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DUALITY IN THE OBSTACLE AND UNILATERAL PROBLEM
FOR THE BIHARMONIC OPERATOR

JAN LoViSEK

(Received August 16, 1979)

INTRODUCTION

The problem of minimization and the problem of maximization-also called the
dual problem have been examined in detail during the last years, together with
their mutual relation in the problems of mechanics. In this work the problem of
duality is formulated for the obstacle and unilateral biharmonic problem, which
physicaly expresses the equilibrium of a thin plate with an obstacle inside the domain
or on the boundary. The dual variational inequality is derived by introducing polar
(or conjugate) functions (functions of Fenchel-Rockafellar), as well as by means of
the saddle point of the Lagrangian.

1. FUNCTIONAL SPACES

The following functional spaces are essential for studying the problem given
above:

ov 0
HY(Q) = {U | v, W LZ(Q)},

Jx 0dy

Hy(Q) = {v|ve H(Q), v|n =0},

dv Qv 0? 0? 020
HY(Q) = Ju|v, &0, 0,20 0 Cl e o),
Ox dy 0x* 0xdy 0y?

R %)
”(2)(9) = {/(Q)uz(m = {u l ve HZ(Q)’ b = ;Z =0 on OQ}

(2(Q)"® = the closure of the Z(Q)-functions infinitely times differentiable and
with compact support in Q in the norm of H*(Q)).

H(Q,V?) = {v| ve Ly(Q); Vive L,(Q)} .
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On the spaces H*(Q), H'(2) and H(Q, V?) we introduce scalar product by

ou 0
(u’ U)I.Q = (L{, U)O.Q + ({7*“ H _(B) + (a_l'{ 5 fzzi) )
ox 0x/g.0 dy 0v/)o.a

(s V) = (s o)y g b (0, 00) (D S0\ (T P
e e ox*" ox*)o 0 oxdy 0xdy)oo \0¥ ¥ )oa

(U, V)novry = (U, 0)o.0 + (Vu, V0)o 0,

respectively, and the corresponding norms are

H”“ 1,0 = [(ll, u)l,Q]1/2~
lulzo = [(u, ) 0]"2,

H“HH(Q,VZ) = [(u, ”)n(rz,vf)]l/zﬂ
where

(“, U)o,g = J. uv dQ .
2

We assume that Q is an open domain which is smooth C* (or is convex polygon),
with a boundary ¢Q.

Remark 1.1. The transformation v — |[V?0|,  defines a norm on the space
H*(Q) n Hy(Q) (or Hi(Q)) which is equivalent to the norm induced by the space

H*(Q).
( 021] 2 / (721) 2 020 2 1/2
b= (], [(52) () = () )
oL\0x Ox dy oy?

is a seminorm on the space H(Q).
The transformation

v
Yol = Ul(»,Q; V10 = (operators of traces)

Ujoo

is a linear continuous surjection from H?*(Q) on to the product of the spaces
H2(0Q) x H'*(0Q).
The transformation 7, is a surjection from V on to H'/*(0Q). Let

o5 D mnen) (resp. s '>11m(an))

denote the bilinear form of duality between H'/?(0Q) and H™"/*(0Q); (resp.H*'*(¢Q)
and H™?%(0Q)), which extends (+; *) Ly(Q), i.e.,

Uy Vypnge) = j uvds forany ueH'*0Q),
o0
ve L,(0Q),
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resp.
U, UY ppiseay = J. uvds forany ueHY?*0Q),
an
vE Lz(()Q) .

We can write Green’s formula in the form

Q

J Viup dQ — j uV* dQ = (yyu, Yot ipiseay — {YoUs V10D ey 1OT any
o
ue H¥(Q), ve H(Q,V?).

Remarks on duality and formulation of the problem in the sense of Fenchel-
Rockafellar.

In the following we shall need some results on duality as presented in Ekeland-
Temam [3].

If V; (Y) is a Banach space (its dual space will be V*; (Y*) with topology generated
by norm. For every u € Vand u* € V* (resp. y € Y; y* € Y*) we denote the by symbol
Cu, u*yy (resp. {¥*, y)y) the value of the functional u* at the point u (resp. of y*
at the point y). We shall assume the existence of a linear continuous operator
Ae L(V,Y) and the adjoint operator A*e £(Y*, V*). Further, we introduce
functionals F and G defined on V, and Y, respectively with values in (——oo, + o),
convex and lower semi—continuous on V (resp. Y) and proper (i.e. not identically
equal to + ). Then Fe I'y(V) = I'(V), GeI'o(Y) = I'(Y)), where I'(V) is the set
of functions F : V' — R, which are pointwise suprema of family us of continuous
affine functions, so that

F(v) = sup (I(v) — «;) = sup (v, v}y — o),
iel iel
if
vf € V*, a;e R and 1 is a set of indices (I'o(V) denotes the subset of functions from
I'(v), which are not equal to +co nor to —oo). The polar (conjugate) functionals
to F and G defined on the spaces V* and Y*, respectively, are introduced in the form

F*(v*) = su;V) {<v, vy, — F(v)} .

