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SVAZEK 26 (1981) A P LI K A C E M ATE M A T I KY ČÍSLO 4 

DUALITY IN THE OBSTACLE AND UNILATERAL PROBLEM 
FOR THE BIHARMONIC OPERATOR 

JÁN LOVÍŠEK 

(Received August 16, 1979) 

INTRODUCTION 

The problem of minimization and the problem of maximization-also called the 
dual problem have been examined in detail during the last years, together with 
their mutual relation in the problems of mechanics. In this work the problem of 
duality is formulated for the obstacle and unilateral biharmonic problem, which 
physicaly expresses the equilibrium of a thin plate with an obstacle inside the domain 
or on the boundary. The dual variational inequality is derived by introducing polar 
(or conjugate) functions (functions of Fenchel-Rockafellar), as well as by means of 
the saddle point of the Lagrangian. 

1. FUNCTIONAL SPACES 

The following functional spaces are essential for studying the problem given 
above: 

H>(n) = \v\v,^,8^eL2(Q)\, 
[ dx dy J 

Hl
0(Q) = [V\VEH1(Q), v\da = 0}, 

uKr>\ f I dv 3 v d2v d2v d2v J tn\l H\Q) = \v\ v, — , — , — - , , — e L2(Q)\ , 
( dx dy dx dx dy dy J 

H2
0(Q) = 9(Q)HHQ) = j v | v e H2(Q), v = ^ = 0 on do\ 

(<3(Q)H {Q) = the closure of the ^(^-functions infinitely times differentiable and 
with compact support in Q in the norm of H2(Q)). 

H(Q, V2) = (v | v e L2(Q); V2v e L2(Q)} . 
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On the spaces H2(Q), H[(Q) and H(Q, V2) we introduce scalar product by 

t , t \ fdu dv\ fdu dvN 

(w, v)UQ = (u, v)0M + — , — + 
5x/o,fl 

OX 

2„ / \ / \ /d 2u d2v\ 

дy дyJ0tQ 

д2u д2v 
+ дхду dxdyJ0Q \dy2 dy2J0Q 

д2u_ д2v 
Tľ2 " 

(", ^W,V2) = (u, v)0tQ + (V2u, V 2 v ) 0 ^ , 

respectively, and the corresponding norms are 

I I M || 1..Q = [(M 'M)l,5l] 1 / Z, 

H k o = [ ( M
?

M ) 2 , J 1 / 2 , 

| | W | | H ( ^ , V 2 ) = L(M> M)H(il,Va)j 
where 

("> y)o,£ uv dí2 . 

We assume that Q is an open domain which is smooth C°° (or is convex polygon), 
with a boundary dQ. 

R e m a r k 1.1. The transformation v —> ||V2v||0>r3 defines a norm on the space 
H2(Q) n HI(Q) (or H0(-3)) which is equivalent to the norm induced by the space 
H\Q). 

.2 /^2„N 

3y/ \5>>2 н~-rø* (£)'•(£)>) 
1/2 

is a seminorm on the space H2(Q). 
The transformation 

ľo^ = 0 aя; ľi» 
дw 

(operators of traces) 

is a linear continuous surjection from H2(Q) on to the product of the spaces 
H3/2(dQ) x H1/2(dQ). 

The transformation yi is a surjection from Von to Hi/2(dQ). Let 

\ S /Hi'-(diQ) (resp. <•; V/f»/-(aiQ)) 

denote the bilinear form of duality between Hi/2(dQ) and H~1/2(5D); (resp.H3/2(<?.<2) 

and H~3/2(O;Q)), which extends (•; •) L2(Q), i.e., 

<w, v/Hi/-(aí2) — wv ás for any u є Hí/2(дQ), 

v є L2(õQ), 
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resp. 

(u, tf>H«.-(dfl) = uv ds for any u e H3/2(dQ) , 
J dQ 

v e L2(dQ). 

We can write Green's formula in the form 

W4uvdQ - uV4vd.Q = <yiW, yo0>jf-/-(c,fl) ~ <7ow> yî >n»/*(ei7) f o r anY 
J o J o 

u e H2(&), v e H(.Q, V2) . 

