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INTRODUCTION

Homogenization has become an important method in computing problems for
composite materials. In the physical sense, homogenization means replacing the
periodically heterogeneous material by an ‘‘equivalent” homogeneous one. From
the mathematical point of view, the equation with highly oscillating periodic
coefficients is approximated by a problem with constant coefficients. The mathe-
matical approach to this method, introduced by I. Babuska (1974), is based on con-
sidering a sequence of problems with diminishing period. The method was further
developed by many authors, e.g. A. Bensoussan, M. Biroli, J. L. Lions, G. Papanico-
laou, E. Sanchez Palencia, L. Tartar, etc.

In connection with homogenization we must mention the notion of the operator
G-convergence and the functional I'-convergence, which were studied by many
authors, e.g. A. Ambrosetti, E. De Giorgi, T. Franzoni, O. A. Olejnik, C. Sbordone,
S. Spagnolo, etc.

For further references see e.g. [3], [5], [7]. [10], [18].

In the paper we shall deal with homogenization of problems of linear elasticity.
These problems can be formulated either in terms of displacements or in terms
of stresses. The former formulations lead to a system of elliptic second-order equations,
the homogenization of which has been studied e.g. in [5], [14]. The homogenization
of dual formulations has not been studied except for [17], where some results contai-
ned in this paper were announced.

In the paper we show (Theorems 1, 2) that with diminishing period &

— the displacement vector u® converges to u°,

— the stress tensor ° converges to ¢t and

— the local energy t'e(u’) converges to 1%(u°),

where u°, t° are the solutions of the unique homogenized problem determined by
the so-called homogenized coefficients given by (2.19), (2.32). Formula (2.32) seems
to be new.
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From the numerical point of view the homogenized solutions u°, ° represent
an approximation of the solutions u®, °. This approximation can be improved
by means of the correctors U?, T*(2.33), (2.34). The convergence of u® — U*, t° — T°
is proved in Theorem 3.

The main result is contained in Section 4. The assumptions, the variational formula-
tions of the problems and the convergence theorems are completed by a remark
on the G- and I'-convergences.

The physical formulation is introduced in Section 1. In Section 2 we derive the
homogenized problem by means of the so-called multiple-scale method and introduce
the correctors. Section 3 deals with the homogenized coefficients — several formulae,
properties and examples are introduced. The convergence theorems are proved
by means of a simplified version of the so-called local energy method in Section 5.

Throughout the paper we use the convention on the summation over repeated
indices and denote partial derivatives by indices after comma:
fi,; means :L » fiy, means Ui .

Ay
0x; ay;

Let Y = [0,7,] x [0,7,] x [0, 7] (¥; > 0) be the unit period. A function f(x, y)
is said to be Y-periodic in y if
f(X, Y1 + kl)_jl’ V2 + I{Z.TZ’ V3 + kJ.}_yZS) = f(xr Y Va2 }"3)

for all integers k,, k,, k;. The integral average in y is denoted by

M(f) = J.y f(x, y) dy/meas (Y).

Further, we use the usual function spaces of continuously differentiable functions
denoted by C3, C?, Lebesgue spaces L, L” and Sobolev spaces W*?. The subscript
per denotes Y-periodic functions, sym denotes symmetric tensors, see Section 4.

1. SETTING THE PROBLEM

We shall consider simultaneously the first, the second and the mixed boundary
value problem of linear elasticity for a body made of a material with periodic
structure.

Denote by

Q — the domain in R® representing the volume of the body,
0Q — its surface (with the normal vector n = (n;)) divided into two parts I',, I,
/= (f:) — the prescribed volume forces in Q,
U = (U;) — the prescribed displacement on I',,
T = (T,) — the prescribed stress-vector on I',.
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Further, we denote by

u = (u;) — the displacement vector in Q.

e = (e;;) — the small strain tensor [e;(u) = (u; ; + u;;)[2].

© = (1;;) — the stress tensor [1;; = 1,;].

The relation between the stress and strain tensors is described by the linear Hooke’s
law

Tij = ijki Cke s
where the coefficients a;;, form a matrix of the type (3 x 3 x 3 x 3) satisfying
(1.1) o"‘EIZ S dilicn = Alélz Ve Rfy)x(n:’ >
(1.2) Aijrr = digip = Ajigg = dijy -
In the dual formulation we use the inverse Hooke’s law
€= bijufkl s

whose coefficients matrix is of the same type and satisfies

l l X
(1.3) 7 {'7‘12 < bijallija = &I’?lz Vi e ngms >
(1-4) biju = bufj = bjiu = b:‘jlk 5
(1-5) “ijmnbnmu = é(‘snk(jjl + ‘Sil'sjk)*)-

Particularly, for an isotropic material with Lamé’s constants A, p we have

iy = 1 (350, + 0405) + 20,04 .
S
2u(3% + 2p) M
and the constants in the inequalities (1.1), (1.3) are o = 2 min {u(x); xe Q}, 4 =
= max {2u(x) + 32(x); xe Q} .
The periodical structure of the material is expressed by the periodic Hooke's law

coefficients a;;,;. b, ;. Since we want to consider a sequence of problems with dimi-
nishing period ¢, we set

(1.6) dia(x) = ayulxfe) s biulx) = biju(xfe)

where a;;,(y), b, (y) are Y-periodic functions.
We shall consider even the problem with “non uniformly oscillating” coefficients

(1.6%) aip(x) = ajulx xfe), biu(x) = bilx, x[e),

aijdx, ¥),  biulx, ¥) — Y-periodic in y,

| PR .
bijkl = — (‘)ik‘)jl + Oil‘)jk) -
4u

which are useful in applications.

