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SVAZEK 26 (1981) A P L I K A C E M A T E M A T I K Y ČÍSLO 6 

THE COMPLEXITY OF LEXICOGRAPHIC SORTING 
AND SEARCHING 

JURAJ WlEDERMANN 

(Received November 27, 1979) 

1. INTRODUCTION 

Let Ul9 U2, ..., Uk be totally ordered sets and let V be a set of n k-tuples in the 
Cartesian product Ul x U2 x . . . x Uk. For any k-tuple v in V, let c.(v) denote the 
f-th component of v. 

A lexicographic ordering ~< is defined on V in the usual way, that is, for v, u e V, 
v -< u if and only if either cx(v) < ct(u) or there exists 1 ^ j < k such that ct(v) = 
= ct(w) for i = 1,2, ...,j and c7-+1(v) < c y + 1 (u), where < is the total ordering 
on each Uj. 

We shall consider the problem of lexicographic sorting of k-tuples of V, as well 
as that of searching for a k-tuple in V. 

The computational complexity of both the problems will be measured by the 
number of three-branch component comparisons needed for solving these problems 
(i.e., two components ct(v) and ct(u) will be compared yielding ct(v) < ct(u), c,(v) = 
= ct(u) or Cj(v) > ct(u) as an answer). We shall be interested in obtaining the (worst 
case) upper and lower bounds on the complexity, as a function of both n and k. 

Note that the problem of lexicographic sorting can be straightforwardly solved 
by applying any "onedimensional" sorting algorithm directly to the k-tuples of V, 
which are in this case viewed as "unstructured" elements, with respet to the lexico­
graphic ordering -<. However, this approach would require about 0(n log n) "lexico­
graphic" comparisons, which can need as much as Q(kn log n) component compari­
sons, because in the worst case the lexicographic order of two k-tuples cannot be 
detected until all k component comparisons are performed. 

In a similar manner the lexicographic search can be done in 0(k log n) steps. 
In contrast to these "trivial" upper bounds we shall show that making use of the 

particular structure of the lexicographic ordering, we can accomplish the lexico­
graphic sorting and searching using 0(n(\og n + k)) and [log (n + 1)] + k — 1 
component comparisons, respectively, and that these bounds are asymptotically 
optimal in the case of sorting and optimal in the case of searching. 
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In the conclusion of the paper we shall point out some applications of the results, 
mainly in the databases and also in the theory of sorting. 

2. LEXICOGRAPHIC SORTING 

When it comes to finding a good algorithm for lexicographic sorting of the set V 
of n k-tuples, the divide-and-conquer strategy works well: 

recursive procedure LEXICOSORT (S, /); 

comment S is the set of k-tuples to be lexicographically sorted; it is supposed that 
the first /-I components of all k-tuples of 5 are equal, with 1 ^ i _ k; 

begin 

if |S| = 1 

then return (S) 

else let C be the multiset of all i-th components of k-tuples of 5; 

1. find the median m of the set C; 

let S- = {v e S | c,(v) < m} , 

52 = (v e S | Ci(v) = m] , 

5 3 = (v e S I c,(v) > m} ; 

2. if |S! | + 0 then return (LEXICOSORT (Su i)) fi; 

3. if / = k then return (S2) 

else return (LEXICOSORT (S2, i + 1) 

fi; 
4. if |S3 | + 0 then return (LEXICOSORT (S3, /)) fi 

fi 
end 

The procedure is activated by calling LEXICOSORT (V, 1). 

The time complexity T(n, k) of LEXICOSORT, applied to the set of n k-tuples, 
is expressed by a recurrence relation 

T(rv, k) ^ en + T(nu k) + T(n2, k - 1) + T(/z3, k) , 

T(1, k) = T(n, 0) = 0 for k = 1 , n = 1 , 

where the four terms on the right hand side of the relation correspond to the com­
plexity of steps 1 through 4, respectively, in the algorithm LEXICOSORT, with 
nl = |S j | , n2 = |S2 | and n3 = |S3 | . 

Taking into account that nx + n2 + «3 = n, nx ^ n/2, n3 s n/2, it is not difficult 
to verify the solution of the recurrence in the form 

T(n, fc) = 0(n(\og n + k)) . 
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The example of n k-tuples which differ solely in the last component shows that 
about .Q(n(log n + k)) comparisons are indeed necessary for lexicographic sorting: 
we surely need at least (n — 1) (k — 1) comparisons to detect the equality of the 
first k — 1 components of all n k-tuples, and it takes Q(n log n) more comparisons 
to complete the sort with respect to the last components. 

Thus we have established the following theorem: 

Theorem 1. The lexicographic sort of n k-tuples can be performed by 0(n(\og n + 
+ k)) three-branch comparisons. 

We see that if k = Q(\og n), the complexity of the lexicographic sort is linear 
in the size of the input, i.e. in the number of the components of all k-tuples. 

3. LEXICOGRAPHIC SEARCHING 

Any lexicographic search algorithm, based on three-branch comparisons, can be 
viewed as a ternary decision tree. In this tree the components of k-tuples are stored 
at its vertices. 

The search for an unknown k-tuple v starts in the root by comparing the value 
of cx(v) with the value Cj(r) stored in the root. If ct(v) < cx(r) (ci(v) > cx(r)), the 
search proceeds in a similar way in the left (right) subtree by comparing cx(v) with 
the root of this subtree; if cx(v) = ct(r), then the value of the first component of v 
has been found and the search for the next component c2(v) proceeds now in the 
middle subtree in an analogous manner. 

