
Aplikace matematiky

Juraj Wiedermann
The complexity of lexicographic sorting and searching

Aplikace matematiky, Vol. 26 (1981), No. 6, 432–436

Persistent URL: http://dml.cz/dmlcz/103933

Terms of use:
© Institute of Mathematics AS CR, 1981

Institute of Mathematics of the Czech Academy of Sciences provides access to digitized documents
strictly for personal use. Each copy of any part of this document must contain these Terms of use.

This document has been digitized, optimized for electronic delivery and
stamped with digital signature within the project DML-CZ: The Czech Digital
Mathematics Library http://dml.cz

http://dml.cz/dmlcz/103933
http://dml.cz

SVAZEK 26 (1981) A P L I K A C E M A T E M A T I K Y ČÍSLO 6

THE COMPLEXITY OF LEXICOGRAPHIC SORTING
AND SEARCHING

JURAJ WlEDERMANN

(Received November 27, 1979)

1. INTRODUCTION

Let Ul9 U2, ..., Uk be totally ordered sets and let V be a set of n k-tuples in the
Cartesian product Ul x U2 x . . . x Uk. For any k-tuple v in V, let c.(v) denote the
f-th component of v.

A lexicographic ordering ~< is defined on V in the usual way, that is, for v, u e V,
v -< u if and only if either cx(v) < ct(u) or there exists 1 ^ j < k such that ct(v) =
= ct(w) for i = 1,2, ...,j and c7-+1(v) < c y + 1 (u), where < is the total ordering
on each Uj.

We shall consider the problem of lexicographic sorting of k-tuples of V, as well
as that of searching for a k-tuple in V.

The computational complexity of both the problems will be measured by the
number of three-branch component comparisons needed for solving these problems
(i.e., two components ct(v) and ct(u) will be compared yielding ct(v) < ct(u), c,(v) =
= ct(u) or Cj(v) > ct(u) as an answer). We shall be interested in obtaining the (worst
case) upper and lower bounds on the complexity, as a function of both n and k.

Note that the problem of lexicographic sorting can be straightforwardly solved
by applying any "onedimensional" sorting algorithm directly to the k-tuples of V,
which are in this case viewed as "unstructured" elements, with respet to the lexico­
graphic ordering -<. However, this approach would require about 0(n log n) "lexico­
graphic" comparisons, which can need as much as Q(kn log n) component compari­
sons, because in the worst case the lexicographic order of two k-tuples cannot be
detected until all k component comparisons are performed.

In a similar manner the lexicographic search can be done in 0(k log n) steps.
In contrast to these "trivial" upper bounds we shall show that making use of the

particular structure of the lexicographic ordering, we can accomplish the lexico­
graphic sorting and searching using 0(n(\og n + k)) and [log (n + 1)] + k — 1
component comparisons, respectively, and that these bounds are asymptotically
optimal in the case of sorting and optimal in the case of searching.

432

In the conclusion of the paper we shall point out some applications of the results,
mainly in the databases and also in the theory of sorting.

2. LEXICOGRAPHIC SORTING

When it comes to finding a good algorithm for lexicographic sorting of the set V
of n k-tuples, the divide-and-conquer strategy works well:

recursive procedure LEXICOSORT (S, /);

comment S is the set of k-tuples to be lexicographically sorted; it is supposed that
the first /-I components of all k-tuples of 5 are equal, with 1 ^ i _ k;

begin

if |S| = 1

then return (S)

else let C be the multiset of all i-th components of k-tuples of 5;

1. find the median m of the set C;

let S- = {v e S | c,(v) < m} ,

52 = (v e S | Ci(v) = m] ,

5 3 = (v e S I c,(v) > m} ;

2. if |S! | + 0 then return (LEXICOSORT (Su i)) fi;

3. if / = k then return (S2)

else return (LEXICOSORT (S2, i + 1)

fi;
4. if |S3 | + 0 then return (LEXICOSORT (S3, /)) fi

fi
end

The procedure is activated by calling LEXICOSORT (V, 1).