*) ‘Sij — Kronecker symbol, 6,-1. = 1 fori=}, éij = 0 fori-=j.
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The solution of the problem with the coefficients afj;, bij,, will be denoted by u*, 1°.
For ¢ > 0 we have the e-periodic problem:
Find functions u®, 1" satisfying the equations of equilibrium

(1.7) =0, =7 in Q,

ij Ji

the constitutive equations
(1.8) T = diju e(ut) or e (1) = bl in Q)
and the boundary conditions

(1.9) ui=U;, on T
(1.10) T

uo

n,=7T, on I

£
ijtty T

The aim of the homogenization is to find, to the introduced ¢-periodic problem,
a homogenized problem (independent of &) such that its solution («°, 1°) is an ap-
proximation of (u°, 7°).

In Section 2 we show that the homogenized problem consists of the same system
of equations as (1.7)—(1.10) but with coefficients a{j;;, b{;, and a solution u®, 1°.

In Section 4 we prove the convergence u® — u®and 1° - ®as¢ — 0.

The convergence theorems remain valid cven for more general boundary condi-
tions and right-hand sides. e.g. if in (1.7) the function of volume forces f is replaced
by f* converging to f weakly in [L*(Q)].

2. DERIVING THE HOMOGENIZED PROBLEM

In this section we derive the homogenized problem by means of the so-called
multiple scale method, for details see e.g. [5].

Besides the ““slow” variable x = (xy, x,. x3) we introduce a formal “fast” variable
v = (ry, ¥2» ¥3) by the relation y = x[e and we look for the asymptotic expansion
of the solution u®, 7° in the form
(2.1) u”(.\') = u’(x, x/:;) + e u'(x, xje) + &> uz(.\‘, _\'/8) + ...,
(2.2) t(x) = 1%x, xfe) + e t'(x, xfe) + & T(x, xfe) + ...,
where the functions u*(x, y), %(x, y) are Y-periodic in y and independent of .

We start from the equations (1.7)—(1.10). We consider the variables x, y to be
mutually independent and using (1.6), (2.1), (2.2) we obtain the equations with
functions independent of &.

Let us recall that if f(y) is a Y-periodic function then

(2:3) A(f,) =0
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A compound function is differentiated as follows:
0 X v 1 dv ! 1
— (x5 =] —+-—|(x,») =04 -0,
0x; B 0x; & 0y; ly=x/e €

With this in mind, inserting (2.1), (2.2), into (1.7)—(1.10) and comparing the coeffi-
cients at the corresponding powers of ¢ we obtain the following system (we introduce
only the first equations): '

(2.4) T, =0 in Qx Y,

(2.35) 0= ajueh(u®) or e’ =0 in Q@xY,
(26) Ty, + Ty +/i=0 in QxY,
(2.7a) = agalel(u') + e, (u®)] in Qx Y,
or

(2.7b) eli(u') + ¢;(u°) = bty in QxY,
(2.8) ul =U; on I,x Y,

(2.9) wn; =T on I, xY,

where derivatives are taken in the weak sense and
N — 1 y —
eifu) = Hup; +uj) s elu) = Huy, +upy).

The first method. The only Y-periodic solutions of (2.5) are functions independent
of y, therefore

(2.10) u® = u°(x).

Inserting (2.7a) into (2.4) and using (1.2) and (2.10) we obtain

(2.11) - (a,-jk,u,l_,,,),y,. = aijkl.yjul?,l .

By the separation of variables we can find the solution u' in the form
(2.12) ui(e. ) = A0 u(x) + 7,0,

where i is independent of y and y*' e W,,, = [W,;']® is the Y-periodic solution of

(2‘13) (ﬂy%kl)i = “(aijyhXI;{yh).y,- = —Aijkl,y; -

Existence and uniqueness of the functions y*'. Due to (1.1), (1.2) the operator 27”
is a selfadjoint elliptic differential operator. The only Y-periodic solutions of the
homogeneous problem 2/’u = 0 are constants. Therefore, the problem

(2.14) A'u=f in Y,
u — Y-periodic in y
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admits a unique solution (up to an additive constant) if and only if .Z(f) = 0. But
by virtue of (2.3) .#[—a;j;,,] = 0, thus the functions ¥*' exist and are unique if
we add the condition

(2.15) () = 0.
Moreover, due to (1.2) we have
(216) Xk, —_ XII( .
Inserting (2.12) into (2.7a), using symmetry of a;, and 7' we can write
(2~l7) T?j = aijg/r((jyk55/11 - X;{y;.) “?,1

= aith(égk(\;hl - X:fyh) ekl(uo) .

