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SVAZEK 26 (1981) A P L I K A C E M A T E M A T I K Y ČÍSLO 2 

ON QUADRATIC HURWITZ FORMS I 

JlRI G R E G O R 

(Received June 8, 1979) 

1. INTRODUCTION 

In this paper we discuss quadratic homogeneous polynomials in n complex vari­
ables with real coefficients, shortly quadratic forms. The following notation is used: 
a, b, x, y are real column vectors x = (x, x2, ••-, x„)T, xh i = 1, 2,..., n, are real 
numbers, T denotes transposition. Complex vectors are z = x + jy, j 2 = — 1; 
z = x — jy is the complex conjugate of z. One single complex variable will be denoted 
by p. r will denote the open right half-plane, F = {p complex, Re p > 0}. The set 
of complex vectors z = (z,, z2i ..., zn)

T such that Re zi > 0 for all i = 1, 2, ..., n 
will be r{n); F(n) = F. x F2 x . . . x F„. Capitals denote real symmetric matrices 
of order n, e.g. A = [#,,]; r(A), <J(A), Tr A respectively denote the rank, signature 
and trace of matrix A; a > will be its j-th column, a], its i-th row. Relations >, _ , 
when used for vectors or matrices, are treated elementwise; thus Q ^ O means 
that all elements of the matrix Q are nonnegative numbers. We shall tacitly assume 
that in such case Q =f= O. The usual scalar product notation (.,.) will be used for 
real vectors: (x, y)= ^ x t y j . The quadratic form (Ax, x) will be denoted by fA or 

i 

fA
n), similarly zTAz = f(

A
n)(z) will stand for the homogeneous quadratic polynomial 

of n complex variables, which is uniquely determined by the real matrix A; fA(z) 
will be also called a quadratic form. 

Any complex vector z 0 satisfying the condition zTj-lz0 = fA(z0) = 0 will be called 
a zero point or a root of the quadratic form fA. Evidently, if z 0 is a root of fA, then 
the vectors z 0, — z0, — z 0 are also roots offA. 

Definition 1. A quadratic form fA is said to be a Hurwitz form (fA e H or A e Jf) 
iff fA(z) = zTAz #= 0 for all z e F(n), i.e. iff fA has no roots in the cartesian product 
of the open right half-planes FJ5 i = 1, 2, ..., n. 

The aim of Section 2 of this paper is to obtain necessary and sufficient conditions 
for A e Jf. Various types of these conditions show that considering quadratic forms 
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as homogeneous polynomials in n complex (rather than real) variables may explain 
some of their properties. In Section 3 we are discussing some linear transforms of 
Hurwitz forms. Here, the resuls as well as some methods of proofs will anticipate 
the main purpose of this paper, which is to extend the well established theory of one-
variable Hurwitz polynomials to the multivariable case. Section 4 of this paper will 
show that Hurwitz forms, like more general Hurwitz polynomials in many variables, 
are closely related to the theory of multivariable positive real functions. In recent 
years considerable attention has been given to this class of functions mainly because 
of their significance in electrical network analysis and synthesis, in multidimensional 
digital filtering and related problems (see [1]). 

Electrical networks, consisting of lumped passive variable elements or consisting 
of lumped elements (such as resistors and capacitors) together with distributed RC 
lines or lossless transmission lines, can be uniquely described in terms of multi-
variable positive real functions. The synthesis of such networks from a given positive 
real function is of great practical significance, nevertheless, as has been recently 
pointed out in a survey [1], its theory is far from being complete. Any rational 
positive real function in several variables is a ratio of two Hurwitz polynomials, but 
no results similar to the well-known Routh-Hurwitz criterion in the one variable 
case are known. Some numerical procedures developed so far [1] give results for 
polynomials with numerically given coefficients only and do not allow to discuss 
their possible changes. In practical cases restrictions imposed on the degree of a poly­
nomial may be more acceptable than restrictions on the number of variables and 
therefore quadratic polynomials in n variables are the simplest nontrivial object 
of investigation. 

