; | S M + Q, |k | ^ M + Q, - N < k - j S 0, 0 ^ k + j} , 

S " " - {(j, k); \j\ S M + Q, |k | rS M + 2, -N < k - j S 0, /< + j g 0} . 

In the notation introduced in Definition 2.3 we confine ourselves to the analysis of 

only the elements of the set S++ in the following. The properties of the elements of 

the other three sets can be established according to Theorem 2.2 in an apparent way. 

Let us mention that all the four sets S+ + , S+~~, S~+, S~~ depend on the integers 

N, M. Therefore we sometimes write S++(/V, M) or 5 + + (N) instead of S++ etc. 

The knowledge of the asymptotic behavior of the hill functions enables us to 

obtain asymptotic formulae [or the elements ajk, sk as N -> oo. 

Theorem 2.3. Let ajk, sk be given by (2A5), (2A6) of Definition 2.2. Then 

(2.21) V = l**0 + 0(N->j), 

(2.22) l;-,=I;*(l + 0 ( N - ' ) ) , 

(2.23) aJk = (r*+cl*k)(\ + 0(N-')) 
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for N -> co and (j, k) e S+ + where*) 

(2.24) /* = (6/V- ' ) 2 ' 2 n-xh-' J/V/72 V(i*) exp ( -3AT '(j - /<)2) x 

x *(V(3/v-')(/v + . / - /<)), 

(2.25) /;•* = (6AT1)3 '2 7r-J/x-* exp( -3 /V- 1 ( ; - /<)2) x 

x (V(-H(i - 6/v-'(j - /<)2)a.(V(3/v-')(/v +7 - /<)) -

-V(6JV- ' ) (N +j - /<) x exp(-3;V~1(iV +j - k)2)) 

for j < M — Q and 

(2.26) 1% = i(6/V " ' ) 3 ' 2
 R " ' /, - ' INh2 V(i»x) exp ( - 3JV " ' ( / - /<)2) * 

x ((D(V(3/V-')(2M - j - k)) - <D(V(3/V-')("N - j + k))), 

(2.27) /;* = i(6/V- ' ) 3 ' 2 Tt- 'h" ' exp ( -3/V- ' ( / - /<)2) ( V ( » x 

x ( l - 6/V-'(j - /<)2)((D(V(3/V-,)(2M - j - fc)) - a)(V(3/V-') x 

x ( _ J V _ j + k))) + V(6!V-')((-/V - j + /<) x 

x exp( -3 /V~ ' ( - iV - j + /<)2) - (2M - j - /<) x 

x exp(-3 /V" ' (2M - ./ - /<)2))) 
for M - Q<j. 

Further, 

(2.28) |sfc|
2 S WfWlhk for k - ~ M - Q9 ..., M + Q . 

Proof. Considering that (j, k) e S + + and that (2.9) holds, we distinguish two pos
sibilities in the proof, j < M — Q and j — M ~ Q, which correspond to different 
limits of integration in the calculation of (2.15). In both the cases we substitute the 
expressions 

toN(t) - x / ( 67 i " 1 N- 1 ) exp ( -6N" 1 t 2 ) + 0(/V~~3/2), 

<o'N(t) = 12/V"1
 x / ( 6 7 r - 1 N - 1 ) t e x p ( - 6 N ~ 1 t 2 ) + 0 ( N " 2 ) , 

following from (2.4), (2.5) of Theorem 2.1, into (2A5). Taking into account that the 
functions <$(t) and exp ( — t2) are bounded in R and considering that the length w of 
the interval of integration in (2A5) fulfils the inequality 

w __ N/i , 

we obtain (2.21) and (2.22) as well as (2.23) by direct calculation. The terms of higher 
degree in N_1 are neglected in these formulae. Applying the Schwarz inequality to 
(2.16), we obtain (2.28). 

*) We use the usual notation 
2 
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3. SYSTEM WITH REDUCED MATRIX 

In this section we investigate the asymptotic behavior of the elements ajk, sk as 
N —> co. We introduce the matrix B of a reduced bandwidth as well as the associate 
approximate solution of the model problem making use of the knowledge of this 
asymptotic behavior. 