Using the notation

(2.18) 15(x) = [1(x, y)],

(2.19) afa = a0 pdn — 15b)]
integrating (2.17) with respect to y we can write

(2.20) 7?,' = ‘I?jklul?,l = U?ju Ckl(Llo)'

Finally, integrating (2.6). (2.8), (2.9) and using (2.3), we obtain the homogenized
problem

(2.21) 0, +/f,=0 in Q.
(2.22a) 1 = af ea(w®) in Q,
(2.23) u) =U; on I,,
(2.24) in; =T, on TI,.

Similarly, if b?j“ denotes the inverse matrix to a?jk,, the equation
(2.22b) ew(u®) = biyuti
is equivalent to (2.22a).

The second method. The equation (2.5) again implies (2.10). It follows from (2.4)
and the symmetry of the tensor t° that the functions r?j can be found in the form

(2.25) 10(x, y) = (5(x) + (ROT’ O(x, »))

ijo
where 17 is given by (2.18), @,; are Y-periodic (the so-called stress functions) and the
operator ROT” = rot® rot” is defined by

(2'26) (ROT" @)ij = Oy, EikmEijin - *)
Consider the equation (2.7b). Necessary condition for the existence of a solution u'

*) Levi - Civita’s antisymmetric tensor has the only non-zero components 1,3 = &31 =
=&312= 1, &350 = 8213 = 8132 = — L.
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are the conditions of compatibility that can be written in the form
ROTY(b u,\,‘“ — ,j(u =

Using (2.25) we obtain

(2.27) ROTY(b;; (ROT* O(x, ¥))i) = —ROT(b, ., 1 /(X)) -

By the separation of variables the solution © can be found in the form

(2.28) O,(x, ) = =4

gh\.

{ ) 1;\')[ “\.) + @uh(x) ’
where @ is independent of y and 9% satisfy
(2.29) (#*9);; = (ROT(by;,,(ROT'3),)) = ROTY(b, ),

gkl __ gkl
Fgn = Fpg -

Existence und uniqueness of the solution of (2.29). Introduce the following Sobo-
lev spaces of Y-periodic functions:

— I’W?.Z 3><3~

per Jlsym

{pe0: ROTy = 0},

Qo

Q, — the orthogonal complement of Q, in Q.

Due to (1.3), (1.4) the operator 4" = ROT’(b ROT) is a selfadjoint elliptic differen-
tial operator on Q,. The only Y-periodic solutions of #”¢ = 0 are functions from
Q. But the right-hand side of (2‘29) is orthogonal to the functions from Q, because

A[ROT (b)) 03] = -4 ROT(p,)] =0 Vo e 0.
So, the functions 9 exist and are uniquely determined by the condition 3! ¢ Q,.
Using (2.28) we rewrite (2.25)
(2:30) o = (00, — (ROT* 91),) .
Inserting t° from (2.30) and integrating with respect to y we obtain from (2.7b)
(2.31) MO0 — (ROT $*),0] 1 = e,,(u®) .

The last equation along with (2.21), (2.23), (2.24) yields an equivalent form of the
homogenized problem (2.21)—(2.24). Comparing (2.22b) and (2.31) we can see that

(2.32) bl = M b0 — (ROT 94 )]

expresses the homogenized coefficients b{y,, directly in terms of b, ;.

Remarks. 1. Take notice of the homogenized equations (2.2[)—(2.24) having
the same form as equations (1.7)—(1.10), only with periodic coefficients af;;. b}
being replaced by the homogenized ones.

2. So far we have given no proof of convergence of the solutions (u ) to the
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homogenized solution (1 1°). We justify the asymptotic expansions in Section 4.

3. In the case of coefficients of the form (1.6*) the derivation remains valid, only
the auxiliary functions y*', 9" and the homogenized cocfficients are, in addition,
dependent on the variable x.

Correctors. For fixed ¢ > 0 the functions u° 1° represent an approximation
of u*, t°. This approximation can be improved (without solving the periodic problem)
by means of correcting functions called correctors. Define an improved approxima-
tion U* by taking the first two terms u® + su' of the expansion (2.1):

(2.33) Ui(x) = uf(x) — exi (x[e) ug (x) .

Similarly, we define the corrector of the stress tensor t° by taking the first term
of the expansion (2.2). Using (2.17) we define

(2.34) TE(x) = ayn (x[e)[0000 — Zoy(xX[e)] i o(x) -

According to (2.30) we have an equivalent formula

Ti(x) = t0(x) [640,, — (ROT” 3*(x/[e)),;] -
3. COEFFICIENTS OF THE HOMOGENIZED PROBLEM

In this section we introduce various formulae, some properties, estimates and
examples of the homogenized coefficients.

