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1. INTRODUCTION 

The purpose of this paper is to show that certain problems of centers locating 
in communication networks are very hard. This will be demonstrated by showing 
their NP-completeness. 

We shall consider finite undirected graphs without loops or multiple edges. Given 
a graph G, V(G) and E(G) denote its vertex set and edge set, respectively. In general, 
each v e V(G) has a vertex weight w(v) (measure of importance) and each edge has 
a weight (length). All the weights are positive integers. By an unweighted graph 
we mean one with all weights equal to 1. An edge joining vertices u and v is denoted 
by uv. The distance d(v, S) of a vertex v from a set S of points of G is the minimum 
distance of v from a point of S. 

All the problems we are going to study have many applications [1, 2]. Here we 
consider an interpretation in terms of communication networks. If V(G) represents 
a collection of cities and an edge represents a communication link, then one may be 
interested in selecting a set B of cities as sites for hospitals, stores, transmitting 
stations, etc. Various problems can arise. (1) The minimum k-basis problem: Given 
a number k, we are required to find a set B of minimum cardinality such that d(v, B). 
. w(v) ^ k for every vertex v. (Note that a 1-basis is often called a dominating set.) (2) 
The m-center problem: Given a number m, find a set B of cardinality m such that 
max {d(v, B) w(v) | v e V(G)} is minimum. (3) The p-median problem: Given a number 
p, find a set B of cardinality p such that £d(v , B) w(v) is minimum (the sum is taken 
over all v e V(G)). These are "basic" problems. We shall refer to "absolute" variants 
of the problems whenever B can contain points on the edges (cf. [1, 2]). 

All these problems are known from the literature to be very difficult. Therefore 
good algorithms for them are available only in some simple cases. See [16] for the 
minimum k-basis problem and for a generalization of it; for the m-center problem 
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see [8, 9, 10]; the p-median problem can be found in [8, 9, 12]. Both the m-center 
and the p-median problems are discussed in the books [1, 2]; a generalization and 
further references can be found in [13]. The authors of [14] presented a branch-
and-bound algorithm for solving the p-median problem; the bounds are obtained 
by solving the Lagrangian relaxation of the problem using the subgradient optimiza­
tion method. They reported good computational experience; however, no theoretical 
time bounds that would support them are known. 

We show that probably no good, i.e. polynomial time bounded (in the size of in­
put) algorithms exist for these problems by proving their NP-completeness (see [11] 
for this notion). If good algorithms for these problems existed, there would be good 
algorithms for such problems as the traveling salesman, discrete multicommodity 
flow, Steiner tree, and many others [11]. Several of these problems remain NP-
complete even when their domains are restricted: the traveling salesman problem 
in the plane with a natural discretized version of the Euclidean metric [3] or in the 
case of unweighted, cubic, planar graphs [7] (for others see e.g. [6]). On the other 
hand, for some "exact" problems also "near optimum" variants are NP-complete 
(e.g. determining the chromatic number of a graph [4]). We shall show that the 
m-center problem is of this kind. Some other problems (traveling salesman, discrete 
multicommodity flow and others), even in the case of a "weak" approximation, 
are NP-complete [15]. 

The usual method of showing that a problem is NP-complete is (i) to check that 
it is in NP, and then (ii) to show that a certain known NP-complete problem is re­
ducible to it in polynomial time [11]. 

The first task is easy for all our problems. Indeed, the basic variants can be formulat­
ed as 0—1 programming problems. Further, it is well-known that the problem 
of finding an absolute p-median reduces to the problem of finding a p-median only 
[9, 1,2]. Finally, to find an absolute m-center, it is sufficient to consider only a certain 
(polynomial) number of local centers on every edge [8, 1, 2], consequently, the 
absolute m-center problem is in NP. The same arguments show that the absolute 
k-basis problem is in NP as well. 

The second task will be accomplished below. It consists of a proper (polynomial) 
reduction of the following NP-complete cover problem [5] to a given problem. 

Planar vertex cover with vertex degree at most 3 (PVC-3): Given a planar unweight­
ed graph G with vertex degrees at most 3, find a minimum cardinality set S c V(G) 
such that every edge of G is incident with a vertex of S. 

2. THE MINIMUM k-BASIS PROBLEM 

Theorem 2.1. Both the basic and the absolute variants of the k-basis problem are 
NP-complete even in the case of unweighted planar graphs with the maximum 
degree 3 and k = 1. 
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Proof . Using an idea from [5], we reduce the PVC-3 problem to our problem. 
Given a planar graph G with the maximum degree 3 (the degree constraint will not be 
used, however), we construct a planar graph G with no vertex degree exceeding 3 
such that any minimum (absolute) 1-basis B of G gives a minimum vertex cover S of G. 