Any quadratic polynomial P* in (n — 1) variables may be "homogenized", i.e. 
a homogeneous quadratic polynomial P in n variables can be formed as follows: 

P(z1,z2,...,z^ = z„2P*f^,^, . . . ,^iy 
\Zn Zn ?n J 

The following implication is obvious: 

(P(z) 4= 0 for all z e F(,,)} => (P*(z) * 0 for all z e F(n" n } . 

Hurwitz forms are thus important special cases of quadratic Hurwitz polynomials. 

The main purpose of this paper is to contribute to the theory of multivariable 
positive real functions. 

2. HURWITZ FORMS 

If not stated otherwise we shall assume that all the quadratic forms have at least 
one positive coefficient. We shall start with a simple 
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Lemma 2. A quadratic form in two variables is a Hurwitz form if and only if its 
determinant is nonpositive. 

Proof. Denote fA
2) = axxz\ + 2O,2z,z2 + a22

zl '•> if JA e If t u e n n o P a i r 

of coefficients can have opposite signs because in that case the polynomial 
fA(zj, 1) would not be a Hurwitz polynomial. Therefore aik ^ 0 for i, fc = 1, 2. Let 
now det A = ana22 — O2

2 = A > 0 so that a1La22 4= 0. If fA(p0, q0) = 0 then 

an Re p0, = - a, 2 Re q0 + Im g0 7 ^ • 

It follws that for any Re q0 > 0 there exists such a real number Im q0 thatfA(p(> q0) = 
= 0 and Re p0 > 0, which contradicts our assumption fA e H. Therefore, fA e LI 
implies det A <; 0. Let now det A ^ 0 and aik ^ 0. Then there exist nonnegative 
real numbers a, /?, y, <5 such thatfA = (ocz{ + /3z2) (yzj + Oz2) and therefore fA e H. 

m 
In the quadratic formfA

n) e H let one variable, say zk, be denoted by p; then 

(i) j l " ) = «p2 + /(»-"p + ^ " - , » , 

where a is a nonnegative real number, /( / l~ l ) and ge"_1), respectively, is a linear 
and a quadratic form in the remaining (n — 1) variables zh i 4= fc- Because any 
partial derivative of a Hurwitz polynomial is again a Hurwitz polynomial [4], and 
f(

A
n)eH iffa + l("~l)p + g(Q~~X)p2 is a Hurwitz polynomial, we have 

Lemma 3. If f(
A

n) e H in formula (I), then g(£~X) e H. 

By induction we obtain 

Corollary 4. A// coefficients of a Hurwitz form are nonnegative. 

The first form of a necessary and sufficient condition for fAeH is contained 

in the following theorem. 

Theorem 5. A quadratic form fA with nonnegative coefficients is a Hurwitz form 
if and only if its matrix A satisfies the inequality 

(2) (4b, a)2 ^ (Ab, b) (Aa, a) 

for all pairs of nonnegative vectors a and b such that a + b > 0. 

The proof of this theorem is based on Lemmas 6 and 7 and will be performed 
later. Let us only mention here that inequalities similar to (2) ("converse Schwarz's 
inequality") did appear earlier in the analytical treatment of Lpspaces with 0 < p < l. 
By contradiction it immediately follows from Theorem 5 that if fA e H then the 
symmetric matrix A must be indefinite. 

The following lemma could be a starting point even for investigations of multi-
variable Hurwitz polynomials of degree greater than two. 
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Lemma 6. A polynomial P in n complex variables with real coefficients and of 
degree k is nonzero in F(M) iff the one-variable polynomial 

R(p) = pkP(cc]P + Ptjp, a2p + /j2/p, ..., a„p + / ? » 

Of degree 2k lias tiO rOO/s in the Ope/7 riaht ha/f plane T = {p : Re p > 0} f'Or Or/y 
nonnegative values of txh fi{ such that a,- + /i- > 0, i = 1,2,..., «. 

Proof. F̂ or any vector z e Tin) there exist a complex value peF and n pairs 
of nonnegative numbers (oci9 /?;), i = 1, 2, ..., n, such that 

zf = OL-IP + />f/p / = 1, 2, . . . , n ; a,- + /if > 0 . 