Note that F* e I'o(V*) (G* € I'o(Y*)). They are convex, lower semi-continuous and
not identically equal to +oo. Given the problem of minimization (or primary
problem)

(2) inf {F(u) + G(Au)} ,

ueV

the dual problem in the sense of Fenchel-Rockafellar is defined by

(j*) sup {—F*(/l*p*) _ G*(—P*)} .
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The following relations ([3]) between the problems (#) and (2*) hold
(a) 19 sup (2*) < inf(2);
27 if there exists uy € ¥ such that F(u,) {+ o0, G(Auy) {+ o and if G* is finit
and continuous in Aug, then inf(2) = sup (2*)
and the problem (df*) has at least one solution p*;
3° p*e Y* is a solution of the problem (2*) and i e V is a solution of the
problem (2) and inf () = sup (#*) if and only if the following relations
of extremality hold:

F(ir) + F*(A*p*)
G(A7) + G*(~7¥)

Il

{A*p*, W)y,

Il

=<p*, Ay,
ie,
A*p* e 0F(ii) (subdifferential F at the point i),
— p* e dG(Au) (subdifferential G at the point Air).
Further, (&, p*) is a saddle point of the following Lagrangian:
L(u, p*) = F(u) + {Au, p*>y — G*(p*).
On the other hand, if (&1, p*) is a saddle point of £(u, p*)onX x Y* then i is a solu-
tion of (#) and p* is a solution of (2*).
The primary and the dual problem allow the following interpretation by the
Lagrangian:
(2) < inf sup Z(u, p*),

ueV p*eY*

(2*) = sup inf L(u, p*).

p*eY* veV

Definition 2.1. The polarity generates a bijection between I'(V) and I'(V*). F e
€ I'(V) and G e I (V*) are in duality if they coincide in the bijection F = G* and
G = F*,

In terms of an even function ¢ € I'((R) and its conjugate convex function ¢*,
which is from I'o(R), we define

F: V- Rand G: V* - R, so that
(22) F(u) = o(|ully)

G(u*) = o*(|lu*

V)

Lemma 1. Under the above assumptions, F and G are in dualtiy ([3]) Further,
we shall examine the case, when the function ¢(t) is of the form ¢(1) = Htlz, the
conjugate function is @*(1) = % ]t]z,
where

o(1), p*(1) € I'o(R) .
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Then F(u) = % |ul3; Gu*) = % Hu*”f, is a conjugate function.
On a convex closed set K = V(K =+ 0), the indicator function y,(v) of K is defined
by

(2.3) _fo if vek,
w0 =40 i vek.
The polar function x;(v*) will have the form xt(v*) = sup {v*, v),, hence
veK
0 if v*=<0
SK(E) — =Y
(24) 1x(v%) = {+ oo if v*>0

provided K is a convex cone with its vertex at the origin.
If we introduce K* = {v* ' v¥ e V*, v* < 0}, it will be xi(v*) = xxa(v*).

3. FORMULATION OF THE BIHARMONIC PROBLEM WITH
AN OBSTACLE IN THE DOMAIN

Let @ be an open bounded domain in E, with a sufficiently smooth boundary dQ.
The density of the loading of the plate is defined by a function f(x, y) e L,(Q). We
look for a solution w — (deflection of plate) of the variational inequality

w(x, y)e K,

(3.1)

DJ Viw V(v — w)dQ gJ-f(v — w)dQ forany vekK,
° o

where K is a closed convex set in V = H(Z)(Q), which is defined by
(3.2) K = {ve H}(Q) l vZ Y ae. onQ},
Y e Hy(Q),

D is the cylindrical stiffness of the plate. The solution of the variational inequality
(3.1) is equivalent to the solution of the following problem:

(2) find w(x, y)e K such that
J(w) < J(v) forany vekK
where

J(U) = D/zlivluié,ﬂ - (fa U)O,Q'

The problem (2) corresponds to the formulation in the weak sense of the so-called
unilateral Dirichlet problem (or the problem with an obstacle) for the bending of
a thin plate.