Formulae for u?jkp In Scction 2 we have derived the following formula (2.19)

(3.1) afur = A a;u(») P — 250011, )

where the functions y*'e W, are solutions of the equation (2.13), rewritten in the
weak form

(3.2) J/[a,-jy,,{(‘;yk()‘h, — /q ‘h] Piy J =0 VYoe Wier -

The solution 3*' exists and is unique up to additive constants which do not influence
q p
the value of afy,. So we can choose ¢.g. (2.15). )

Choosing y'/ € W,,, for the test function in (3.2) and subtracting the equation

from (3.1) we obtain a symmetric formula

(3'3) au” = //[‘llumh[ pi0qj /n \l,] [‘SHA(SM - Z;{)'h]]'

Formulae for bu,\, The coefficients of the inverse Hooke's law are defined either
by the matrix inverse to the matrix (a?j,‘.,) or by (2.32):

(3.4) bl = A b u[dpdn — (ROT" 341, 1],

*) Due to symmetry (1.2), z’;fy,l can be replaced by eg,,(z"”) (/g o+ /,‘ yg)/7 in the formulae
(3.1)—(3.3).
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where the functions 9*' € Q, are solutions of the equation (2.29) rewritten in the weak
form

(3.5) A byl — (ROT* $),,] (ROT* §),;] = Ve 0, .

The solution 9*! exists and is unique in Q, as we have proved in Section 2. Again
subtracting (3.5) with = 9" from (3.4) we obtain a symmetric formula

(3.6) b,l,‘, = Mo 6:p0 ;4 — (ROT* 3) T [6,40, — (ROT §4),, 17
Properties. 1. The homogenized coefficients satisfy the same symmetry conditions
as (1.2), (1.4), i.e
(37) ag’kl = al(\')lij = Hjtk = u?ilk ’
(3~8) b?jkl = buu = bjikl = buu
Proof The identity a;j, = a;;,; and formula (3.1) imply ay, = afy,. The identity
alyuy = agy; follows from a;; = = a,,;; and (3.3). Composing the preceding identities

we obtain the third identity a,jk, = (1?1,,‘. The symmetry of b?jk, follows from (1.4),
(3.4), (3.6) in the same way.

2. The homogenized coefficients satisfy the ellipticity conditions (1.1), (1.3) with
the same constants a, A, i.e

(3.9) oé* £ afudidn £ AE? VEe RYYY,
I 5 1 2 X

(3.10) — | = b?jkﬂ];j'h-l = - ]’7h| Ve Rzyms :
A o

Proof. Inserting (3.3) into the desired inequality we obtain
a?,-qu i€ = M Apgg[ 0,045 — X;:j,yq] il Oaidnt = Yo Cur] Z
2 (L1) 2 2 ll[[0,04; = 155, €iilOnidar = Zp,] il = (23) =
= Al + AL [Z}/,,y., &il*ll = ¢

Similarly, using (3.6), (1.3), (2.3) we obtain

1
buk[’?u’hl i 71 |”|Z

The other inequalities follow from the properties of the inverse symmetric positive
matrices.

3. Denote aljy = JM[a;;, ], bl = [y, Further, let (a7y,) be the inverse
matrix to (bl},,) and (b}j) the inverse matrix to (aly,). Then we have the estimates

(3-1]) a?}kléijékl = a?jklgyijékl = axkléijékl VéEng:n:’ s
(3-12) b?;'klrlijr,kl = b?jkl’?iﬂlkz = bx’kﬂl.’j”lu VneR Sy):n:i .
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Proof. The inequality
u?jk[éijék! = Cl}“,l'kléij':kl
can be proved as follows. From (3.1) we have
il = il — W aigrey,] Suéa s
but due to (1.1), (1.2) the equation (3.2) with ¢, = z,' yields
Jz[a.'jghlzfy;,] éijékl = (1'2) = °’//["gl1pq(5pi‘5qjlzf,v,,] éijikl =
= (3.2) = A agpalis s Kgown] Eisut Z o M Z[ Z IivCi)?12 0.

Analogously, using (3.4), (1.3), (1.4) and the equation (3.5) we can prove the inequality
b?jkl”ij']k! = b?}kl"ij”kl'

The remaining inequalities follow from the properties of the inverse symmetric
positive matrices.

Remarks. 1. From the symmetries (1.2), (1.4) we have also the symmetries
Zkl — Zlk , Sgh — ghg .

2. The above introduced properties hold in the same form even for the coefficients
of the form (1.6%).

Remarks on computation of the homogenized coefficients. The homogenized
coefficients are given by the formula (3.1) that contains the unknown functions x*'.
These auxiliary functions are the Y-periodic solution of the so-called “cell problem™
(3.2) which represents an elliptic system of second-order differential equations on the
unit period Y called the unit cell.

We illustrate the problem on an example of a two-component material. Let the
first component occupy the volume Y, in the unit cell Y, the second one Y, = Y — Y,.
Then the problem has piece-wise constant coefficients

ai() = L T ve v
A AN zaijkl it yeY,.
We look for the functions
"He[CH(Y )] o [CU(Y)]? m=1,2
satisfying the equation
—maijgh '”Zg,yh.vj(y) = 0 in Ym 5
the continuity conditions on dY; N JY, and the transmission conditions
1 1 1kl r_r2 2 2kl r
Caim = "ai o] 1) = Paiu = *aijon Ao 15
on @Y, n Y, at the points where the normal vector n' exists. Similar continuity
and transmission conditions are required on the opposite sides of the unit cell Y.
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If the coefficients depend on two variables only, then the functions y*' depend
on two variables as well, and the cell problem is reduced to a two-dimensional one.