In conclusion, we estimate the difference B — A of the original and the reduced 
matrices and the difference t — s of the original and the reduced right-hand parts 
of the system. 

Let us start with the study of the elements aJk of the matrix A. 

Definition 3.1. Let N, M be positive integers satisfying (2.9). Moreover, let there 
exist positive constants C, D independent of N such that 

(3.1) M = M(N) ^ CND . 

Let Q be given by (2.10). Let us choose \ > & > 0 and Z > 0 (independently of N) 
and denote by K the least odd integer not less than ZN1 / 2 + £. Further let us put 

(3.2) R = \(K - 1) . 

Let us introduce the following five sets of pairs of indices j , k: 

S?+(N) = {(j,k); j= -Q,...,M- Q- 1 ; k = j + K, ..., j + N - 1} n 

nS++(N), 

Sl+(N) = {(j, k); j = M - Q,..., M - R - 1 ; k = j + K, ..., M + Q) , 

S + + (N) = {(j, k); j = M - R, . . . , M ; k = M + R + 1, ..., M + Q} , 

Sf(N) = {(j, k); j = M + 1, ...,M + R - 1 ; k = M + R + 1 , ..., 

M + e}, 
S5

++(!V) = {(j k) ; j = M + R,..., M + Q - 1 ; fc = j + 1, ..., M + Q} . 

Moreover, we write 
5 

S++(N) - u S++(N). 

In an analogous way we can introduce the sets S+ (N), S +(N), S (N) (cf. 
Theorem 2.2 and Definition 2.3) and put 

S(N) - S++(N) u S+~(N) u S~+(N) u S--(N) . 

Apparently, S++(N) c S++(N). The sets S++(N) are mutually disjoint for N 
sufficiently large by definition. 

In the following we always suppose that N, M are positive integers satisfying (2.9), 
(3.1). Moreover, P, Q always denote the integers given by (2.12), (2.10) of Definition 
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2.2 while R is given by (3.2) of Definition 3.L With respect to (2.11), (3A) we also 
have 

(3.3) h = h(N) = 7i/(2M(N)) . 

Theorem 3.1. Let {I(N), k(N)}N = i be a sequence of pairs of integers. Let N0 be 
a positive integer such that 

(3.4) (j(N), k(N)) e S+ +(N) for N ^ N0 . 

Let us put 

(3-5) aj(N),k(N) = nn\6N) aj(N),k(N) • 

Let J be an arbitrary real number. Then there exists a positive constant Cj inde
pendent of N such that 

(3.6) h-(N),*(;v)| S CjN~J for N £ N0 . 

Proof. 1. First we will prove that, choosing a fixed i and considering a sequence 
{j(N),k(N)}%=1 such that 

(3.7) (j(N),k(N))eS++(N) for N ^ Nt 

with some positive Nh we find a positive constant Cu independent of N such that 

(3.8) \*j(N)MN)\ = cuN~J f o r N = Ni • 

Having proved (3.8) for i = 1, ... , 5, we obtain the statement of the theorem by the 
following argument. 

Let us consider the sequence (3.4). Let us split its subsequence {I(N), k(N)}Jv = Av 
with some N0 ^ N0 into five sets Ut; i = 1 , . . . , 5, such that 

Ut = {(j(N), k(N)) ; (j(N), k(N)) e S,+ + (IV)} . 

Apparently 

(3.9) {j(N), k(N)}%=No. = U V,. 

For a sufficiently large N0, each of the sets Ut is either empty or infinite and at least 
one of them is infinite with respect to (3.4). Let us put 

I = {i; Ut * 0} . 

Then I 4= 0 and if i e I we can write 

U, = {j(N,
m),k(N,

m)}a
0,1, N'0^N„, Nl

m<N'm+l. 

For each i el we obtain from (3.8) that 

h W ) ,* (N n ' ) | = ^(-Vi)"" ' ^ Ni ^ Nt. 
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Putting C'j = max C/J? we have 
iel 

KN)MN)\ ^ CjN~J for J V ^ N S 

where N0 — max (No, max N,), from which (3.6) follows immediately. 
ieJ 

Therefore it remains to show (3.8) for i = 1, ..., 5. We will write (j, k) instead of 
(j(N), k(N)) wherever it is not ambiguous. 