Theorem 1. The problem (#) has a unique solution w for every f e L(Q).

Proof. K is a closed convex subset of H3(®). J(v) is a convex, quadratic and coer-
cive functional on H(Q). Then the rest of the proof follows directly from [[2] —
Th. 4.04, s. 126].

295



Furthermore it can be shown that, if the solution is sufficiently smooth i.e.,
w e H*(Q), it satisfies the following set of relations:

DV*w — f =0
(3.3) W=y
(w—=y)(DV*w — f) =0 in Q

These relations suggest that the solution w of the variational inequality (3.1) is
a function which in a certain set Q, < Q satisfies DV*w — f = 0, while in another
set Q, < Qit is equalto . We shall call the boundary 0Q, of the free boundary. The
above set of relations (3.3) will be referred to as the set of complementary dif-
ferential inequalities.

Indeed we can write

DJ' V2wVi(v — w)dQ = J‘f(v — w)dQ,
but ! !
D j VIwVi(o — w)dQ = D'[( Viw(v — w)dQ.
Then we have ’ ’
DJ‘ Viw(v — w)dQ = J. flo — w)dQ
whence ’ ’
'[Q(DV“W -f)(v—w)d2 =z 0.

Letope Q(Q) be such that ¢ = 0; then v = w + ¢ € K, and hence

J‘(DV“W - f)edQ

1\%

0, which implies that DV*w — /= 0.

Next we take
(3.4) v=yek,

v=2w—yYy=w-—(y —wekK.
We obtain

J (DV*w — 1) (y —w)dQ =0
° ﬁf (DV*w — f) (w — ) dQ = 0.
JQ(DV4‘V—f)(W—¢)ngo ?



This implies
(DV*w = f)(w — ) = 0 over Q
and we deduce that

(3.5) DV*w = [ over Q,c Q,
DV*W > [ over Q, c Q,
where
Q, = {(X, y) eQ | w(x, y) > ¥(x, 3)} ,
Q ={xyeQ ! w(x, ») = (x, »)} .

If y € HY(Q) we can write K =  + U, where
U={ueHyQ)|uz0 ae. over Q]
is a positive cone with its vertex at the origin. Further putting

(3.6) w=1y +u*, u*elU wehave.

Lemma 2. We can write
(3.7) (DV*W — f, u*Dy20) = 0.
Proof. Substitute v =  in to (3.1) and then put v = ¢ + 2u*. If we apply (3.6)

and Green’s formula we get (3.7).

Now we derive the dual formulation of the problem (), which we write in the
form

(2) inf {F(v) + G(Av)}
veHo(Q)
where
(3.8) F(U) = '“(f U)o.sz + XK(U) >
1x(v) is the indicator function of K and
(3.9) A= VA% = Ve L(L,y(Q), H *(Q),

Ae L(HH(Q), Ly(Q)),

(3.10) G(p) = D2 pl2ar pe¥=Li(@).

We shall now consider a function (3.11) of H§(Q) x L,(Q) into R such that
(v, 0) = F(v) + G(Av)

and for every p e L,(Q) we shall consider the minimization problem:

(2,) inf (v, p)

veHo2(R)
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Clearly, for p = 0, #, is nothing else than the problem #. The problem 2, will be
called the pertrubed problem of 2 (with respect to the given perturbation).
By introducing the perturbed function

(3.11) (v, p) = F(v) + G(Av — pj

we shall formulate the dual problem (2*) by

(2%) sup {—F*(A*p*) — G*(—p*)} .
prela(22)

Lemma 3. For pe L,(Q), we have
(3.12) F*(A*p*) = (A, oo+ (0. f)oo if A*p* + /=20,
T + o0 otherwise .

Proof.
veK<v=y +u, where uelU.

Now we have from the definition

F*(A*P*) = sup {(u, A*P*>i101(m + </, VD po20) — XK(U)} ,

vel’loz(Q)

where
F(u) = —{/, U>”02(Q) + ZK(U) .