The time complexity T(n, k) of LEXICOSORT, applied to the set of n k-tuples,
is expressed by a recurrence relation

T(rv, k) ^ en + T(nu k) + T(n2, k - 1) + T(/z3, k) ,

T(1, k) = T(n, 0) = 0 for k = 1 , n = 1 ,

where the four terms on the right hand side of the relation correspond to the com­
plexity of steps 1 through 4, respectively, in the algorithm LEXICOSORT, with
nl = |S j | , n2 = |S2 | and n3 = |S3 | .

Taking into account that nx + n2 + «3 = n, nx ^ n/2, n3 s n/2, it is not difficult
to verify the solution of the recurrence in the form

T(n, fc) = 0(n(\og n + k)) .

433

The example of n k-tuples which differ solely in the last component shows that
about .Q(n(log n + k)) comparisons are indeed necessary for lexicographic sorting:
we surely need at least (n — 1) (k — 1) comparisons to detect the equality of the
first k — 1 components of all n k-tuples, and it takes Q(n log n) more comparisons
to complete the sort with respect to the last components.

Thus we have established the following theorem:

Theorem 1. The lexicographic sort of n k-tuples can be performed by 0(n(\og n +
+ k)) three-branch comparisons.

We see that if k = Q(\og n), the complexity of the lexicographic sort is linear
in the size of the input, i.e. in the number of the components of all k-tuples.

3. LEXICOGRAPHIC SEARCHING

Any lexicographic search algorithm, based on three-branch comparisons, can be
viewed as a ternary decision tree. In this tree the components of k-tuples are stored
at its vertices.

The search for an unknown k-tuple v starts in the root by comparing the value
of cx(v) with the value Cj(r) stored in the root. If ct(v) < cx(r) (ci(v) > cx(r)), the
search proceeds in a similar way in the left (right) subtree by comparing cx(v) with
the root of this subtree; if cx(v) = ct(r), then the value of the first component of v
has been found and the search for the next component c2(v) proceeds now in the
middle subtree in an analogous manner.

The search is successful, if all k components of v are found in the tree; otherwise
the search ends unsuccessfully.

Consider now the problem of constructing the appropriate lexicographic search
tree for a given set Vof n k-tuples.

There is an alternative way to see the algorithm LEXICOSORT as an algorithm
which recursively constructs a lexicographic search tree for the set S of k-tuples,
whose first i-1 components are equal, for 1 g i ^ L

In the root of this tree the value m (found in step 1 of the algorithm) is placed,
and the left, middle and right subtree is the lexicographic search tree for the set S1?

S2 and S3 of k-tuples, in which the first i — 1, i and i — 1 components, respectively,
are equal (this corresponds to steps 2, 3 and 4, respectively).

We shall call the decision tree, constructed by the algorithm LEXICOSORT,
an optimal lexicographic search tree (the reason for this name will become clear
later).

When performing the comparisons as dictated by this tree, each unsuccessful
comparison c((v) : c^r) (with an answer ' < ' or ' > ') halves the space of the remaining
possibilities for v (the inequalities |S i | ^ Ll^l/^J' l ^ l S L|^|/^J a i w a y s hold). On the
other hand, a successful comparison need not decrease the cardinality of the space

434

of the remaining possibilities for v (if |S2 | — \S\), but in any case it makes a step
toward the termination of the algorithm by determining the value of one component
of v and thus decreasing the "dimensionality" of the remaining search space.

Hence, if T(n, k) denotes the number of three-branch comparisons sufficient to
find the k~tuple v in the set of n k-tuples, it obviously satisfies

T(n, k) g 1 + max {T(\n\l\, k), T(n, k - 1)} ,

T(n, 0) = 0 for n = 1 ,

T(\,k) = k for k ^ 1 .

The solution of this recurrence is given by

T(n,k)S \log(n + 1)] + k - 1

but again the example of n k-tuples with all but the last components equal shows

that in the last expression the equality actually holds.