Numerically the problem can be solved by the finite element method, sce e.g. [8],
[9] where some numerical examples of two-dimensional homogenization are intro-
duced.

One-dimensional homogenization. If the coefficients depend on one variable only
then the homogenized coefficients can be computed explicitly. Lete.g. a;;, = a,»jk,()',)
then also y*' = #*'(»,), (3.2) reduces to a system of ordinary differential equations,
the solution z*' can be expressed analytically and we obtain the following formula:

(3.13)  afuy = Mau] = M[ai019g000 0] + Grg A aiGur] [ Ggetern] -

where (g,,) is the inverse matrix to the matrix (a;i41);,-, and (Gj,) is the inverse
matrix to (.#[g,:])

Similarly, it is possible to solve (3.5) and derive an explicit formula for the co-
efficients by,

Examples. For the sake of brevity denote

(3.14) Cia(ps 2) = p (0005, + Oudp) + 4004

1. A two-component material. Consider a composite material composed of p, .
. 100% component 4 and of p, . 100%, component B (p, + p, = 1). Let both compo-
nents be isotropic with Lamé’s constants s, £, and i, 2p. The coefficients of Hooke’s
law form an isotropic tensor

ai(0) = ciplp(y). ()
The inequalities (3.11), (3.12) yield estimates of the homogenized coefficients. For
example in (3.11) the upper bound is
"?jklfijfu = Cijkl(l‘,w» ;-,»1) éijékl Vie R?y:n} s
where 1™ = pau, + Doty A = paia 4 Puip

Let e.g. py =01, py =09, p,g = 1,0y = 1,2, =22, 3, =2 Then in (3.11)
we obtain

m _ m am Mo M My
Aijkr = Cijkl(l‘ e ) Aijri = (ijkl(ﬂ s A )

where p™ = 1-1, A" = 2:2, 4™ = 2, /™ = 4.

2. The layered material. Let the components of the material in the previous
example be arranged in layers orthogonal to y, of thicknesses ¢. P4, &. p,. Then
using formula (3-13) we have the homogenized coefficients. We introduce them
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along with the coefficients from the estimate (3.11) in the following table:

Coefficient  afyy, iy atte
11t
44 80
2222,2222
1122,1133 2
2:2 4:¢
2233 31
1212,1313 11 i
1-1 2:0
2323 20

4. THE HOMOGENIZATION RESULT

In this section we introduce assumptions, variational formulations and convergence
theorems. The section is completed by a remark on G- and I'-convergences.

Assumptions. Let the domain © in R® have a Lipschitz boundary which is divided
into two parts I, I'. (I, T, are disjoint, either empty or open in ¢, and the surface
measure of 0Q — (I', U I',) is zero).

Let the prescribed body forces f, displacement U and stress T satisfy

(4.1) fe[lX(Q)), Ue[w" Q). Tel[lX(I)].

Let the coefficients of Hooke’s law be given by (1.6) or (1.6%). where the functions
s b satisfy (1.1)—(1.4) and

(4-2) dijers bijue Lﬁcr
or
(4'2*) dijrs bijie (—‘Z(Q)v Li::r) .

Introduce the Sobolev spaces
W= [wh (], Wo=[wXQ)). w = (w2,
Woer = [T
Ve = {ueW: u =0 on I', in the sense of traces} ,
a geometrically admissible displacement field
VU ={ueW, u—UeV°,
further spaces of symmetric tensors

H=[(Q))

sym

Y0 ={reH,; J:;u e {v)dx =0 Voe V),
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and a statistically admissible stress field

sTF = {T c H:j‘ T, eij(v) dx = | fio;dx + J'
Q 2 r

In the case of the first boundary value problem, I, is empty and we put U = 0,
assume the conditions of total equilibrium

(4.3) JF,-dx+j7}dS=0, J(xxf)dx+f(x><T)dS=0
o r 2 r.

T

Tv;dS Voe VO} .

T

and look for the solutions u, u° in Q,. where Q, is the orthogonal complement
of theset {ve W;v = a + b x x} in the space W.

In the case of the second boundary value problem I', = 0 and the integral over
I', vanishes.

Variational formulations (see [13]). The e-periodic problem (1.7)—(1.10) can be
mathematically formulated by means of the basic variational principles.

Formulations in terms of displacements (problem P°): 1. (principle of virtual
displacements)

Find u® e VY such that
(4.4) .d‘(u”, 17) = f Aty 1; ; dx = jf,-ﬁ, dx + J Tii;dS VieV°.
Q Q I,

2. (principle of minimum potential energy)
Find u® e VY minimizing the functional

(4.5) & (u) = § A (u, u) —'[inuidx —J.

Tu;dS
r.

on the set VV.
Recall that in the case of the first problem we suppose (4.3) and replace the set
VY by Q, in the formulations.