It is sufficient to choose p so that arg p = max larg z\ and the rest is obvious. 
i 

Because at- ^ 0, /?; ^ 0, â  + /?f- > 0, we have 

Re p > 0 <=> Re zf > 0 for all I ^ i ^ n . 

Therefore R(p) + 0 for all p e F iff P(z) + 0 for all z e F(">. • 

Lemma 1. The polynomial 

T(p) = ap4 + 2 / V + y, a, l3, y ^ 0, a + jS + y > 0 

/s nonzero for all p e f iff ft2 ~ ay ^ 0. 

Proof . In the condition fi2 — ay ^ 0 the equality sign holds iff T(p) = (ap + y)2, 
which is a Hurwitz polynomial. In proving Lemma 7 we may therefore assume that 
/ j 2 — ay > 0, which implies /? 4= 0. The polynomial T is nonzero in the open right 
half-plane iff the continued fraction expansion of the ratio T'\T has positive coeffi­
cients (see e.g. [5]). By repeated division we get for a > 0, y > 0: 

T'(P) = t 
*T(P) p + 1 

a 

-ßr+~T> p + - 7 
/?^ — ay p — ay 

and our statement follows. If a = 0 or y = 0 then the lemma is trivial. • 

Proof of Theorem 5. Let two vectors o ^ 0, b ^ 0, o + b > 0, be chosen arbi­
trarily. The polynomial R from Lemma 6 with the same quadratic form as the poly­
nomial P can be formed as follows: 

R(p) = p2(aT
P + bTjp) A(ap + bjp) = 

= (do, o) p4 + [(Ab, o) + (Aa, b)] p2 + (Ab, b) . 
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The symmetry of A implies (Ab, a) = (Aa, b) and Lemma 7 proves condition (2) 
to be necessary and sufficient for fA e H. H 

A simple continuity argument shows that inequality (2) holds true for all nonnega-
tive vectors a, b iff it holds true for all such vectors satisfying a + b > 0. 

It is worth mentioning that in inequality (2) the equality sign holds for all pairs 
of nonnegative vectors o, b iff A is of rank 1 (r(A) = l) and inequality (2) holds 
without the equality sign for all linearly independent pairs of nonnegative vectors 
iff r(A) = n. As for the first statement, let us first suppose that (Ab, af = (Aa, a) . 
. (Ab, b). Denote by e(/) the vector with its i-th coordinate equal to 1 and with all 
other coordinates equal to zero, for i 4= j the vectors e ( 0 , e(J) form a linearly indepen­
dent pair of nonnegative vectors and therefore 

(4e(/), eU)f = (Ae(i\ e(/)) (Ae^\ eiJ)) 

or (with A = [flfy])equivalentlya2
tj = aHajjfor all 1 :g i, j <: n, i + j . All the second 

order principal minors of the matrix A are equal to zero. Any row of the matrix A 
is therefore a multiple of (yja1{, \Ja2z, •--, \/ann)i which implies r(A) = 1. Con­
versely, let r(A) = 1. Then there exists a vector, say k, such that (Aa, b) = (A, a) . 
. (o.., b). The symmetry of A implies (Ab, a) = (k, b) (av, a) and therefore 

(Aa, bf - (Aa, a) (Ab, b) = 

= (k, a) (k, b) (o1#, b) (o1#, o) - (k, a) (o-., o) (2, b) (o1#, b) = 0 . 

Hence, the equality sign holds in formula (2). The statement concerning r(A) = n 
will be proved below. 

Theorem 8. [2]. Let A be a real, symmetric nonnegative matrix of order greater 
than 1. The following statements i) and ii) are equivalent: 

i) Whenever a, b are nonnegative vectors, then 

(Aa, a) (Ab, b) ^ (Ab, af . 

ii) A is a semielliptic matrix, i.e., it has exactly one simple positive eigenvalue. 

Proof. Let i) be satisfied and let o be a fixed positive vector. We shall first prove 
that 

(3) (Ay, y) (Aa. a) £ (Aa, yf 

for any vector y. 