The construction begins with a fixed planar representation of G. (The reader can 
well understand the proof with the aid of the example in Fig. 1.) In this diagram 
we first replace each vertex vt of G with a cycle Ct = vj(l) xt(l) y^l) vt(2) xt(2) 
yt(2) . . . Vi(dt) Xi(dt) yt(di) v;(l), where dt is the degree of v£. (It does not matter 
whether Ct is clockwise or conversely ordered.) If v-Vj e E(G) and i < j, then a vertex 
Vi(tij) of Ci and a vertex Vj(tji) of Cj will be joined by an edge. Here tfj and tJt are 

G-

G-

Fig. 1. 
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chosen in such a way that the resulting diagram is again planar, tu + ttj> whenever 
j + j ' 9 tji + tjV whenever i + i', and after contracting each cycle Ct to a single 
vertex vt, we must obtain the original diagram of G. Further, for each i we add 
a vertex zt and the edge x;(l) zt. Finally, every edge v^t^) Vj(tji), i < j , is replaced 
by a subgraph Lu consisting of the edges: vi(*l7) a\j, ajja2j, a2jVj(tji), a\jofj, a2ja!\j, 
a\jd\j, afjafj and a^afj. The obtained graph is denoted by G. We see that if G has n 
vertices and e edges, then G has n + 3 ]Td; + 5e = n + lie vertices and n + 3 ]JTdf + 
+ 8e = n + lAe edges. Clearly, G is planar with the maximum degree 3. 

Now, let B be a minimum (basic or absolute) 1-basis of G. We can suppose that 
B cz V(G) (otherwise, replacing every point of B by a closest vertex, we obtain 
a minimum 1-basis with the property; i.e., no absolute 1-basis is less than a minimum 
basic 1-basis). Further, we can obviously assume that no zt is in B, which implies 
that every xt(l) e B. To dominate the vertices a\j, a2j, ..., a5

u, we need at least two 
vertices from Ll7. As v,(^7) and a\j or aff and Vj(tji) suffice, we can assume that B 
contains neither a\j nor a2j and that 

(2.1) {vi(tij),Vj(tji)}nB^<b. 

To dominate the vertices of Ct, at least one of the three vertices vt(t), x((t), and 
yt(t) must occur in B for every t = 1, 2, ..., dt. Hence B contains at least dt vertices 
from every Ct. Moreover, as xt(l) e B and {a\j, a2j} n B = 0, we see that |B n C(\ = 
= di only if x{(l), ...,xt(d^)eB. Thus, if there exists a t with vt(t) e B, we must 
have |B n Ct\ = dt + 1, Define the set 

S = {„ | | v. e V(G), |B n Cf| = d£ + 1} . 

Since (2.1) holds, we see that S covers all edges of G. Clearly, 

(2.2) \B\ ^ e + Y.dt + \S\ = 3e + \s\ . 

Now we are going to show that S is a minimum vertex cover of G. Let S* be a mini­
mum vertex cover of G. Put I = {i | vt e S*}. One can easily verify that the set 

B* = {vt(t) | vt e S*, 1 = t = a1,-} u {xi(l) | 1 = i <: n} u 

u {x^(t) | Vi $ S*, 2 = t = d j u {a^- | vt $ S*} u 

u {a l | vj * S*} u {afj | vf e S*, Vj e S*} 

is a 1-basis of G and that 

(2.3) |B*| =J]di + n + YJ(dl-l) + e = 3e+ |S*| . 
iel i$I 

By the assumption on B we have |B*| = |B | and comparing (2.2) and (2.3), we obtain 
|S* | = |S | , as desired. Since G and S can clearly be constructed in a time that is 
a polynomial in the size of G, the required NP-completeness is proved. 

R e m a r k 2.1. Our construction of G from G is a modification of that presented 
in [5]. Conversely, this modification can be used also for the proof in [5]. However, 
our construction is simpler. 
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3. THE m CENTER PROBLEM 

This problem is related to the preceding one but now m is fixed and the maximum 
distance from B is minimized. Here we show that even finding a near-optimal 
m-center is difficult. Following the general scheme (see e.g. [15]), we can define also the 
e-approximation (basic or absolute) m-center problem: Given a graph G, an integer 
m, and a real number e g: 0, find a set B of m points from G that 

( max d(v, B) w(v) - d*)/d* ^ e , 
veV(G) 

where d* = min { max d(v, b)w(v) | B c= G, |B | = m}. Hence a certain deviation 
veV(G) 

from the minimum is allowed. 

Theorem 3.1. The following center problems are NP-complete. 

(i) The e-approximation basic m-center problem withe < 1 for planar unweighted 
graphs with vertex degrees at most 3. 

(ii) The e-approximation absolute m-center problem with e < 1/2 for planar 

unweighted graphs with vertex degrees at most 3. 

(iii) The e-approximation absolute m-center problem with e < 1 for planar 

graphs with vertex degrees at most 3, vertex weights 1 or 2, and edge weights 1. 

Proof, (i) We reduce the minimum 1-basis problem (which is NP-complete by 
Th. 2.1) to our problem. Let m be the minimum number such that there is an m-center 
B of a given graph G with 

(3.1) maxd(v, B) < 2 . 
veV(G) 

(Note that such an m can be found by solving a separate m-center problem for each 
m = 1, 2, ..., |V(G)|.) As (3.1) is equivalent to 

(3.2) max d(v, B) = 1 , 
veV(G) 

we immediately see that B is a minimum 1-basis of G. The proof of (i) follows. 