Formulation in terms of stresses (problem Q°): 3. (principle of virtual stresses).
Find 1°€ X" such that

(4.6) A1, %) = f bt dx = J e;(U);dx Viez®.
o Q
4. (principle of minimum complementary energy).
Find ©° € 2" minimizing the functional
(4.7) 1) = 1 B(r. 1) — j e;(U) 1;;dx
2

on the set X'/,
Both the formulations 1, 2 of the problem P® and both the formulations 3, 4 of the
problem Q° are equivalent. Under the above introduced assumptions the bilinear
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forms o7%, #° and functionals @°, ¥ are coercive. The solutions u® of P* and 1° of Q°
exist, are unique and are connected by the relation

(4'8) Ty = Al ekl(us) [: a?jkl“i,t] .
Moreover, they satisfy the estimates

(4.9) |u]lw < const . [t°[u < const.
with constants independent of ¢.

The homogenized problem. Similarly, the homogenized problem (2.21)—(2.24)
with the homogenized coefficients can be mathematically formulated by two equi-
valent formulations in terms of displacements (problem P°):

1. Findu®e VY such that

(4.10)  Z°(u® @) = f alyqug il dx = ff'iﬁidx +J Tii,dS VieV.
Q Q I

2. Find u® € VY minimizing the functional

(4.11) °(u) = 1 /%u, u) —-J‘f,-u,-dx —J Tu;dS
o r.
on the set VY;
and two equivalent formulations in terms of stresses (problem 0°):
3. Find t° e X" such that
(4.12) #°(1°, 1) = Lb?jk,zf,f,.j dx = J‘peu(u) T ;dx Viex®.

4. Find t°€ 2" minimizing the functional

(4.13) L) =3 B%, 1) — fﬁeij(LT) 1;; dx
on the set 7.
Also the bilinear forms .«/°, ° and the functionals @°, ° are coercive (as we have

proved in Section 3). the solutions u°, t© exist, are unique and are connected by the
relation

(4.14) 1) = afy eu(u®) [= afpup] -

Convergence theorems. Suppose the assumptions introduced in this section are
satisfied.

Theorem 1. The displacement vector and the stress tensor converge:
(4.15) ut - u® weakly in W,
(4.16) © - 1° weaklyin H .
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Theorem 2. The functions of local energy and of complementary energy converge
as follows:

(4.17) At U = alug ul; star weakly in L'(Q),
(4.18) biutat; = bf'j,‘,lf,t?j star weakly in L'(Q). *)
Further, the functionals of potential energy and of complementary energy converge:
(4.19) o°(u) — °(u°),
(4.20) F(r?) » L% .
Let U%, T* be the corrected solutions defined by (2.33), (2.34).
Theorem 3. In addition, let u® € [C*(Q)]*. Then we have
(4.21) u* — U > 0 strongly in W,
(4.22) ™ — T°— 0 strongly in H .

The proofs are sketched in Section 5. The assumption u°e [C*(@2)]’ is natural,
it assures U* e W.

Remark. The variational functionals @°, ®° can be written as

Lg <: Du) dx — L(u),

() = ;JQQO(DM) dx — L(u),

P(u) =

o=

where

L{u) = f S dx + J. Tu;dS, Du = (u,})
and ’ "
(4.23) 9(r. &) = aily) i s

90(5) = a?jkléii&kl'
The homogenized function g° can be given as the minimum of the functional
(4.24) 9°(¢) = min {.#[g(y, ¢ — D)]; ve W) ,

where D*v = (v, ,,). We obtain, of course, the same function g°. Indeed, the Euler
equation for the minimizing function v in (4.24)

(4.25) —(aiui & = tey))s, = 0
has a solution v e W,,,,
(4.26) v, = 14 (¥) Curs

*) precisely in the topology o (.# (Q), Cg (2)) where .# () is the space of bounded mea-
sures on Q, Ll(.Q) is a subspace of .# (Q2).
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where x*'is given by (3.2). Inserting (4.26) into (4.24), and using(3.3) we obtain (4.23).
The variational functionals %, &° can be expressed similarly:

I(z) = ij'ﬂh (: , r) dx — L""f(u) 7 dx,

(1) = }J h°(z) dx — J- e;(U) 7 dx,
Q Q
where

(4.27) h(y, n)

biju()") Mt »
0 10
h (’7) = b.‘jkl’?.‘j'hl .
The homogenized function /i° can be also expressed as the minimum of the functional

(4.28) H(n) = min (4 [h(von — o)) o€ X2
where
Te = (o€ [Lefin’s Aol f(0)] =0 Yoe Wy o] = 0.

per pers
In (4.28) we have, of course, an equivalent expression of the function h°. Indeed, let

o be the minimizing function. Then according to the Lagrange multipliers theorem
there exist a function v e W, , and constants ¢;; satisfying

per
(429) biju()‘) [’Iu + Ukz(.,")] = Cij(U) + ¢
(4.30) Gijy; =0,
(4.3]) ,/{[a”] =0.