2. Let (j(N), k(N)}jv==i be a sequence satisfying (3.7) for i = 1. From Definition 
3.1 and Theorem 2.3 we find that ajk is given by (2.23), (2.24), (2.25) in this case, i.e., 

(3.10) oiJk = exp(-3rV~1( j - k)2)U(\n)(±ch2N + I - 6N~\] - k)2) x 

x ^(V(3N - 1 ) (N+j- k)) - V(6AT !) (N + j - k) x 

x e x p ( - 3 i \ T l ( N + j - k)2))(l + O(N-1)). 

Since; + K = k = j + N-1 in S++(N) we have 

k - ; ^ K = ZN1 / 2 + \ 

i.e., 

(3.11) (k - j ) 2 N"1 ^ Z2N2£ -> oo for N -> oo . 

Therefore there exists a positive constant Clt/ independent of N such that 

(3.12) exp ( -3 iV- I ( j - k)2) < CUN'J 

for an arbitrary real J. The functions <D(t) and t exp ( — t2) are bounded in R. For any 
sequence the elements of which lie in S++(N), we have 0 ^ k — j < N from Defini
tion 2.3 and, moreover, 

(3.13) (k-j)2N~l <N. 

Therefore we finally obtain 

(3.14) | ^ | e x p ( 3 N - 1 ( j - k)2)^ D!N 

with some positive constant Dt from (2.9) and (3.3). Considering (3A2) and (3.14)-
we find a positive constant Cu independent of N such that (3.8) holds with i = 1-

3. Let (j(N), k(N)}jv=i be a sequence satisfying (3.7) for i = 2. From Definition 
3.1 and Theorem 2.3 we find that ajk is given by (2.23), (2.26), (2.27) in this case, i.e.f 

(3.15) aJk = i e x p ( - 3 J V - ' ( ; - k)2)(V(i*)(ich2N + 1 - 6N~l(j - k)2) x 

x WJQN-1) (2M - j - k)) - H^N'1) (-N -j + k))) + 

+ 7 (6 iV - 1 ) ( ( - .V - j + k)exp(-3N'i(-N - j + k)2) -

- (2M - j - k) cxp(-3N~1(2M - j - k)2))) (1 + 0(N'1)). 
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Since j + K :g k in S++(N) we obtain (3.11) also in this case. Obviously (3A3) also 
holds because S+ +(N) a S++(N). Therefore we can repeat the argument of part 2 
of the proof in order to find a positive constant C2J independent of N such that 
(3.8) holds with i = 2. 

4. Let {j(N), k(N)}x=l be a sequence satisfying (3.7) for i = 3. From Definition 
3.1 and Theorem 2.3 we find that <xJk is given by (3.15). Further we obtain 

k-j=%R + l> iZN 1 / 2 + £ 

with respect to (3.2) and the inequality 

(3.16) K ^ ZN 1 / 2 + £ 

Therefore 

(3.17) (k - j ) 2 N"1 ^ \Z2N2t -+00 for /V->oo . 

Now we can repeat the argument of part 2 in order to find a positive constant C3i 

independent of N such that (3.8) holds with i = 3. 

5. Let {j(N), k(N)}jv=i be a seuqence satisfying (3.7) for i = 4. We find that ocjk 

is given by (3.15). Further we obtain 

k - j g Q - 1 < *JV 

with respect to (2.10). Hence we finally have 

( - N + k - j)N~112 < ~iNlf2 -» - c o for N -> oc . 

Using an asymptotic expansion for 0(t) at + oo we obtain (see e.g. [3]) 

(3.18) O(f) = 1 - e x p ( - t 2 ) ( ( t v
/ 7 r ) - 1 + 0(t~3)) , t -> oo . 

Therefore there exists a positive constant C'4J independent of N such that 

(3.19) o < i + o ( v
/ ( 3 N - 1 ) ( - N -j + k)) ^ C;7N-J 

for an arbitrary real J. Analogously there exists a constant C4j such that 

(3.20) 0 < (N + j - k) exp ( - 3 N - 1 ( - N - j + k)2) £ C^N~J . 

