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INVARTANT RESISTIVE NETWORKS
IN EUCLIDEAN SPACES AND THEIR RELATION TO GEOMETRY

MirosLAV FIEDLER

(Received August 5, 1980)

1. INTRODUCTION

We shall be interested in properties of electrical resistive networks in a Euclidean
n-space which are “invariant” in the following sense: For an arbitrary homogeneous
electrical field in this n-space, the energy absorbed by the network does not depend
on the (geometric) location of the network in the n-space (we allow Euclidean mo-
tions of the entire network only).

For instance, a network consisting of two mutually perpendicular line segments
of the same lengths made of a homogeneous resistive wire is easily seen to be in-
variant in the Euclidean plane.

For simplicity, we shall deal with such electrical networks only which consist
of a finite number of separately homogeneous line segments, i.e. each segment is
an ideal one-dimensional resistive wire, the resisteance of its any connected portion
being proportional to the length of this portion. In our considerations, we shall also
allow “connections” of infinite resistance. Since a shift (translation) of such a homo-
geneous line segment in the considered space does not change absorption of energy
in any homogeneous electrical field, we can, in fact, restrict ourselves to investigations
of a finite set of vectors in the space such that with each vector a positive (but possibly
inﬁnite) resistance or, equivalently, a nonnegative conductivity as its reciprocal,
is associated.

To describe the situation mathematically, assume that in a Euclidean n-space E,
with the inner product (x, y), a finite number of vectors uy, u,, ..., uy with conductivi-
ties ¢y, ¢, ..., cy are given. If a homogeneous field in E, is determined by the vector
u orthogonal to the hyperplanes of constant potentials, the potentials at the end-
points of u differing by one, the energy absorbed by one vector u; is ¢(u, u;)?/(u, u)®
since the potential at the end-points of u; is (u, u;)/(u, u) and the current is ¢(u, u;) :
: (u, u). Thus we have
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(1.1) Theorem. A set of vectors uy, ..., uy in Ey with the corresponding conductivities
Cys ey Oy (not all equal to zero} is electrically invariant iff there exists a constant
¢ such that

(1 :Zn c(x, u)? = c(x, x)

for any vector x € E,. If so, the absorption is ¢[(u, u) if the field corresponds to the
(non-zero) vector u.

We shall say that the system uy, ..., uy of vectors in E, admits electrical invariance
if there exist conductivities ¢y, ..., ¢y (not all equal to zero) assigned to these vectors
such that (1) is satisfied with ¢ > 0.

In the sequel, we intend to characterize completely the systems of vectors which
admit electrical invariance, present some classes of such systems and use the results
to obtain a few geometrical theorems.

2. RESULTS
Let us first prove an algebraic lemma:

(2.1) Lemma. Let uy, ..., uy be vectors in E,. Then the following conditions are
equivalent:

(i)
N
) Y (x, u)? = (x,x) forany xekE,.
i=1
(i) if Uy, ..., Uy are column vectors of coordinates of uy, ..., uy with respect
to a certain orthonormal basis of E,, the n x N matrix U = (Uy, ..., Uy) satisfies
(3) U =1,
the identity matrix of order n;

(iii) there exists a Euclidean N-space Ey containing E, and orthonormal vectors
Vi, ..., vy in Ey such that the orthogonal projection P of Ey onto E, satisfies

(4) Pvi=wu,, i=1,...N.
Proof. We shall prove implications (i) = (ii), (ii) = (iii) and (iii) = (i).
(i) = (ii). Let us denote by E, the arithmetic Euclidean space of real column
vectors with the inner product (X, Y) = Y X,Y,, where X;, Y, are the coordinates
i=1

i=

of X, Y, respectively.
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Clearly, the coordinates of vectorsin E, with respect to an orthonormal basis belong
to E; (and, in fact, both models are isomorphic). If we denote by X" etc. the transpose
of X, (X, Y) can also be written as Y"X. Accordingly, (2) can be expressed as

XTUUT™X = XX forall XekE,,
1.e.

X(UUT — )X =0 forall XeE,
which implies (3).

(ii) = (iii). It follows from UUT = [ that the n columns of UT form an orthonormal
set of vectorsin Ey. By a well known theorem [4], N = n andfor N > n,UT can be
completed by N — n columns to an orthonormal basis in E. In other words, either
N = n, U is an orthogonal matrix and (iii) is true, or N > n and there exists an
n x (N — n) matrix W such that the matrix

/
v= ()
\W)

is an orthogonal matrix. If we denote by Vi, ..., V, the columns of the matrix V and
by P the (orthogonal) projection of Ey onto E; which assigns to any vector X in Ej
the vector PX in E, having the same first n coordinates as X, we obtain PV, = U,,
i = 1,...,N. For the original space E, this means exactly (4).