(ii) We proceed analogously. Let m be the minimum number such that there is 
an absolute m-center B of a given graph G with 

(3.3) max d(v, B) < 3/2 . 
veV(G) 

Then every point of B can be replaced with a closest vertex of G without violating 
(3.3). Consequently, we can suppose that B c V(G). Then (3.3) is equivalent to 

(3.4) max d(v, B) = 1 
veV(G) 

and B is a minimum 1-basis of G. This completes the proof of (ii). 
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(in) Here we shall reduce the PVC-3 problem to our problem. Given a planar 

graph G with the maximum degree 3, we construct a planar graph G with the maxi­

mum degree 3 by inserting a new vertex ytj into every edge vtVj (see Fig. 2). More 

precisely, V(G) = V(G) u {ytj \ vtv} e E(G), i < j} and E(G) = {vtyij9 ytJVj \ vtvj e 

e E(G), i < j}. We set the weights of all the edges and the old vertices vt (depicted 

G- G-

Fig. 2. 

in Fig. 2 as circles) to be 1 and the weights of the new vertices ytj (squares in Fig. 2) 

to be 2 (i.e., w(vt) = 1 and w(ytj) = 2). Let m be the minimum number such that 

an absolute m-center B of G with 

(3.5) max d(v, B) w(v) < 4 . 
vєV(G) 

We shall suppose that B <=. V(G) (otherwise we can replace each point of B by a 

closest old vertex without violating (3.5)). Then (3.5) is equivalent to 

(3.6) max d(v, B) w(v) = 2 
vєV(G 

and we see that B is a minimum vertex cover of G (as any vertex cover B of G 

fulfils (3.6)). The proof of (iii) follows and the theorem is completely proved. 

4. THE p-MEDIAN PROBLEM 

Theorem 4.1. Both the basic and the absolute p-median problems are NP-cOm-

plete even if restricted to planar unweighted graphs with vertex degrees at most 3. 

Proof. We reduce the PVC-3 problem to our problem. Given a planar graph G 

with the maximum degree 3, we form the graph G as in the proof of Theorem 3A 

(iii) (see Fig. 2) but now we let G unweighted (i.e. all its weights will be 1). Put n = 

= |V(G)| and e = \E(G)\. Let p be the minimum number such that there is a (basic 

or absolute) p-median M of G with 

(4.1), I d(v,M) = 2(n - p) + e. 
veV(G) 

There is a well-known (polynomial) method which makes it possible to replace any 

absolute p-median by a basic p-median with the same value [9, 1, 2]. This method 

also enables us to replace every new vertex ytj of M by an old vertex (v* or v,). So we 

can suppose that M c V(G). Further, we assert that M is a minimum vertex cover 
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of G. First, since the distance between two old vertices is at least 2 and the distance 
of any new vertex from any set S cz V(G) is at least 1, we can write 

(4.2) X d(v, S) £ 2(n - |S |) + e . 
veV(G) 

Secondly, the equality in (4.2) holds if and only if d(v, S) = 2 for every old vertex v 
not in S and d(v, S) = 1 for every new vertex v (i.e., S is a vertex cover of G). Our set 
M fulfils (4.2) with equality (because of (4.1)) and thus M i s a vertex cover of G. 
The minimality of \M\ follows from the choice of p. This completes the proof. 

5. CONCLUDING REMARKS 

We have shown the NP-completeness of the problems considered. This indicates 
strong evidence for the impossibility of efficient algorithms for these problems. 
As the problems are easy for graphs with the maximum degree less than 3, our results 
are in this sense the best possible. 

In practice, one is usually satisfied with a "near-optimal" solution. However, 
Theorem 3.1 indicates that there is also little hope to find an effective algorithm 
giving "sufficiently good" m-centers. On the other hand, we have no such results 
for the minimum k-basis or p-median problems (the NP-completeness is shown 
only for the "exact" variants). Note that the question of e-approximation for the 
vertex cover problem is also open. 
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S ú h r n 

O VÝPOČTOVEJ ZLOŽITOSTI LOKALIZÁCIE 

STREDÍSK V GRAFE 

JÁN PLESNÍK 

Práca je věnovaná úlohám nasledovného druhu. Daná je čestná sieť spájajúca 
isté mestá. V tejto sieti třeba vybrat' množinu B takých bodov, v ktorých sa majú 
postaviť střediska. Uvažujú sa 3 konkrétné problémy: (1) K danému číslu k třeba 
vybrať B s minimálnou mohutnosťou a tak, aby vzdialenosť z lubovoiného města 
do B nepřesahovala k. (2) Pri danej mohutnosti množiny B minimalizovat' maximálnu 
vzdialenosť od B. (3) Pri danej mohutnosti množiny B minimalizovat' súčet všetkých 
vzdialeností od B. Dokazuje sa, že všetky tieto problémy sú NP — úplné a teda ťažké. 

Authofs address: RNDr. Ján Plesník, CSc, Matematický pavilón MFF UK, Mlýnská dolina, 
816 31 Bratislava. 
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