Remarks on duality and formulation of the problem in the sense of Fenchel-
Rockafellar. 

In the following we shah need some results on duality as presented in Ekeland-
Temam [3]. 

If V; (y) is a Banach space (its dual space will be V*; (Y*) with topology generated 
by norm. For every u e Vand u* e V* (resp. y e Y\ y* e Y*) we denote the by symbol 
<w, u*yv (resp. <y*, y>r) the value of the functional u* at the point u (resp. of y* 
at the point y). We shall assume the existence of a linear continuous operator 
A G cSf(V, Y) and the adjoint operator A* e ££{Y*, V*). Further, we introduce 
functional F and G defined on V, and Y, respectively with values in (—00, +co>, 
convex and lower semi —continuous on V (resp. Y) and proper (i.e. not identically 
equal to +00). Then FGF0(V) c F(V), G e T0(Y) C F(y)), where F(V) is the set 
of functions F : V-+ R, which are pointwise suprema of family us of continuous 
affine functions, so that 

F(v) = sup (l,(v) - af) = sup «v , v*yv - a,) , 
iel iel 

if 
v* G V*, af G R and I is a set of indices (F0(V) denotes the subset of functions from 
F(v), which are not equal to + 00 nor to — 00). The polar (conjugate) functionals 
to F and G defined on the spaces V* and Y*, respectively, are introduced in the form 

F*(v*) = sup {<v, v*yv - F(v)} . 
veV 

Note that F*GF0(V*) (G* e F0(Y*)). They are convex, lower semi-continuous and 
not identically equal to +00. Given the problem of minimization (or primary 
problem) 

(9) inf{F(u) + G(Au)}9 
ueV 

the dual problem in the sense of Fenchel-Rockafellar is defined by 

(9*) sup {-F*(A*p*) - G*(-p*)} . 
P*eY* 
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The following relations ([3]) between the problems (0) and (0**) hold 

(a) 1° sup(^*) ^ inf (^) ; 
2° if there exists w0 e Vsuch that F(u0) < + GO, G(AU0) < + GO and if G* is finit 

and continuous in Au0, then inf(^) = sup (0*) 
and the problem (0**) has at least one solution p*; 

3° p* e Y* is a solution of the problem (0*) and u e V is a solution of the 
problem (^) and inf (0) = sup (^*) if and only if the following relations 
of extremality hold: 

F(u) + F*(A*p*) = <A*p*, u}v , 

G(Au) + G*(-p*) = -<p*, Au}Y , 
i.e., 

A*p* e <3F(u) (subdifferential F at the point u), 
— p* G dG(Au) (subdifferential G at the point Au). 
Further, (it, p*) is a saddle point of the following Lagrangian: 

J f̂(u, p*) = F(u) + <Au, p*>y - G*(p*). 

On the other hand, if (u, p*) is a saddle point of ££(u, p*)onK x Y* then u is a solu
tion of (0) and p* is a solution of (0*). 

The primary and the dual problem allow the following interpretation by the 
Lagrangian: 

(0) o inf sup ^ ( u , p*), 
ueV p*eY* 

(0*) = sup i n f ^ ( u , p*). 
p*eY* veV 

Definition 2.1. The polarity generates a bijection between F(V) and F(V*). F e 
G F(V) and Ge F(V*) are in duality if they coincide in the bijection F = G* and 
G = F*. 

In terms of an even function cp e F0(B) and its conjugate convex function </>*, 
which is from F0(Iv), we define 

F: V -> R and G: V* -> R, so that 

(2.2) F(u) =cp(\u\\v) 

G(U*) = </>*(|| u* j| K*) 

Lemma 1. Under the above assumptions, F and G are in dualtiy ([3]). Further, 
we shall examine the case, when the function cp(t) is of the form (p(t) = \ |t|2, the 
conjugate function is (p*(t) = \ |t|2, 
where 