(iii) = (i). Since vy, ..., vy form an orthonormal basis in Ey, we have, by Pythago-
rean theorem,

N
Y (x.v)* = (x,x) forany xekEy.
Thus also

Y (Px,v;)* = (Px, Px) forany xeEy.

However, (Px, v;) = (P?

X

,vi) = (Px, Pv;) . Thus if (4) is satisfied,

M=

(Px. u;)* = (Px,Px) forall xekEy

I

i=1
and (2) follows.
We are able now to prove the main theorem.

(2.2) Theorem. A finite system of N vectors uy, ..., uy in a Euclidean n-space E,
admits electrical invariance iff a non-void subsystem u;,u,, . of m=n
vectors of it is formed by orthogonal projection of m mutually orthogonal non-zero

TP
vectors Vy, ..., v,, in a Euclidean m-space E, containing E,. The corresponding
conductivities ¢y, ¢y, ..., ¢y With respect to which uy, ..., uy become electrically
invariant can be chosen as follows: ¢; = l/r,»‘, e € = l/r,.m wherer;,j =1,...,m,
are squares of the lengths of the vectors vy, ..., v, in E,, ¢, = 0in all other cases.
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Proof. Let first (1) be satisfied. Denote by M the set of those m indices iy. ,.., i,
for which ¢; # 0. Then (1) can be written as

Y (% ()2 w) = (x. %)

ieM

By Lemma (2.1), the (non-zero) vectors (c; [c)'/* u; are orthogonal projections
of orthogonal vectors v, k = 1, ..., m, in E, containing E,. Therefore, the vectors
u;, are orthonormal projections of mutually orthogonal vectors (¢/c;)""? v; (whose
squares of lengths are proportional to 1/c; = r; ).

Conversely, if the vectors uy, ..., uy have the property mentioned in the theorem
then the vectors w; = v,./lvi s |v,-l being the length of v;, form an orthonormal basis

in E,, containing E,. Therefore,

Y (x,w)* = (x,x) forall xeE,
which means, by Thm. (1.1),

N
Yoex.u)? = (x,x) forall xeE

i=1

n

for ¢; = 1/ry = 1/|v

2 k=1,...,m and ¢, = 0 for all remaining indices.

(2.3) Corollary. A system of vectors in E, admitting electrical invariance (in E,)
has at least n vectors. In this case of n vectors uy, ..., u,, the system admits electrical
invariance in E, iff these vectors are all non-zero and mutually orthogenal. The
corresponding resistances ry. ..., r, are necessarily finite and proportional to the
squares of the lengths:

(2.4) Corollary. If a system of vectors in E, admits electrical invariance in E,
then every larger system of vectors in E, also has this property.

In the next theorem, we prove a necessary condition which has to be satisfied by
any system of vectors admitting electrical invariance. In its formulation, the term
quadrant-space in E, means the intersection of any two closed half-spaces in E,
whose boundary hyperplanes are orthogonal. The intersection of the two boundary
hyperplanes will be called the basic space of the quadrant-space.

(2.5) Theorem. If uy, ..., uy are vectors in E, which admit electrical invariance
then any quadrant-space S of E, contains a half-line which is parallel or anti-
parallel to one of the vectors u,, ..., uy but is not parallel to the basic space of S.

Proof. Let uy, ..., uy admit electrical invariance with respect to conductivities
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¢y, ..., Cy. Let v, w be non-zero vectors for which the intersection of the half-spaces
(x,v) =0, (x,w)=0

forms the quadrant-space S, (v, w) = 0, (v, v) = (w, w) = 1. Assume that S does not
contain any half-line parallel or anti-parallel to uy, .... uy. Then

(5) (U v) (u, W) < O

for all vectors u, not parallel to the basic space of S while equality holds for the
vectors u, paralle] to the basic space of S. Besides, (5) is satisfied for at least one k
for which ¢, # 0 since by Thm. (2.2), not all these veclors of the system can be
contained in an (n-2)-dimensional subspace of E,.

Denote u = (1/\/2) (v + w), " = (1/{/2) (v — w). If for a vector u,, (5) is satisfied,
then

(e u)? = H(u v) + (U, w))? =
= (v V)2 + (e W)+ 2(u, v) (e w)) < H((up v + (U, w)? —
= 2(uy, v) (U, w)) = (U, u')? .