In fact, let y be such a vector. If (Ay, y) = 0 then (3) holds. It is therefore sufficient 
to consider (Ay, y) =j= 0. Because a is positive, there exists such a real number e > 0 
that b = o + sy is positive. For the vectors a, b inequality (2) holds and therefore 
the quadratic equation 

(A(a + £b), a + £b) = 0 
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with unknown £, i.e. the quadratic equation 

£2(Ab, fe) + 2£(Ah, a) + (Aa, a) = 0 , 

has two not necessarily distinct real roots £l5 £2, none of which equals to — 1. Because 

a + cfe = o + Q(Q + ey) = (I + £) o + v,^y , 
the equation 

(A(a + ny), o + r/y) = 0 

with unknown rj again has real roots r\i = e^/(l + £/), / = 1, 2. This means that 
its discriminant is nonnegative, which is equivalent to (3). 

Because (Aa, a) > 0 it follows from (3) that the quadratic form (^x, x) is negative 
semidefmite on the linear space (Aa, x) = 0 of dimension n — 1. Therefore the 
matrix A has n — 1 nonpositive eigenvalues. But (Aa, a) > 0, hence A is neither 
negative definite nor negative semidefmite and A has at least one positive eigenvalue. 
We may conclude that i) implies ii). 

To prove the converse let ii) hold. Then the quadratic form (Ax, x) is on any 
linear subspace either negative semidefmite or semielliptic. Let now a, b nonnegative 
vectors. If they are linearly dependent, equality in i) holds. Let us thus assume that 
they are linearly independent. Then they define a linear subspace on which the 
quadratic form (Ax, x) is either negative semidefmite or semielliptic. The same holds 
true also for the matrix 

M = 
(Aa, a); (Aa, b)l 
(Ab, 

If (Aa, a) = 0 then (2) is satisfied. Therefore, let (Aa, a) > 0. If, in addition, det M 
were positive, then the matrix M would be positive definite, which is impossible. 
Hence, det M :g 0, which is exactly inequality (2). Therefore ii) implies i) and the 
proof is now complete. We may add that A has only nonzero eigenvalues exactly 
when (2) holds without the equality sign for linearly independent vectors o, fe. This 
justifies the second part of our remark made after the proof of Theorem 5. • 

Corollary 9. The positive eigenvalue of any Hurwitz matrix (matrix of any 
Hurwitz form) cannot be less than the sum of absolute values of all other eigenvalues 
of this matrix. 

n 

This follows immediately from the fact that A e 34? implies Tr A = ]T Af > 0, 
where Xt are the eigenvalues of A. 

Corollary 10. Let k be a positive integer, 1 ^ k rg n, I = (/l7 i2,...,ik), ij integers, 

1 :g /, < i2 < . . . < ik ^ n and let Q;
(k) be the submatrix of order k of a matrix 

Q contatning exactly its rows and columns numbered i{, i2, ..., ik. If QeJf, 
then all matrices Q\k) are semielliptic and 

(4) ( - l ) k d e t D ( k ) :> 0 . 
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From Lemma 3 we easily get the semiellipticity of all matrices Q/ . The remaining 
pari of Corollary 10 follows when considering the eigenvalues of semielliptic matrices. 
With minor additions to the proof of Theorem 8 the following statement can be 
formulated: 

Theorem 11. [2] Under the same assumptions as in Theorem 8, the following 
statements are equivalent: 

i) Whenever a, b are linearly independent nonnegative vectors, then 

(2f) (Aa, a) (Ab, b) < (Aa, bf . 

ii) A is an elliptic matrix, i.e. it has exactly one simple positive eigenvalue and 
all other eigenvalues are negative. 

The p r o o f can be given similarly as for Theorem 8. In proving the inequality 

(3') (Ay, y) (Aa, a) < (Aa, yf 

only the case (Ay, y) = 0 must be discussed. However, if the positive vector b = 
= a + sy is used in inequality (2'), the validity of (3') can be checked upon easily. 
According to (3') the form (Ax, x) becomes negative definite on the subspace (Aa, x) = 
= 0 and therefore i) implies ii). Conversely, we may follow step by step the proof 
of Theorem 8 with minor rewording. Only the case (Aa, a) = 0 and the case det M = 
= 0 has to be discussed separately, but it would be superfluous to go into details 
here. ! 