<p(t), cp*(t) e r0(R). 
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Then F(u) = -\ ||«||y; G(u*) = i |«*||i> is a conjugate function. 
On a convex closed set K <= K(K +- 0), the indicator function XK(V) °f !^ ' s defined 

by 

(2.3) , , fO if i )eiC, 
^ ) = | + a ) j f ^ K 

The polar function xt(v*) w ' " n a v e the form XK("*) = SUP <j'*> ">K> hence 

,"> A\ *( *\ 1° if "* = 0-
^ ^ ) = {+oo if » * > 0 

provided K is a convex cone with its vertex at the origin. 
If we introduce K* = {v* | v* e V*, v* ^ 0}, it will be xl(v*) — XK*(V*)-

3. FORMULATION OF THE BIHARMONIC PROBLEM WITH 
AN OBSTACLE TN THE DOMAIN 

Let Q be an open bounded domain in E2 with a sufficiently smooth boundary dQ. 
The density of the loading of the plate is defined by a function f(x, y) e L2(Q). We 
look for a solution w — (deflection of plate) of the variational inequality 

f w(x,y)eK, 

(3.1) \ r r 
ID V2w V2(v - w) dQ ^ f(v - w) d«Q for any v e K , 

^ J Q J Q 

where K is a closed convex set in V = H2
0(Q), which is defined by 

(3.2) K = {v e H 2 ,^) \v^\j/ a.e. on G} , 

*A 6 H2(*2), 

D is the cylindrical stiffness of the plate. The solution of the variational inequality 
(3.1) is equivalent to the solution of the following problem: 

(0>) find f w(x, y) e K such that 
| J(w) ^ J(v) for any v e K 

where 
J(v)= D/2 | iV 2 v | | 2 ^- ( f ,v ) 0 > f i . 

The problem (0>) corresponds to the formulation in the weak sense of the so-called 
unilateral Dirichlet problem (or the problem with an obstacle) for the bending of 
a thin plate. 

Theorem 1. The problem (&>) has a unique solution w for every fe L2(Q). 

Proof. K is a closed convex subset of H^(Q). J(v) is a convex, quadratic and coer
cive functional on H^(Q). Then the rest of the proof follows directly from [[2] — 
Th. 4.04, s. 126]. 
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Furthermore it can be shown that, if the solution is sufficiently smooth i.e., 
w G HA(Q), it satisfies the following set of relations: 

DV4w - / ^ 0 

(3.3) W §Ţ ф 

(w - ф) (DV4w - /) = 0 in Q 

i дw\ 

õn\ 
= 0. 

These relations suggest that the solution w of the variational inequality (3.1) is 
a function which in a certain set Q0 c Q satisfies DV4w — / = 0, while in another 
set :^ c Qit is equal to \j/. We shall call the boundary dQ0 of the free boundary. The 
above set of relations (3.3) will be referred to as the set of complementary dif
ferential inequalities. 

Indeed we can write 

D J V2wV2(v - w) dQ ^ / (v - w) dQ , 
JQ JQ 

D V2wV2(v - w) dQ = D V4w(v - w) dQ . 
JQ J Q 

D I V4w(v - w) dQ ^ / (v - w) dQ 
JQ JQ 

(DV4w - / ) (v - w) d<3 ^ 0 . 

but 

Then we have 

whence 

I 
Let cp e ^(£>) be such that cp ^ 0; then v = w + <p e K, and hence 

[ (DV4w - / ) cp dQ ^ 0 , which implies that DV4w - / ^ 0 , 

Next we take 

(3.4) 

We obtain 

v = ф є K , 

v = 2 — i/y = w — (ф — w) є K . 

w) dí2 ^ 0 ľ(£V4w-/)0A 

í (DV4w - / ) (w - ф) dQ ^ 0 

• (DV4w - / ) (w - ф) dQ = 0 . 
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This implies 
(DV4w ~ f) (w - I/J) = 0 over Q 

and we deduce that 

(3.5) DV4w = f over Q0 c Q , 

DV4w > f over -Q. cz fi , 

where 

fi0 = {(*> y) e fi | w(*> y) > *H*> y)} , 

Q, = {(x, y)eQ\ w(x, y) = i//(x, y)} . 

If ^ G H2
0(Q) we can write K = *A + U, where 

U = [u e H2
0(Q) | M ^ 0 a.e. over £>} 

is a positive cone with its vertex at the origin. Further putting 

(3.6) w = \j/ + w* , u* e U we have . 