Let 9*' be given by (2.29). Then the function
(432) ngx(y) = (ROT‘ ")kl(y))yh it

is the minimizing function because it satisfies (4.30), (4.31). Further, in (4.29) ¢;; =
= M| by + 0x)] and the function v e W,,, exists because (2.29) yields the com-
patibility conditions. Finally, inserting (4.32) into (4.28) and using (3.6) we obtain
(4.27).

In (4.24) and (4.28) we have functional forms of the cell problem. Thus, we com-
pleted four formulations of the periodic problem (4.4)—(4.7) and the homogenized
problem (4.10)—(4.13) by the corresponding four formulations of the cell problem

(3:2). (4.24), (3.5), (4.28).

Homogenization and G- and I'-convergences. The operator convergence, introduced
by S. Spagnolo (1968), the so-called G-convergence and the functional convergence
the so-called I'-convergence generalize the notion of homogenization in the following
sense: the sequence of the operators in the e-periodic problems G-converges to the
operator in the homogenized problem and the sequence of functionals in the e-periodic
problems I'-converges to the functional in the homogenized problem.
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Let A%, A° : W — W' be the differential operators associated with the bilinear forms
2%, «/° and denote by w the weak topology in Wand by s the strong topology in W'
Then A° G-converges to A° in the sense of definition in [7], [16], [18], A4° G(s, w)-
converges to A° in the sense of definition in [1]. Moreover, A° strongly G-converges
to A° in the sense of definition in [18] that requires besides the convergence of the
solution u® even the convergence of the generalized gradients j; = ajj,uj .

Similarly, choosing convenient topological spaces we obtain G-convergence of the
operators B, B® associated with the bilinear forms %, 2°.

Finally, the variational functionals

@* I'-converges to @0 ,*)
&* I'-converges to &°

in the sense of definitions in [1], [ 10].
This topological approach suggests the way of mastering the nonlinear problems.

5. PROOFS OF THE CONVERGENCE THEOREMS

Denote the weak and the strong convergence in Lz(Q) by — and —, respectively.
In the proofs we shall make use of the following properties:
— if fis a Y-periodic function then

e 75) = () ~ 4TS 0)]
o )t

— if u* — wand v* — v such that either u® or v* are uniformly bounded in L, then

(5.3) uot — uv.

Proof of Theorem 1. We prove the theorem by the local energy method which was
introduced by L. Tartar, see [5], [7], [16]. We present here a simplified version.
The crucial point of the proof — the identity (5.7) (Lemma 1) — follows from the
so-called “adjoint N-condition” which is equivalent and in the case of selfadjoint
operator coincides with N-condition introduced by O. A. Olejnik in [18].

Due to (4.9) we can extract a subsequence ¢, — 0 such that

(5.4)  wu'™ converges weakly in W to a function u , which implies u;" — u;

&
and iy = Uy,

*) Let F¥, F° be functionals on a topological space (X, 7). F¥ I'-converges to FlifVue X:
1) Yur=> u holds FO(u) < lim inf F*(uy),
2) there exists vy — u such that Fo(u) = lim Fk(u).
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(5.5) 7™ converges weakly in H to a tensor 1 i.e.

€ & €
i = (4.8) = afju = 1

Consider the variational formuiation (4.4). Using (5.5) we can pass to the limit

[N AR

(5.6) j tii; jdx = | fi;dx + J Tai;dS VieVe.
Q Q r.

In Lemma 1 we shall prove the identity

(5.7) 1= agpty, ae. in Q.

Since u € VY, (5.6) and (5.7), the function u is a solution of the homogenized problem
(4.10). The uniqueness of the solution and (4.14) yield u = «°, t = (° and not only
the extracted subsequence but the whole sequences u° and t* converge (4.15), (4.16)
which was to be proved.

Lemma 1. Under the assumptions of Theorem 1, (5.7) holds.

First of all, we introduce the definition of N-condition. We say that the sequence
of operators A® (with coefficients ajy,) satisfies the adjoint N-condition with respect
to the operator A° if there exists a sequence of functions N e W such that:

(5.8) NY > 0 weakly in W,
(5.9) a5y — NI — afy, weakly in I2(Q),
(5.10) —(dij0 — aguaNSs — alig)., = 0 strongly in dual W' .

Proofof Lemma 1. Let ¢ € C3'(2) and let x'/ € W,,, be the solution of (3.2) and put
(5.11) NF(x) = & 1(x[e) .
It is easy to verify that the functions N e W defined by (5.11) satisfy (5.8)—(5.10).
Indeed, (5.8) is obvious, (5.9) follows from the symmetry (1.2), formula (3.1) and
(5.1).In (5.10) even equality is true. It follows from the equation (2.13) using symmetry
(1.2) just replacing variable y by x/e.

In the case of coefficients of the form (1.6*), (4.2%) the functions "/ = x"(x, y)

are from the space C*(2, W,.,) and (5.8)—(5.10) is satisfied with the functions N"¢ e
€ W defined by

(5.11%) N (x) = & 7(x, x[e) .