From Definition 3.1 we further obtain that 

k+j-2M=%R + 2> \ZN1I2+E 

with respect to (3.2), (3.16). Then 

(3.21) (k + j - 2M) N"1/2 •> 1ZN£ -> oo for N -> oo 

and we find positive constants C'4j9 C'lj idenpendent of N such that 

(3.22) 0 < O ^ N - 1 ) (2M - j - k)) + 1 ^ C',jN-J , 
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(3.23) 0 < ( - 2 M + k + j ) e x p ( - 3 N " 1 ( 2 M - j - k)2) g C^N~J 

by the same argument as above. Since the function exp ( — t2) is bounded in R and 

ich2N + 1 - 6N - 1 ( j - k)2 g C4JN 

with some constant C'AJ we can find a positive constant CAJ independent of N such 
that (3.8) holds with i = 4 if we take into account the inequalities (3A9), (3.20,) 
(3.22), (3.23). 

6. Let {I(N), k(N)}^=1 be a sequence satisfying (3.7) for i = 5. From Definition 
3A we obtain 

k - j £ Q - R < i N - iZNl/2+c, 

k + j - 2M *> 2R + 1 ^ Z/VI/2 + £ 

with respect to (2.10), (3.2), (3.16). Repeating the argument of part 5 we finally find 

a positive constant C5J independent of N such that (3.8) holds with i = 5. 

The proof of the theorem is complete. 

Corollary. Let {j(N), k(N)}^= t be a sequence of pairs of integers. Let N0 be a posi
tive integer such that 

(3.24) (j(N), k(N)) e S(N) for N ^ N0 . 

Let ocj(N),k(N) be given by (3.5), let J be an arbitrary real number. Then there exists 
a positive constant Cj independent of N such that 

\aj{N)MN)\ S CjN~J for N ^ N0 . 

Proof. Theorem 3.1 treats the case when (3.4) holds for the sequence {j(N), k(N)} • 
From Theorem 2.2 we obtain the statement of the corollary for any sequence such that 
(j(N), k(N)) e S+"(N) (or S~+(N) or S~~(N)). Proceeding in the way analogous to 
that of part 1 of the proof of Theorem 3.1, we obtain the statement for an arbitrary 
sequence satisfying (3.24). » 

A similar statement holds for the elements sk of the right-hand part s. 

Theorem 3.2. Let {k(N)}^=i be a sequence of integers. Let N0 be a positive integer 
such that 

M + R + 1 ^ |k(N)| ^ M + Q for N ^ N0 . 

Let us put 

°k(N) = nh(iN)3/2 sk(N) . 

Let J be a real number. Then there exists a positive constant Cj independent of 
N such that 

KN)\ = ^ | | / | |L 2N~ J for N^N0. 
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Proof. According to (2.28) of Theorem 2.3, it is sufficient to show that 

(3.25) |7T2h2(iN)3I,,! S_ C*N~J for N ̂  N0 . 

We have Ikk — I-k,-k from (2.17) of Theorem 2.2, which allows us to confine our
selves only to the study of sequences {k(N)}Jv = i such that 

(3.26) M + R + 1 ^ k(N) ^ M + Q for N _ N0 . 

The result obtained for these sequences can be generalized in the way indicated in 
the proof of Corollary. 

Thus let {k(N)}^=1 be a sequence satisfying (3.26). From Theorem 2.3 we find that 
Ikk is given by (2.21), (2.26) in this case, i.e., 

n2h2(lNytfk = (\ny>2 h3(iiV)^(0(2 V(3N- ')(M - k)) - <S>(- V(3iV))). 

Moreover, we obtain that 

k - M ^ R + 1 > i Z N 1 / 2 + £ 

with respect to (3.2), (3.16), (3.26). Therefore 

(3.27) (k - M) N~1/2 ^ \ZW -> oo for N -> oo . 

Using the expansion (3.18) for O(t) and proceeding in the way analogous to part 5 
of the proof of Theorem 3.1, we find a positive constant C* independent of N such 
that (3.25) is fulfilled for k(N) satisfying (3.26). This implies the statement of the 
theorem immediately. • 

We showed in Theorem 3.1, Corollary, and Theorem 3.2 that some of the elements 
ajh of the matrix A and some of the elements sk of the vector s (premultiplied by the 
factor nh(^N)3/2) converge rapidly to 0 as N —> oo. 