Lemma 2. We can write 

(3.7) <£>V4vv-/, «*>Ho.(n) = 0 . 

Proof. Substitute v = t/> in to (3A) and then put v = i/J + 2u*. If we apply (3.6) 
and Green's formula we get (3.7). 

Now we derive the dual formulation of the problem (0), which we write in the 
form 

(^) inf {F(v) + G(Av)} 
veH0

2(Q) 

where 

(3.8) F(v)= -(f,v)0,Q + XK(v), 

XK(V) ls l n e indicator function of K and 

(3.9) A = V2(/i* = V2 e ^(L2(Q), H~2(Q)), 

A e <?(H2
0(Q), L2(Q)), 

(3.10) G(p) = D/2||p||2^, pGY=L2(fi). 

We shall now consider a function (3.H) of Ho(£>) x L2(Q) into R such that 

<P(v, 0) = F(v) + G(Av) 

and for every p e L2(Q) we shall consider the minimization problem: 

(^„) inf < % p ) 
veH0

2(Q) 
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Clearly, for p = 0, &0 is nothing else than the problem &. The problem 0>
p will be 

called the pertrubed problem of & (with respect to the given perturbation). 
By introducing the perturbed function 

(3.11) 0(v9 p) = F(v) + G(Av - p) 

we shall formulate the dual problem (&*) by 

(&*) sup {-F*(A*p*) - G*(-/?*)} . 
P*eL2(Q) 

Lemma 3. For p e L2(Q), we have 

(3.12) F*(A*p*) = /(A^P)o.a + (^fU ^ A*P*+f^0, 
^ ' ^ ' \ + GO otherwise. 

Proof. 

v e K <=> v = \jj + u , where u e U . 

Now we have from the definition 

E*(A*p*) = sup {<«,, /l*p*>Ho2(fl) + </, !>>„„.«„ - *K(t>)} , 
veH0

2(Q) 

where 
-4*0 = - </ >̂Ho2(r?) + Z*00 • 

Hence we further get 

F*(A*p*) = <<//, -4*p*>l/0-W + <^f>HoHQ) + SllP {<"> ^*P*>//o2(^) + 
»eH0

2(fi) 

+ < / ">H0
2(£>) ~ Z*# + ")} = <«A, ̂ V>H0

2(fi) + 

+ <^J>H0HQ) + Slip <u, A*p* + /> / /o2 ( f l ) . 
ueV 

However 
sup <u, A*p* + /> / /o2(f3) = 0 

for A*p* + / ^ 0, because U is a positive cone. It is readily seen that 

(W, P*)O,Q = <*A> ̂ P*>Ho2(0) for any p* e Y* , */y e H0(^) • 

Summarizing we have 

F*(A*p*) = (A«A, T*)0,fl + <^,/>H02(O) + Xc/*(/l*P* + / ) , 
where 

/!/•(/!*/>* + / ) 

is the indicator function of the polar cone U*, 

U* = {q* e H2(Q)\ <a*, u>Ho2{Q) S 0 for any u e U] . 

Lemma 1 implies that the conjugate function G*(p*) e r(L2(Q)) has the form 

G*(p*) = iD\\p*\\l 12 
,Q • 
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This the dual problem (&*) is expressed by 

(0>*) sup { - ( A ^ , p*)0rQ - <i//,j >,V ( f i ) - Xu*(A*p* + f) - -il>||p*!|o,«} • 
P*eL2(Q) 

After eliminating those elements p* for which F*(A*p*) = + GO, i.e. taking supremum 
only on the elements p* satisfying 

Xv*(A*p* + / ) = 0 <=> A*p* + / ^ 0 , we get 

C5*) sup {™(A*//, p*)0fQ - <i^J')HoHQ) - JD||p*||o>} 
P*eL2(Q) 

A*p* + / S 0 . 

Lemma 4. The problem (0>*) has a unique solution. 

Proof. The functional G*(p*) is strictly convex on the space L2(Q) and the set of 
permissible p*, i.e. A*p* + / ^ 0, is closed and convex in L2(Q). 