The search is successful, if all k components of v are found in the tree; otherwise 
the search ends unsuccessfully. 

Consider now the problem of constructing the appropriate lexicographic search 
tree for a given set Vof n k-tuples. 

There is an alternative way to see the algorithm LEXICOSORT as an algorithm 
which recursively constructs a lexicographic search tree for the set S of k-tuples, 
whose first i-1 components are equal, for 1 g i ^ L 

In the root of this tree the value m (found in step 1 of the algorithm) is placed, 
and the left, middle and right subtree is the lexicographic search tree for the set S1? 

S2 and S3 of k-tuples, in which the first i — 1, i and i — 1 components, respectively, 
are equal (this corresponds to steps 2, 3 and 4, respectively). 

We shall call the decision tree, constructed by the algorithm LEXICOSORT, 
an optimal lexicographic search tree (the reason for this name will become clear 
later). 

When performing the comparisons as dictated by this tree, each unsuccessful 
comparison c((v) : c^r) (with an answer ' < ' or ' > ' ) halves the space of the remaining 
possibilities for v (the inequalities |S i | ^ Ll^l/^J' l ^ l S L|^|/^J a i w a y s hold). On the 
other hand, a successful comparison need not decrease the cardinality of the space 
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of the remaining possibilities for v (if |S2 | — \S\), but in any case it makes a step 
toward the termination of the algorithm by determining the value of one component 
of v and thus decreasing the "dimensionality" of the remaining search space. 

Hence, if T(n, k) denotes the number of three-branch comparisons sufficient to 
find the k~tuple v in the set of n k-tuples, it obviously satisfies 

T(n, k) g 1 + max {T(\n\l\, k), T(n, k - 1)} , 

T(n, 0) = 0 for n = 1 , 

T(\,k) = k for k ^ 1 . 

The solution of this recurrence is given by 

T(n,k)S \log(n + 1)] + k - 1 

but again the example of n k-tuples with all but the last components equal shows 

that in the last expression the equality actually holds. 

This implies the following theorem: 

Theorem 2. The lexicographic search in the set of n k-tuples can be performed 
in the optimal lexicographic search tree by 

[log (n + 1)1 + k - 1 

three-branch comparisons, and this number is optimal. 

The somewhat weaker from T(n, k) ^ log n + 2k of the last result was originally 
obtained by Freedman [1] and van Leeuwen [3]. Our construction of the optima] 
lexicographic search tree differs from their construction by a more careful selection 
of the component around which the set of k-tuples is partitioned. 

An alternative construction of the optimal lexicographic search tree is also given 
in [4] . 

4, APPLICATIONS 

It is quite natural to view the set V of n k-tuples as a file F of n records, each 
record consisting of k attributes (keys). Then the (lexicographic) search in the set 
V corresponds to the search for the answer to the exact-match query in the file F[2]. 

Another interpretation of the set V is to understand it as a k-ary relation on 
Ux x U2 x ... x Uk. Given two k-ary relations Vand Won Ux x U2 x . . . x Uk, 
with |W| = m and |V| = n, m !g n, we can compute their intersection Vf] Was 
follows: first, we lexicographically sort the set Wby 0(m(\og m + k)) comparisons, 
and then in the resulting optimal lexicographic search tree we perform n successive 
searches for elements of V; this consumes other <9(n(log m + k)) comparisons. 

Thus the intersection of two k-ary relations V and W can be found by 0(m + k)) 
three-branch comparisons. 
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Theorem 2 can also be used to improve on Fredman's result about the complexity 
of sorting x1 ? x2, ..., x„, provided we know the subset G of all the n\ orderings on 
x l 5 x2, ..., x„ to which the resulting ordering belongs [1]. Then, following Fredman 
(and using Theorem 2) it can be shown that flog(|G| + 1)] + n — 1 comparisons 
suffice to determine the resulting of x 1 ? x2, ..., xn (the original result was log |G| + 2n) 

As a further application of this result we can show that if X and Y are n-element 
sets of real numbers, then n2 + 0(n log n) comparisons suffice to sort the ?i2-element 
set X + Y, thereby saving a factor of two as compared with the original Fredman's 
bound 2n2 + Q(n log n) [ l ] . Moreover, in the same paper Fredman shows that 
(n — l ) 2 comparisons are in fact necessary, so the complexity of sorting X + Y is 
known with regard to the lower order terms. 
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Súhrn 

ZLOŽITOSŤ LEXIKOGRAFICKÉHO TRIEDENIA 
A VYHĽADÁVANIA 

ЈURAЈ WlEDERMANN 

V článku je navrhnutý asymptoticky optimálny triediaci algoritmus, ktorý lexiko-
graficky triedi množinu k-tic mohutnosti n pomocou (n(ìog n + k)) porovnaní 
medzi jednotlivými кomponentami k-tic. Na tento lexiкograficкý triediaci algo-
гitmus se dá pozerať aj taк, že v priebehu triedenia vybuduje tzv. optimálny lexiкo-
graficкý vyhľadávací strom, v кtorom sa potom dá optimálne vyhľadávať neznáma 
k-tica pomocou presne [log2 (n + 1)] + k — 1 porovnaní v najhoršom prípade. 
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