Working with the quantities ocJk, ak we obtain that a00 = 0(1) as N -> oo. We will 
employ this fact in the proof of Theorem 3.3. Apparently, ajk -> 0 implies ajk -> 0 
and ak -> 0 implies sk —> 0. This is the behavior of e.g. all the elements aJk lying 
outside the band of width 2K — 1. 

Let us note that the statement is based on the condition (3.16). In general, if we 
put K ^ ZNP with p ^ i then none of the relations (3.11), (3.17), (3.21), (3.27) can 
be fulfilled. In this sense, the condition (3.16) determines the narrowest band with 
the property that the elements ajk situated outside the band tend to 0. 

We will study a matrix and a vector formed from the original matrix A and vector 
s by substituting zeros for the elements tending to zero. First we will introduce the 
necessary notation. 

Definition 3.2. Let 

D _ D _ (L \M + Q 
DN,Һ — D — iDjкjj,к=-M-Q 

be a square matrix with the elements 

bjk = 0 for (j,k)eS(N), 
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= ajk otherwise . 

Moreover, let 

t - t - St \M + Q 
lN.h — l — {lk)k=-M-Q 

be the vector the elements of which are given by the relations 

tk = 0 for M + R + 1 < |k| , 

= sk otherwise . 

The function 

(3.28) 
M + Q 

ÛN(1) = X XN,h,j^N,hJj) 
J=~M-Q 

where coNhj is given by (2A3) is said to be the associate approximate Ritz-Galerkin 
solution of the problem (2.7), (2.8) if the coefficients xN h pj = —M — Q, . . . , M + 
+ Q, Ore the solution of the system 

(3.29) BN hxN h = tNh 

of P linear algebraic equations where 

xN ,h = •* = *) X)V 

It? addition, we write 

(3.30) C = B - A , u = t - S . 

The matrix B is introduced in Definition 3.2 in such a way that 

f ó 1M + Q _ (A \M + Q 
lXN,h,j)j=-M-Q — \XJÍJ=-M-Q 

(3.31) в = 
B' O O 
O B* O 
O O B" 

where B* is a square matrix of order 

(3.32) P* - 2M + 2R + 1 , 

B', B" are diagonal matrices of order Q — R and the O's denote zero matrices of 

appropriate types. 

Similarly 

(3.33) tT = (O, t * r , O) 

where t* = {^J f^M-R a n d the superscript T denotes the transpose. Let us write 

(3.34) = (лЛ. >*T 6"T\ 

where x* = {xj}f^3M-R- In this notation we obtain 

(3.35) x' = x" = O 
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from (3.29). Therefore (3.28) is equivalent to 

м + R 
ûÁl) = Z *j°>N,hj(t) 

j=-M-R 

and Xj are determined from the system 

(3.36) B*x* = t * 

of P* linear algebraic equat ions . Moreover , the matr ix B* is a symmetric bandmatr ix 
of bandwid th 2K — 1 according to Definition 3.2 and 

bjk = bkj = b_is_fc = b_,,-y ; j , k = - M - Q, . . . , M + Q. 

We will study the relation between the approximate and the associate approximate 
solution in the next section. First we will est imate the differences A — B, s — t 
making use of the matr ix and vector no rms . 

Definition 3 .3 . Let D = {dJk}"tk=l be a square matrix, r = {rk}l=1 a vector. We 

write 

n 

(3.37) | |D|| = max ^\dJk\, 
l ^ j ^ n k-1 

(3.38) ||r]| = max \rk\ . 

The expressions (3.37), (3.38) are the well-known matrix and vector norms (cf. 
e.g. [7]). 

Theorem 3.3. Let A, B, C, 5, t, u be the matrices and vectors introduced in Defini
tions 2.2 and 3.2, let £0 be an arbitrary positive number independent of N. Then 
there exists an integer N0 > 0 such that 

(-x -x<S\ \\C\\ ^ P \\u\\ ^ p 

(3.39) P I ° ' IIBI ° 
for all N = N0 (and any M, h satisfying (2.9), (3.1), (3.3)). 