Lemma 5. Let w be a solution of the problem (&), p* a solution of the problem 
(&>*). Then we have 

(3A3) inf(^) = sup(^*) 

and w and p* are satisfying the extremality relations 

(3A4) DV2w + p* = 0 , 

V2p* + / ^ 0 , if w == if/ (i.e. in the domain Qt) 

w e K , p* e L2(Q) . 

Proof. By virtue of Theorem III.4.1 ([3]), since F(ij/) < + oc and G is finite and 
continuous at the point Ai/J we have 

(3A5) inf(^) = sup(^*) 

and the problem (0>*) possesses at least one solution p*. Then due to (a, 3°) we can 
write 

(3A6) F(w) + F*(A*p*) = - < / , w}HoHQ) + XK(W) + 

+ <<//, A*p*}lfoHn) + <il/,f>H02W + Xv*(A*p* +f) = (A*p*, w>Ho2(fi) 

only if A*p* + f ^ 0. 
On the other hand, the second extremality relation 

(3.17) G(Aw) + G*(-p*) = <-/>*, Aw>lloHn) 

easily yields that 

£>/2||V2w||2.ft + ±D\\p*\\ln = <-/>*, V 2 w>, V ( 0 ) . 
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This equality can be rewriten in the form 

V(!>)v: W H p* 

JD 
Therefore 

DV2w = 

4. Formulation of the unilateral problem (obstacles on the boundary). 

For the unilateral problem we replace the convex set in (3.2) by 

(4.1) K = (v£H2(;Q) n H0(Q) - V\ yxv ^_ 0 a.e. in Q} 

(the relation yxv ^ 0 is to be understood in the sense of Hxl2(dQ)). 
Let us consider the variational inequality: 
Find 

(4.2) 

where 

a(u, v) = 

w e K such that 

a(w, v — w) g: (/, v 

|v2wV2v + (1 - /i) | 2 

)0 Q for any vєK 

a2u д2v д2u д2v 

ôx дy дx дy дx2 ôy2 

џЧ2uS/2v + (1 - џ) 
д2u д2v ô2u дh_ 

дx2 дx2 дy2 дx2 + 2 

Ô2u д2v 

дy2 õx2 

д2u д2v 

дx дy дx дy 

î = 
12(1 - џ2 

Eh3 
/ = D- ; 

\ > fi > 0 is Poisson's number. 

áQ 

ÕQ 

The bilinear form a(u, v) is continuous on H2(Q) x H2(Q) and V — elliptic. 

We can write 

(4-4) a(v, v) = /i||V2v||2,Q + (1 - /() \v\lQ . 

Clearly, the problem (4.2) is equivalent to the problem of minimization 

(4.5) M{ia(v,v)-(f,v)0tQ + xM-
veV 

Theorem 2. The minimization problem (4.5) has one and only one solution. 

Proof. See [2]. Observe that the problem (4.2) coincides with the weak formula
tion of the unilateral Dirichlet problem with a homogeneous obstacle on the boundary 
for the transverse slope of the plate. Define a linear bounded operator A : V-> V* 
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satisfying <Aw, v)v = a(u, v) for all v e V. Then we can write (4A) in the form 

(4.6) weK n D(A), 

<Aw, v — w)v = <f, v — w)v for any v e K 

or in an equivalent form 

(4.7) w e D(A), 

<Aw, v - w)v + ^ ( v ) - /R(w) = < / v - w>K 

for any v e V. 

For the dual formulation of variational inequality (4.7) we introduce the mapping 

(4.8) A"1: V* -> V. 

Then the dual variational inequality conjugate with (4.7) can be written as follows 

(M)= 
(4.9) w*eD(A~ 1) 

<A -1w*, v* — w*>K + <JK(v*) — O"K(w*) ^ </., v* — w*>K 

for any v* e V* , 

where h = A-1/ 
O"x(v*) = support function of K (= conjugate function of XK(V))-

Theorem 3 ([5]). 
An element w e V is a solution of the variational inequality (4.7) if and only if the 

element w* = —Aw + / of V* is a solution of (4.9), where w = A~~lw* + h and 

(4.10) weD(A)nK 

aK(w*) = <w*, w)v 

Since fe L2(Q), we have w e H3(.Q) n H0(&) (see [4]). 