Let now A be a symmetric matrix and let its leading principal submatrices of 
orders 1,2, ...,n be considered. As usual, we shall denote their determinants by 
Du D2, ..., Dn. The following statement holds. 

Theorem 12. Let A be a nonnegative symmetric matrix and let Dt 4= 0 for i = 
= \, 2, ..., n. Then A is a Hurwitz matrix iff 

(5) D!>0, D2<0, D3 > 0 , . . . , ( - l ) " + 1 Dn > 0 . 

Proof. According to Corollary 10, condition (5) is necessary for A to be a Hurtwitz 
matrix. The sufficiency follows from the well known results on signature and rank. 
Denoting by n, v, respectively, the number of positive and negative eigenvalues we 
have 7i + v = r(A), n — v = a(A). Here, r(A) = n and o(A) = 2 — n. Therefore A 
has exactly one positive eigenvalue and according to Theorem 11, A e #£. B 

If Dn #= 0 then the assumptions in the last theorem can be weakened; this problem 
will be dealt with in Section 4. 

Interchanging arbitrary rows and the corresponding columns cannot affect the 
eigenvalues; hence if the assumptions of Theorem 12 are fulfilled for any nested set 
of principal submatrices of order 1, 2, ..., n, then its conclusion remains to be true. 
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3. LINEAR TRANFORMATIONS OF HURW1TZ FORMS 

In this section we shall deal with such linear transforms of forms, which preserve 

the Hurwitz property. After any orthogonal transform the eigenvalues of a matrix 

remain unchanged and therefore, in view of Theorem 8, we have to find such ortho­

gonal transforms which preserve nonnegativity of the transformed matrix. For 

further use we shall say that a matrix A is a nonnegative bordering of a matrix B 

if in formula (1) k = \, a = 0, and l ( n _ 1 ) is a linear form with nonnegative coeffi­

cients. 

Lemma 13. If Ae 34? then there exists such an orthogonal matrix T that the 

matrix T~x AT is a nonnegative bordering of a certain matrix B e 34?. 

Proof. Let A = [atj] be a matrix of order n in Jf7. Since aik >̂ 0 for all /, k, 

we may assume that aH > 0 for all i = 1,2,..., n; otherwise it sufficies to rearrange 

the rows and columns. Then not only the diagonal elements, but all elements must be 

positive; if aik were zero for some i 4= k, 1 ^ /, k g /?, then at least one of the second 

order principal submatrices would be positive in contradiction with the assumption 

Ae yf (see Corollary 10). Let now numbers cik, i, k = 1,2,..., n, be defined by 

Cik = cinakkla\k . 

The matrix with the elements cu, is real, symmetric and all its off-diagonal elements 

are not greater than one: 

0 < cik = 1 . 

Rows and columns of the matrix A can be rearranged so that cl2 = min cik. After 

such a rearranging the matrix A remains to be a Hurwitz matrix and therefore we 

may assume that A was given so that c 1 2 = min cik. 

Let now the matrix 

1 ~-я 2 2 Л 1 
a2

22) L Я a 2 2 J V(^ 2 +' 
be considered with X = a12 + A, A = yj(a\2 ~ aua22). T 1 2 is a symmetric matrix 

satisfying the condition T^2 = T 1 2 and therefore T 1 2 as well as the matrix 

T = 

are orthogonal matrices of order 2 and n, respectively (£ is the unit matrix of order 

n — 2). Partitioning the matrix A conformally we have 

7 XAT = T ^ 1 2 

^ 2 2 

' 1 2 ^ l 1 ' 12 VI 2^*1 2 

L ^ 1 2 ' l 2 ^ 2 2 J 
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and further 

"0; A(a22 - a{la22) + a1 2(A2 - a 2 2 
' 12 ^* 11 • 12 ~ 

я2 + aí *; X2a\X + 2Åaì2a22 + a\2 

where * indicates such a value that the matrix is symmetric. Denoting it for the 
moment by x12 , we get 

X{2 = (a22 - a{la22)(al2 + A) + a12(a\2 + 2a12A + a12 -

- aX{a22 - a22) = 2a12 - 2 a 1 2 a n a 2 2 + (2a12 + a22 - aua22)A = 

= 2A2a12 + (A2 + a2
2 + a2

2) ^ > 0 . 