Proof. 1. Let us estimate the ratio 

(340) ll£fl - * K W / 2 11* " A\\ 
' |* | | 7 lh ( iN ) 3 / 2 HP]] ' 

We have 7ih ( iN ) 3 / 2 |]B]| = |a00 | from (3.5). Further, we obtain that 

<*oo = U(in)(ich2N + 1)0)(V(3N)) - V(6N ) exp ( -3N ) ) ( l + O(N^)) 

from Definition 3.1 and Theorem 2.3. Since there exist positive constants Clj7 C2J 

independent of N such that 
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I - 0(V(3JV)) ^ C^iV-7 

(cf. (3.18)) and 

7(6JV)exp(-3 iV)g C2J/V-J 

for any real J we conclude that there exists a positive constant C3 independent of 
N such that 

(3.41) |«oo| *. C3 

for a sufficiently large N. 

2. With respect to Theorem 3.1 and Definition 3.2, we have 

\yjk\ ^ CjN-J 

for all the elements yjh of the matrix nh(^N)3/2C7 any real J, and a sufficiently large 
N. From (3.40), (3.41) we finally obtain the first inequality in (3.39). 

The second inequality in (3.39) follows in an analogous way from Theorem 3.2 and 
Definition 3.2. 

4. A NUMERICAL EXAMPLE. DISCUSSION 

In this section we are concerned with the study of the difference of the approximate 
and the associate approximate Ritz-Galerkin solution of the problem (2.7), (2.8). 
Keeping the notation of the previous sections, it is sufficient to estimate the difference 
x — x for this purpose. 

However, we will consider the situation from the practical, i.e., numerical point 
of view. Following the ideas of Wilkinson [6], [7], let us distinguish between the true 
solution xt of the system (2.14) and the computed solution xc of the same system; 
let us introduce the vectors xt, xc with an analogous meaning with respect to the system 
(3.29). 

Let us solve the system of linear algebraic equations by the Gaussian elimination 
(based on the triangular decomposition of the matrix of the system) with partial 
pivoting. Let us consider the floating-point arithmetic with the mantissa of t binary 
digits. (The analysis is analogous and follows also [6], [7] in the case of decimal 
computation.) 

The detailed analysis of the rounding errors made in the arithmetic operations on 
digital computers in the floating-point computation is a very complex and deep 
problem. There are phenomena observed widely in practice but rigorously demon
strated only in certain special cases. In view of these rather unusual conditions we 
use several statements of [6], [7] the assumptions of which cannot be rigorously 
verified. Similarly we make some assumptions of this nature in the following. These 
assumptions are justified by a numerical example presented in the conclusion of this 
section. 
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Let us return to the error analysis. The computed solution xc of the system (2A4) 
is the true solution of the perturbed system 

(A + E) xc = s 

where 

(4-0 \\E\\ Z2-gq(P), 

q(P) = 2-14(iP + 1 ) ( P - 1), 

P is the order of the matrices A, E, and 

g = max max | a $ | 
l ^ r ^ P -M-O^ j . f c^M + Q 

with A(r) = {a^Jjfk^-Af-Q defined as the matrix appearing in the rth step of the 
elimination (i.e., the original system is A(1)x = s). The error expressed by F originates 
in the triangular decomposition and represents the prevailing part of the total error. 
The perturbations resulting from the rounding errors made in the backsubstitution are 
negligible as compared with F. Further, the bound (4.1) for E may be attained in 
practice. All these statements are taken from [7] (Ch. 3, Sees. 14-33) . 

It is 

'IIT-i l l l lT" 1 ! ! 

K-T+ V)~l\\ S 
I - | |T_ 1V | | " I - | |T - 1 | | || V|| 

provided that | |F - 1 | | |V | | < 1 (cf. e.g. [7]). Considering that Axt = s and supposing 
that I-4"1!! IF! < 1 (this assumption is quite natural; if it is not true the rounding 
errors are so large that their analysis is impossible), we arrive at the inequality 

(4 2) IK - xt\\ x(A) ||E||/1|A|| 

Ikll l ~ X(A) \\E\\I\\A\\ 
where x(A) = ||A|| | | -4 - 1 | | is the condition number of the matrix A. 