(i) ?o(V2w) e H1/2(G:.Q) cz L2(dQ) . 

Under the regularity hypothesis (i) it is possible to prove, in the case of the problem 
(3.3), that the solution w of (4.2) or equivalently the minimizer w of (4.5) can be 
characterized by 

(4.11) V4w = / over Q , we H2(Q) , w = 0 on dQ , 

Mn(w) ^ 0 ; y{w ^ 0 ; Mn(w) y{(w) = 0 on dQ . 

Then we define the Lagrangian =^: V x L^G1^) -> R by 

(4.12) j^(v, v) = J(v) - vy^ds, 
J dQ 
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where 
J(v) = \a(v, v) - (f, v)0,.Q, 

(4.13) L\(cQ) (= positive cone) = (v | ve L2(dQ), v = 0 a.e. in Q) . 

Theorem 4. Let w he a solution of the problem (4.6) with f e L2(Q), then the 
Lag rang ian defined in (4.12) possesses a saddle unique point [w,Mn(w)} on the 
Cartesian product V x L\(dQ). 

Proof. 

1° By (i) we have A = Mn(w) e H1/2(dQ) <= L+
2(8Q) and yxw ^ 0 a.e. by (4.11), 

However, 

yAw ^ 0 => vyxw ds ^ 0 for any v e L\ (dQ). 
JdQ 

Thus we may write 

(4.14) <£(w, v) ^ ^ (w, A) (= J(w)) for any v e L\(dQ). 

2° Let A e L\(dQ) be fixed; solve the problem of minimization 

(4.15) mî£Є(v,k) = iпf (̂ v) - I Xyxvás , 

The unique solution of (4.15) is characterized by 

/grad J(wA) — Aŷ Wд , w ) = 0 for any u є V. 
Јf>ß Ј /v 

Using Green's formula we obtain 

(4.16) M„(w,) = A; V4u>, = / , y0w, = 0 . 

Hence we deduce that w; = w, because the solution (4.5) in the form (4.H) satisfies 
(4.16) (taking into account the definition of A). 

Now we can write 

(4.17) £?(w, X) ^ g(v, A) for any v e V. 

This (4.14) together implies that (w, Mn(w)} is the saddle point of !£ on V x L+
2(dQ). 

Note that 

(4.18) ( — X) yгw ás ^ 0 for any v є L ^ ő ß ) . 
Јfß 

In order to prove the uniqueness, let {w, A}; {w*, A*} be two corresponding possible 
saddle points of i f on V x L ^ d ^ ) . In this case we have V4w* = f, 

(4.19) y0w* = 0 , 

M„(w*) = A* 
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(4.20) 

y,w* = 0 ; M^w^y^w*) = 0 , 

(v - /*) yvw* d$ ^ 0 for every v e L+
2(dQ) . 

We set v = X* in the inequality (4A8)and v = / in (4.20). Then, adding (4A8) and 
(4.20), we obtain 

(4.21) ()* - /) (y,w* - yxw) ds g 0 . 
J e» 

If we set y = w* — w, with Green's formula and (4.21) we conclude that 

(4.22) a(y, y) = M < ( ) j r , ( . ľ ) d . ^ 0 . 

Then from V— ellipticity of the bilinear form #(•; •) we obtain y = 0. Finally we 
have A* — A = AI;.((w* — w) = 0, which implies / = /*. 
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S ú h r n 

DUALITA V PREKÁŽKOVEJ A JEDNOSTRANNÉ! ÚLOHE 
PRE BIHARMONICKÝ OPERÁTOR 

JÁN LoVÍŠEK 

V tejto práci je študovaný problém minimalizácie a problém maximalizácie (duálny 
problém) ako aj ich vzájomný vzťah pri rovnováhe tenkej dosky. Je odvodený duálny 
tvar variačnej nerovnosti na základe konjugovaných funkcií (v zmysle Fenchela-
Rockaífelara), pre překážku vo vnútri oblasti ako aj na hranici. 

Aufhor\s address: Doc. Ing. RNDr. Ján Lovíšek, CSc, SVŠT, Stavebná fakulta, Radlinského 
11, 884 20 Bratislava. 
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