Consider the extracted subsequence ¢, — 0, writing briefly only ¢ — 0. The proof
is divided into two steps:

1. Choose il = N'*p e W°in (4.4):
J‘! a‘g',,,‘,ui',(]\/;iffq,)’!l dx = Jng;jqu dx .
2 Q
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Passing to the limit due to (5.8) we obtain
(5.12) J @ty N2 dx > 0.
2

2. The condition (5.10) multiplied by uz¢ € WP yields
jg(a?jkl - ”;hklN;}:h - a?jkl) (”2‘?).1 dx = Jﬂ(a?jklui.l - a?jktui,l) @ dx —

€ ije & £ € ije 0 £ "
—j g Nglpui 1 dx + J' (@i = GouaNgh — i) tip  dx = 0.
o o

Due to (5.12) and (5.9) the second and the third integral tends to zero and using
(5.4), (5.5) we obtain the identity

j‘ (’i, - a?ikluk.l) ¢ dx =
(o]
which holds for arbitrary ¢ € C5'(), and (5.7) follows.

Proof of Theorem 2. Let ¢ € C3'(Q). Consider the integral I° = [q a;,,u; uf jo dx.
Since ujp € V°, using uf ;o = (uip) ; — uip ; and (4.4) we have

= J fl.u?(p dx — ‘L'?jug(p,j dx.
Q o

The integral I° = [qad;uy uf ;@ dx can be transformed in the same way. But

IF—1°= qu —uo)(de~J.(T,J. u ui) @ ; dx

tends to zero due to the convergences (4.15), (4.16). Since CJ () is dense in Cg (Q)-
the dual of .# (), the convergence (4.17) follows.

The convergence (4.18) can be transformed to the previous case by virtue of (4.8),
(4.14).

Consider the functional @°. Using (4.4) with & = u°* — U e V° and (4.10) with
i =u® — UeV° we can write

O'(uf) — d%(u®) =} U‘ (¢, —19) U, ;dx — Jf,(u — uf) dx —J Ty(u5—u?)d :|
Q
but (4.15), (4.16) yield the desired convergence (4.19).

The convergence (4.20) can be proved similarly.

Proof of Theorem 3. The theorem is proved by the method introduced in [18]
by O. A. Olejnik. The method was developed from the multiple-scale methods,
see e.g. [5], [7]- The crucial point is the convergence

(5.13) A(u* — U?) > 0 stronglyin W',
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(where (A°u); = —(a%juy.,),) Which follows from the so-called N-condition as we
shall prove in Lemma 2.

Convergence u* — U® — 0. Suppose (5.13) is true. Since u” is bounded (4.9) we have
(5.14) o = U ut — U) -0,
which with (1.1) and u* — U* = 0 on I, implies the desired convergence (4.21).
Convergence t* — T° — 0. Thanks to (1.3) it suffices to prove
(5.15) Bt — T — T) - 0.
But (2.34), (1.8) yicld
iy — T = aijglugn — Ug)
and using (1.5) we can transform the convergence (5.15) into (5.14) which has been

proved above.

Lemma 2. Under the assumptions of Theorem 3 (5.13) holds.

We begin with the definition of N-condition introduced in [18]. We say that the
sequence of operators A° satisfies N-condition with respect to the operator A° if
there exists a sequence of functions N¥'¢ € W such that:

(5.16) N 0 weakly in W,
(5.17) aS — aSjuNa — alyu  weakly in I2(Q),
(5.18) —(afj — d N — alr),; — O strongly in W',

Let us remark that (5.8)—(5.10) and (5.16)—(5.18) coincide because the operator
is selfadjoint. In [18] the equivalence of the N-condition and strong G-convergence
is proved.

Proof of Lemma 2. The functions N*¢e W defined by (5.11), (5.11*) satisfy
(5.16)—(5.18) because they satisfy (5.8)—(5.10).

Consider the expression 4*(u® — U®). Due to Au° = [ = A°° and U; = u_f,) -
— N;'su,?‘, we have

AE(“E - U%); = (afjkx - ”f,’gth.lﬁ - a?jkl),jul(\'),l +
+ (ijkz - aijghN;;flsx - a?jkl) ul((),lj - (agjgh]\ﬂg”ful?,lh),j'
Since u° e [C*(Q)]?, (5.18) yiedls the strong convergence in W’ of the first term,
(5.17) the weak convergence in I?(Q) (which implies the strong convergence in W’)
of the second term, (5.16) the strong convergence in W’ of the third term and hence
(5.13) follows.
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Souhrn
HOMOGENIZACE ROVNIC LINEARNI PRUZNOSTI
JAN FrRANCU

Price se zabyvd homogenizaci (1.j. aproximaci materidlu s periodickou strukturou
materidlem homogenm’m) rovnic linedrni pruznosti. Zkoumdme obé formulace v po-
sunutich i v napétich a vysledky jsou srovndny. Homogenizované rovnice jsou
odvozeny metodou ,,multiple scale’’. Uvddime rizné vzorce, vlastnosti homogenizo-
vanych koefficientli a korektory. Konvergence vektoru posunuti, tenzoru napéti
a funkce lokdlni energie je dokdzdna zjednodusenou metodou lokdlni energie.
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