Taking into account the relations (3.31), (3.33), (3.34), (3.35), we concluded in 
Section 3 that it is sufficient to solve the system (3.36) for the vector x* in order to 
obtain the solution x of the system (3.29). Let xc be the computed solution of the 
system (3.36), let 

xj = (o,xr,o). 
By the same argument as above we see that xc is the true solution of the perturbed 
system 

(B + E)xc = t, 

i.e., with respect to (3.30), 

(4.3) (A + C + F) xc = s + u 
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O O O 
O E* O 
O O O 

where 

£ = 

E* is a square matrix of order P* and the O's denote zero matrices of appropriate 
types. According to [7] we have 

(4.4) ||E|| = |E*|| ^ 2~tg*q(P*) 

where 

g* = max max |b (^| 
i^r^P* -M-R^j,k^M + R 

and B*(r) = {b^jjV^-M-R is the matrix appearing in the rth step of the elimination. 
Considering the matrix C + F and the vector w in (4.3) to be the perturbations of 

the system (2.14), we obtain 

provided that | |B_1 | | ||F|| < 1. 
Let us suppose that there exists a positive constant G independent of P* such that 

(4.6) g* £G\\B*\\. 

Numerical results confirm this assumption in the whole practically investigated range 
of values of P*. Further, let G be chosen in such a way that the bound (4.6) for g* 
may be attained. 

From (4.4), (4.6) we thus obtain 

IEII ^ 2~'G||B*|| q(P*) ^ 2-'G||B | | q(P*) . 

In particular, 

(4.7) \\m\\B\\ = 2"rGg(P*) 

where the bound is attainable and tends to infinity as N -> oo (and P -> oo, P* -> co 
as well). From Theorem 3.3 we have | | u | / | B | -> 0 as N -> oo. Let us now choose 
a sufficiently large N and consider such xt that 

(4.8) lEI | |x,|/| |B|| > \\u\\l\\B\\ . 

Numerical results in the following correspond apparently to this situation. Neglecting 
the term | u | / | B | in (4.5) with respect to (4.8), we arrive at 

xc-xA ^x(B)(\\C\\ŘB\\ + \\É\\I\\B\\ 
Lli < (4.9) 

IWI i - <B) \\m\\B\\ 
Moreover, we have | |C | | / |B | -> 0 as N -> oo from Theorem 3.2. Neglecting now 

also the term | |C |/| |B | | in (4.9) with respect to (4.7), we finally obtain 
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< 
x(ß) £11 /li Eř II 

11/ II II (4.10) l l i V 
' IKII " 1 - <B) \\E\\I\\B\\ 

Comparing the estimates (4,2), (4A0), we conclude that both the bounds are of 
the same nature as long as we suppose x(B) ~ x(A). In fact, numerical results show 
that rather x(B) < x(A). Furthermore, it is P* < P and therefore we can expect that 
xc (obtained from xc) gives better results than xc for a sufficiently large P. 

The following simple numerical example illustrates the above statements. Let us 
seek the approximate Ritz-Galerkin solution of the problem (2.7), (2.8) with the 
operator L given in (2.6). We put 

f(x) = — sin (dx) , d > 0 . 

The exact solution of the problem is 

. / , \ _ d cos (\nd) 
u(x) = — 

d2 + c 
sin (dx) + sh (x yjc) 

(d2 + c) ^Jc ch (±n ^Jc) 

The approach of the whole paper is asymptotic; the statements always assume that 
N is sufficiently large. Under such conditions, Z in Definition 3.1 may be chosen ar
bitrarily. In numerical computation we are forced to work only with some limited 
range of values of N. Our experiments included N = 15. With regard to this fact, we 
computed the associate approximate Ritz-Galerkin solution (Definition 3.2) for all 
the values R given (instead of (3.2) of Definition 3.1) by R = jJr(K — 1)] with 
K = N — 1, N — 2, ..., 2. The solution corresponding to K = N is the approximate 
solution (cf. Definition 2.2). In this way, we obtained a series of results by solving 
systems of linear algebraic equations with matrices of bandwidth 2N — V 2N — 3, 

. . , 3 . 

Table 1. 