This implies the following theorem:

Theorem 2. The lexicographic search in the set of n k-tuples can be performed
in the optimal lexicographic search tree by

[log (n + 1)1 + k - 1

three-branch comparisons, and this number is optimal.

The somewhat weaker from T(n, k) ^ log n + 2k of the last result was originally
obtained by Freedman [1] and van Leeuwen [3]. Our construction of the optima]
lexicographic search tree differs from their construction by a more careful selection
of the component around which the set of k-tuples is partitioned.

An alternative construction of the optimal lexicographic search tree is also given
in [4] .

4, APPLICATIONS

It is quite natural to view the set V of n k-tuples as a file F of n records, each
record consisting of k attributes (keys). Then the (lexicographic) search in the set
V corresponds to the search for the answer to the exact-match query in the file F[2].

Another interpretation of the set V is to understand it as a k-ary relation on
Ux x U2 x ... x Uk. Given two k-ary relations Vand Won Ux x U2 x . . . x Uk,
with |W| = m and |V| = n, m !g n, we can compute their intersection Vf] Was
follows: first, we lexicographically sort the set Wby 0(m(\og m + k)) comparisons,
and then in the resulting optimal lexicographic search tree we perform n successive
searches for elements of V; this consumes other <9(n(log m + k)) comparisons.

Thus the intersection of two k-ary relations V and W can be found by 0(m + k))
three-branch comparisons.

435

Theorem 2 can also be used to improve on Fredman's result about the complexity
of sorting x1 ? x2, ..., x„, provided we know the subset G of all the n\ orderings on
x l 5 x2, ..., x„ to which the resulting ordering belongs [1]. Then, following Fredman
(and using Theorem 2) it can be shown that flog(|G| + 1)] + n — 1 comparisons
suffice to determine the resulting of x 1 ? x2, ..., xn (the original result was log |G| + 2n)

As a further application of this result we can show that if X and Y are n-element
sets of real numbers, then n2 + 0(n log n) comparisons suffice to sort the ?i2-element
set X + Y, thereby saving a factor of two as compared with the original Fredman's
bound 2n2 + Q(n log n) [l] . Moreover, in the same paper Fredman shows that
(n — l) 2 comparisons are in fact necessary, so the complexity of sorting X + Y is
known with regard to the lower order terms.

References

[ll M. L. Fredman: How good is the information theory bound in sorting? Theoretical Computer
Science 1, 1976, pp. 355-361.

[2] R. L. Rivest: Partial-match retrieval algorithms. SIAM J. Computing 5, 1976, pp. 115—174.
[3] J. van Leeuwen: The complexity of data organisation. Foundations of computer science II,

Part 1. Mathemitical centre tracts 81, Mathematisch c^ntrum, Amsterdam 1976.
[4] J Wiedermann: Search tгees for associative retrieval (in Slovak). Informačné systémy ì, 1979,

pp. 2 7 - 4 1 .

Súhrn

ZLOŽITOSŤ LEXIKOGRAFICKÉHO TRIEDENIA
A VYHĽADÁVANIA

ЈURAЈ WlEDERMANN

V článku je navrhnutý asymptoticky optimálny triediaci algoritmus, ktorý lexiko-
graficky triedi množinu k-tic mohutnosti n pomocou (n(ìog n + k)) porovnaní
medzi jednotlivými кomponentami k-tic. Na tento lexiкograficкý triediaci algo-
гitmus se dá pozerať aj taк, že v priebehu triedenia vybuduje tzv. optimálny lexiкo-
graficкý vyhľadávací strom, v кtorom sa potom dá optimálne vyhľadávať neznáma
k-tica pomocou presne [log2 (n + 1)] + k — 1 porovnaní v najhoršom prípade.

Authoґs address: RNDг. Juraj Wiedermann, Výзкumné výpočtové stredisкo, Dúbrаvsкá cestа
3, 885 31 Bгаtislаvа.

436

		webmaster@dml.cz
	2020-07-02T04:18:24+0200
	CZ
	DML-CZ attests to the accuracy and integrity of this document