The matrix Ti2A{iT{2 is therefore nonnegative with zero in the "upper left cor­
ner". Let Ti2A{2 be calculated: 

Tí2Al2J(a2
22 + X2) = ^a 

23 ~ ^ 1 3 ^ 2 2 ; ^ a 2 4 ~ # 1 4 a 2 2 ; 

13 + « 2 2 « 2 3 ; ^ 1 4 + «22«24 ; 

To prove that Tl2Ai2 ^ 0 it is sufficient to show that Xa2k — alka22 ^ 0 for all 
k = 3, 4, .. . , n. Suppose that for some k there is a2k < a u a 2 2 / 2 . From the assumption 
A e J"f it follows that a2k §: V(a22 /̂cfc) a n d therefore a22akk < a\ka

2
22\X

2. Denoting 
ji = a12 — A, we have evidently /i > 0 and A/L = a{{a22. From the above inequality 
we get the estimate 

/( auakk _ 
- > I — C ij, 

X a ík 

and on the other hand 

H = 1 - V(l ~ c,2) 
;. i + V ( i - c 1 2 ) 12' 

which can be easily checked by analyzing the behaviour of the function (1 — ̂ /(l — x)): 
: (1 + yj(l — x)) for x e (0; 1]. The last two estimates show that clk < c12 for some 
k = 3, 4, .. . , n, which contradicts our assumption c12 = min cik. Therefore T]2Al2 ^ 
^ 0, which remained to be proved. • 

Successive application of the preceding lemma shows that any Hurwitz matrix 
can be given a form in which all diagonal elements, with at most one exception, are 
equal to zero. 

Another typs of conclusion is given by 

Lemma 14. Let A be a square, symmetric nonnegative matrix of order n and B 
a positive matrix of type n x m. If Ae Jf(n), then TBAB e JT(m); if TBAB £ 2?{m) 

for some B > 0 then A <£ Jf{n\ 
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Proof . Let z e T{m\ then y = BzeT{n). If A e Jf(rt), then (Ay, y) + 0 f o r a l ] 

y e F(;i) so that (ABz, Bz) = (TB4Bz, z) + 0 for all z e F(m) and T84B e JT The 
other part of the lemma follows immediately. B 

These transformations will be made use of in the next section. 

4. POSITIVE REAL FUNCTIONS AND HURWITZ FORMS 

A function f : C" —> C1 is called positive real if it is analytic in F(n), f(T{n)) a F 
and for any real and positive vector x the value f(x) is real and positive. Rational 
positive real functions form a basic mathematical tool in the analysis and synthesis 
of passive electrical networks. The first survey of basic properties of these functions 
was given by Koga [4]. Evidently, iff is positive real then so is 1/f Therefore positive 
real functions are nonzero in T{n) and, in the rational case, their numerators and 
denominators are Hurwitz polynomials. The ratio of any two Hurwitz polynomials, 
however, need not be a positive real function. In this section we shall investigate 
mainly homogeneous rational positive real functions with quadratic numerators. 
Two results of [4] will be referred to below: 

Lemma 15. i) If P is a Hurtwitz polynomial of n variables with real coefficients, 
then f(z) = l/P- dPJdzi is positive real for all i = 1,2,..., n. 

ii) The ratio MjN of two Hurwitz polynomials in n variables is a positive real 
function if and only if the polynomial M(z) + zn + lN(z) in n + 1 variables is 
a Hurwitz polynomial. 

By means of i) of the previous lemma and a reasoning similar to that of Theorem 5 
one result of Koga has been generalized and simplified [3] as follows: 

Lemma 16. A rational function f : Cn -> C1, odd and holomorphic in T{n\ 
is positive real iff all its first partial derivatives are positive on the set 

M = {ze C(n\ Re z = 0} . 