Hence we further get

F*(A*P*) = W, A*p* Doy + Vs D120 + SUP {(u, A*P*>Ho?(m +

ueHo?(R)
+ ot o) — ZK(lﬁ + “)} = Y, AP D n0) +
+ Y [ + su? iy A*p* 4 [Dnoro) -
However "

sup {u, A*p* +f>1102(m =0

uel

for A*p* + f < 0, because U is a positive cone. It is readily seen that
(A, p*)o.0 = W, AP*Dy2y forany p*eY* | e Hi(Q).
Summarizing we have

F*(A*p*) = (A'% p*)O,Q + U fougrn) + Zv*(/‘*P* +f) ,

where
Tul(A*p* + f)

is the indicator function of the polar cone U*,
U* = {q*e H" 2(Q‘)( {q*, ud oy < 0 forany ue U} .
Lemma 1 implies that the conjugate function G*(p*) e I'(L,(2)) has the form

G*(p*) = 1D|p*[|5.q -
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This the dual problem (2*) is expressed by

(‘@*) sup {_(A'ﬁ, P*)o,n - <'/’~f>u(,-’-(m - XU*(A*P* + /) - EDHP*“gQ} .

p*eL2(9)

After eliminating those elements p* for which F*(/l*p*) = + o, i.e. taking supremum
only on the elements p* satisfying

Lo A¥p* 4+ f) = 0« A¥p* + f <0, we get
(P*) p*es;i{)m{’(/h//’ p*)O,Q - <’//,f>n(,2(9) - ED“P*”(Z),Q}
A*p* + 0.
Lemma 4. The problem (#*) has a unique solution.
Proof. The functional G*(p*) is strictly convex on the space L,(22) and the set of
permissible p*, i.e. A*p* + f < 0, is closed and convex in L,(Q).
Lemma 5. Let w be a solution of the probiein (0/’) p* a solution of the problem
(2*). Then we have
(3.13) inf(2) = sup (%)
and w and p* are satisfying the extremality relations
(3.14) DV*w + p* =0,
Vip* + <0, if w=y (iec inthedomain Q)
weK, p¥elyQ).

Proof. By virtue of Theorem 111.4.1 ([3]), since F() < + o0 and G is finite and
continuous at the point Ay we have

(3.15) inf (?) = sup (2%)

and the problem (2*) possesses at least one solution p*. Then due to (a, 3°) we can
write

. (3.16) F(w) + F*(A*p*) = —{fs Wiy + 2x(w) +
+ W, AF¥P* 20y + <UL D) + ZU*(A*ﬁ* + f) = {A*p*, W20
only if A*p* 4+ f < 0.
On the other hand, the second extremality relation
(3.17) G(Aw) + G*(—p*) = {=P*, AWy
easily yields that
D2 V2w

oo+ EDHI_’*“(Z).Q = {(—p*, VZW>MDZ(Q) .
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This equality can be rewriten in the form

| 2
:“\/(D) Viw + f— p*l =0.

1l Y [10,2

Therefore
DViw = —p*.

4. Formulation of the unilateral problem (obstacles on the boundary).
For the unilateral problem we replace the convex set in (3.2) by
4.1 K ={ve H(Q) n Ho(Q) = V|y,v 2 0 ac. in Q}

(the relation y;v = 0 is to be understood in the sense of H'/*(0Q)).
Let us consider the variational inequality:

Find
(4.2) we K such that
a(w,v —w) = (f,v — w)yo forany vek,
where

2 '}2 N2 02 2 02
a(u, v) = {VquZU + (1 =p(2 Ju v Judv OJudv }dQ =
91 dx dy dx dy  0x? dy*  0y* ox?

2, A2 A2 a2 Pu o
= [ Laveuveo ¢ (1 - (TH T Ty T 90 Vg
o ox? ox*  0y* ox? 0x 0y 0x dy

_nR =)
-f_ Eh3 / - j >

4 > pu > 0is Poisson’s number.

The bilinear form a(u, v) is continuous on H*(Q) x H*(Q) and V — elliptic.
We can write

(4.4) a(v, v) = /.LHVZUH(Z),Q + (1 - ;l) .v‘i'g.
Clearly, the problem (4.2) is equivalent to the problem of minimization

(45) inf {1 ao. ) = (7. 0 0 + 24(0)} -

Theorem 2. The minimization problem (4.5) has one and only one solution.