7V n(N, лo n(/V, 7V- 1) n(/V, N - 2) n(7V, N - 3) n(/V, N - 4 ) 

1 
2 0-587 - 3 
3 0139 - 4 0-185 - 2 
4 0-451 - 5 0-287 - 3 0-201 - 2 
5 0-348 - 6 0151 - 4 0-907 - 3 0164 - 2 
6 0-240 - 6 0-401 - 6 0-108 - 3 0191 - 2 0119 - 2 
7 0-231 - 6 0-232 - 6 0-735 - 5 0-303 - 3 0-246 - 2 
8 0-231 - 6 0-231 - 6 0-353 - 6 0-844 - 4 0-590 - 3 
9 0-231 - 6 0-231 - 6 0-356 - 6 0188 - 5 0-475 - 3 

10 0-231 - 6 0-231 - 6 0-231 - 6 0-307 - 5 0-898 - 5 
11 0-233 - 6 0-231 - 6 0-231 - 6 0-239 - 6 0-325 - 4 
12 0-231 - 6 0-231 - 6 0-231 - 6 0-249 - 6 0-615 - 6 
13 0-324 - 5 0-232 - 6 0-232 - 6 0-231 - 6 0-970 - 6 
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The results given in Table 1 correspond to c = 0-25, d = 7, M = 16 (i.e., h = 
= 0-098). The results obtained with various other values of these parameters have 
very similar character. 

The computation was carried out on an IBM computer in double precision. The 
resulting system of linear algebraic equations was solved by the Gaussian elimination. 
In Table 1 we present the quantity 

241/2 
n{N, K) = {{AM + l ) " 1 £ \uN(imh) - u{\mh)\ 

m= -2M 

where the associate approximate solution uN depends on K in the sense of the above 
remarks and Definitions 3.1 and 3.2. The format of the table entries is a mantissa and 
a decimal exponent. Let us note that 

max \u(x)\ = 0-020 
X G < - 5 T / 2 , 7 l / 2 > 

for c = 0-25, d = 7. 
The values of r/(N, N) decrease (for fixed M = 16) with increasing N up to N = 5. 

In double precision (the mantissa of t -= 56 binary digits), the rounding errors prevail 
in the total error for N > 5 and rj(N, N) is almost constant up to N = 12; then it 
increases. This implies that it is necessary to use more precision in order to obtain 
results of higher accuracy. 

On the other hand, it enables us to present a true illustration for our statements. 
The rounding errors are so large that the result is not affected by narrowing the band 
of the matrix of the system up to some width. This "critical bandwidth" depends on 
N. For N = 7 the critical bandwidth is 11 (i.e., 1 + 1 diagonals may be deleted), for 
N = 12 the critical bandwidth is 17 (i.e., 3 + 3 diagonals may be deleted). 

In general, the presented numerical results confirm the statements of this section 
concerning the bounds (4.2) and (4.10). 
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S o u h r n 

ZUŽOVÁNÍ PÁSU PŘI ŘEŠENÍ SOUSTAV LINEÁRNÍCH 
ALGEBRAICKÝCH ROVNIC VZNIKAJÍCÍCH 

Z METODY KONEČNÝCH PRVKŮ 

JlTKA SEGETHOVÁ 

Matice soustavy lineárních algebraických rovnic, vznikající při řešení jedno
rozměrných úloh metodou konečných prvků, je pásová. Při aproximaci vysokého řádu 
je její pás velmi široký, avšak prvky na okraji pásu (daleko od diagonály) jsou za
nedbatelně malé vzhledem k diagonálním prvkům. 

V práci se ukazuje, že je prakticky možné pracovat s maticí soustavy, jejíž pás je 
zúžen, tj. některé nenulové diagonály původní matice jsou nahrazeny nulami. Ne
přesnost pramenící z tohoto zúžení pásu může být při dostatečně vysokém řádu 
aproximace (tj. při dostatečně širokém pásu původní matice) zanedbatelná ve srovná
ní se zaokrouhlovacími chybami vznikajícími při numerickém řešení soustavy. 

Celý problém se studuje na modelové okrajové úloze a je doplněn numerickým 
příkladem. 

Authoťs address: RNDr. Jitka Segethová, CSc, Matematicko-fyzikální fakulta Karlovy 
univerzity, Malostranské nám. 25, 118 00 Praha 1. 
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