From these and some further results the following theorem can be proved. 

Theorem 17. Let A be a Hurwitz matrix of order n. Then all matrices 

Bij = I A / ] M = 1 = [aikajl + ailaJk ~ aijakl\ . 

i = 1, 2, ..., n\ j = 1, 2, ..., n, are symmetric and positive definite. 

Proof. The function 

c M 1 1 d ,A v (a].,z) 
biz) = (Az, z) = v l ' 

2 (Az, z) dzt (Az, z) 
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is positive real according to i) of Lemma 15. According to Lemma 16, its partial 

derivatives on the set M = {ze C(n) : Re z = 0} are positive and therefore for any 

real vector x, 

(6) ' i°j-
дzj (Az, z, 

-a,j(Ax, x) + 2(al, x) (oj., x) ^ Q 

,,M (Ax, - x ) 2 

The numerator in (6) is positive for all values i, j ^ t? which has to be proved. M 

It is a well known fact that the conclusion of Theorem 12 remains true if one 

of the determinants Dt is equal to zero. Making use of this, together with ii) of Lemma 

15, we get the following 

Theorem 18, Let A be a Hurwitz matrix of order n and let I be any nonnegative 

n-dimensional vector. Then the function 

F(z) = (-M 

is positive real iff the bordering of the matrix A by the vector I (as in Section 3) 

is a Hurwitz matrix. 

Theorem 19. Let Q = [q^] be a nonnegative, square, symmetric matrix of order 

n such that qn = 0, i = 1, 2, ..., (n — \). Then the positive definiteness of all the 

matrices B f. (i = 1, 2, ...,/?; j = V 2, ..., n) is sufficient for Q to be a Hurwitz 

matrix. 

Proof. For any fixed i andj we shall say that the matrix Btj belongs to the element 

a(j of the matrix. Q, Let us consider a principal submatrix Q(k) of the matrix Q 

which contains the element atj, and let the matrix Bf) be constructed (it "belongs 

to the same elements Of" but involves elements of Q(k) only). Then B\k) is a principal 

submatrix of B-tj, hence B(

t

k) is positive definite. It is easy to verify directly that for 

n = 2 our statement holds true. Let us suppose that it is true for some k, 2 ^ k < n. 

The k-th order matrix Q(k) is therefore the matrix of a Hurwitz form, which may be 

considered to be the denominator of a rational function. Since its bordering satisfies 

the conditions of Corollary 18, all the partial derivatives (as in the proof of Theorem 

17) of the function 

Fk(z) = ( * * * ' - * ) 
V ; (Q(k)z, z) 

are positive and Fk is positive real. The matrix Q(/< + 1 ) is therefore a Hurwitz matrix 

and our statement is proved by induction. • • 

The theorems proved so far show the Hurwitz forms to have some interesting 

special properties; some of these results have an immediate impact on problems 
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of the multivariable positive real function theory and on the synthesis of electrical 
networks containing mixed types oi' elements. We intend to devote another paper 
to these applications. 

Acknowledgement, The author wishes to thank Professor Miroslav ¥ied\Q\\ 
DrSc, of the Mathematical Institute of the Czechoslovak Academy of Sciences, 
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S o u h r n 

HURWITZOVY KVADRATICKÉ FORMY I 

JIŘÍ GREGOR 

V článku jsou formulovány nutné a postačující podmínky pro to, aby kvadratická 
forma v n komplexních proměnných a s reálnými koeficienty byla nenulová na kartéz­
ském součinu otevřených pravých polorovin, tj. na množině F(ř1) = [z e C(/,), 
Re z > 0} a jsou studovány lineární transformace, které tuto vlastnost kvadratické 
formy zachovávají. Dokázaných podmínek je pak použito na nejjednodušší případy 
racionálních positivně reálných funkcí n komplexních proměnných s cílem jejich 
aplikace ve vícedimensionálním popisu pasivních elektrických obvodů se soustředě­
nými prvky. 

Authoťs address: doc ing. Jiří Gregor, CSc, Katedra matematiky FEL ČVUT, Suchbatarova 2 
166 27 Praha 6. 
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