Proof. See [2]. Observe that the problem (4.2) coincides with the weak formula-
tion of the unilateral Dirichlet problem with a homogeneous obstacle on the boundary
for the transverse slope of the plate. Define a linear bounded operator A4 : V — V*
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satisfying (Au, >, = a(u, v) for all ve V. Then we can write (4.1) in the form
(4.6) we K n D(A),
(AW, 0 — wdy = (fiv —wd, forany vek
or in an equivalent form
(4.7) we D(4),
(AW, v — W)y + ZK(U) - 1,\.(w) > (v — wy
forany velV.
For the dual formulation of variational inequality (4.7) we introduce the mapping
(4.8) A VES Y.
Then the dual variational inequality conjugate with (4.7) can be written as follows
([sD):
(4.9) w*e D(A™")
(A YW p* — W), + (TK(U*) — O’K(W*) > (hy vt — w*)y,
for any v*eV*,

where h = A7,
ox(v*) = support function of K (= conjugate function of y(v)).

Theorem 3 ([ 5]).
An element w e Vis a solution of the variational inequality (4.7) if and only if the
element w* = —Aw + [ of V* is a solution of (4.9), where w = A™'w* + h and

(4.10) we D(4) n K

ox(wF) = (v, wyy
Since fe L,(RQ), we have we H*(Q) n Hy(Q) (see [4]).
(i) 70(V2w) € HY(0Q) < L,(09).

Under the regularity hypothesis (i) it is possible to prove, in the case of the problem
(3.3), that the solution w of (4.2) or equivalently the minimizer w of (4.5) can be
characterized by

(4.11) Viw = Jover Q, weH*Q), w=0on dQ,
M,(w)=0: yw=0; M(w)y(w)=0 on Q.
Then we define the Lagrangian #: V x Lj(0Q) - R by

(4.12) L(v,v) = J(v) —j

2!

vy, vds,
Q
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where
J(“) = %a(v, l") - (f_s U)o..o s
(4.13) L3(0Q) (= positive cone) = {v|ve L,(0Q), v = 0 ae. in Q} .
Theorem 4. Let w be a solution of the problem (4.6) with fe L,(Q), then the

Lagrangian defined in (4.12) possesses a saddle unique point {w, M, (w)} on the
Cartesian product V x L3 (0Q).

Proof.

1° By (i) we have 2 = M (w)e H'*(6Q) = L}(0Q) and y,w = 0 a.e. by (4.11).
However,

W =0 3_[ vyywds = 0 forany ve L} (0Q).
o
Thus we may write
(4.14) L(w,v) £ Z(w,2) (= J(w)) forany ve L} (0Q).
2° Let Ae L} (¢9) be fixed; solve the problem of minimization
(4.15) inf £(v, ) = inf [J(v) — J‘ Iy v ds],
veV veV alo]

The unique solution of (4.15) is characterized by

<grad |:J(w,‘) - J‘ /’,y,w;], u> =0 forany uel.
o0 Vv

Using Green’s formula we obtain
(4.16) M, (w,)=2; V¥w, =], yow,=0.
Hence we deduce that w, = w, because the solution (4.5) in the form (4.11) satisfies

(4.16) (taking into account the definition of 4).
Now we can write

(4.17) L(w, 7)< L(v, %) forany velV.
This (4.14) together implies that {w, M,(w)} is the saddle point of Z on V x L3(0Q).
Note that

(4.18) j (v—2)y,wds =20 forany ve L3(0Q).

0]

In order to prove the uniqueness, let {w, 1}; {w*, 2*} be two corresponding possible
saddle points of & on V x L35(0Q). In this case we have V*w* = J,

(4'19) yow* =0,
M, (w¥) = 2%,
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ywE =05 M (w*)y(w¥) =0,

(4.20) ‘- (v — A*)y,w*ds 2 0 forevery veL3(0Q).

o

Y

We set v = A* in the inequality (4.18)and v = 4 in (4.20). Then, adding (4.18) and
(4.20), we obtain

21 | o= 6w~ smaszo.

Q2

If we set y = w* — w, with Green’s formula and (4.21) we conclude that
(4.22) a(y, y) = J M, () 7(y)ds £ 0.
cQ

Then from V — ellipticity of the bilinear form a(-; ) we obtain y = 0. Finally we
have A* — 4 = M, (w* — w) = 0, which implies 1 = A*.
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Suhrn
DUALITA V PREKAZKOVEJ A JEDNOSTRANNEJ ULOHE
PRE BIHARMONICKY OPERATOR
JAN LoviSek
V tejto préci je Studovany problém minimalizdcie a problém maximalizdcie (dudlny
problém) ako aj ich vzdjomny vztah pri rovnovahe tenkej dosky. Je odvodeny dudlny

tvar varia¢nej nerovnosti na zdklade konjugovanych funkcii (v zmysle Fenchela-
Rockaffelara), pre prekazku vo vnutri oblasti ako aj na hranici.
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