If u, belongs to the basic space of S, (u;, u)* = (u,, u')*. Therefore, by (1),

N N
clu,u) =Y v, u)? < Y v, u) = c(u, u),
k=1 k=1

a contradiction since (u, u) = (v, v') = 1.

Remark. It is an open question whether this condition is also sufficient. Let us
formulate a conjecture.

Conjecture. Let a finite system V of (non—:ero) vectors in E, satisfy the condition:
For any quadrant-space S in E,, there is a half-line in S which is parallel or anti-

parallel to some vector in V but is not parallel to the basis of S. Then V admits
electrical invariance in E,.

3. PARTICULAR CASES

We shall begin with a suitable analytical approach to the simplex geometry. Asis
well known, an n-simplex in a Euclidean point space E!, being a gencralization of
a triangle in E} and of a tetrahedron in E%, is determined by n + 1 linearly independent
points of EP, called vertices. The simplex itself is usually considered as the convex
hull of its vertices. The line segments joining two different vertices are called edges.
If A, ..., A, are the vertices of an n-simplex X then any n points of them deter-
mine an (n — 1)-simplex called an (n — 1)-face of X. The (n — 1)-face which is
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determined by all vertices A, ..., A,,, except A; will be called the (n — I)-face
opposite to A;.
Denote by uy, i,k =1,...,n + 1, the vectors

(6) uy = A, — Ay .

N

Thus u,; = —uy, u;, = 0. The vectors Uy 4, Uy iy, ..- U, 4 being linearly
independent, there exist vectors py, ..., p, which form with the former ones a biortho-
gonal system:

(7 (Uipr1s Pj) = 0ijs B 1.um

(8;; is the Kronecker symbol).
If we define p,, as

(8) Pu+1 = —.Z pi,
the n + 1 vectors py, ..., p,4 satisfy
9) (U p;) = 04 — 0. Ljsk=1,..,n+1

and are thus perpendicular to the (n — 1)-faces (p; to that opposite to A;).

(3.1) Theorem. Let £ be an n-simplex with vertices Ay, ..., A, in EL. If uy and
p; are vectors defined by (6), (7) and (8), the vectors w; = —p,/(p,, p;) are vectors
of altitudes of the simplex X, i.e. w; = P; — A, where P; is the foot of the per-
pendicular from A; to the opposite (n — 1)-face. Thus w; are also vectors of outer
normals to the (n — 1)-faces of X. The length of p; is equal to the reciprocal of the
length of the altitude from A,.

"+1(i)
Proof. Since w; = P; — A; is parallcl to p;, w; = kip. Now, P, =Y oA},
nt (i) nt 1 i=1
Yo, =1and «; = 0. Thus, (w;=) Y a(4; — 4;) = k;p;. By inner multiplication
i=1 j=1
by p;, one gets using (9) k, = —((p;, p;))”'. The rest is obvious.

This theorem enables us to find relation between the interior angles ¢y
(i # k, i,k =1,...,n + 1) of faces opposite to A; and A, and the vectors p;:

(3.2) Theorem. In the notation of Thm. (3.1),

(10) cos @y = —(pi P)/|Pi] |Pi]-

Proof. Since —p; are vectors of outer normals, the angle between p; and p, (for
i + k)equalsm — @y
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An n-simplex X is called orthocentric if all the altitudes (as lines) meet in one point,
called orthocenter of Z. It can be shown [ 1] that the orthocenter is an interior point
of X iff all its interior angles are acute.

We are able now to consider the case of a system S of n + 1 vectors in E, which
admits electrical invariance in E,. We have to distinguish two cases: Either there
exists a subsystem S" = S with k + 1 vectors (k < n) which are all contained in
a Euclidean k-space E,, or not. If the former case occurs, we shall say that S is re-
ducible; in the latter case, S will be called irreducible. By the definition of a system
admitting electrical invariance in E,, it follows in the first case (if we use rotations in E,
around the “axis” E,) that S” again admits electrical invariance in E,.

By Corollary (2.3), S’ is electrically equivalent to k mutually orthogonal vectors
which together with the remaining n — k vectors in S form n vectors admitting
clectrical invariance in E,. By Corollary (2.3), the remaining n — k vectors in S are
mutually orthogonal and also orthogonal to E,. Thus we have:

(3.3) Theorem. A reducible system of n + 1 vectors in E, which admits
electrical invariance always contains a unique irreducible subsystem of k + 1
vectors in E,(k < n) which admits electrical invariance. The remaining n — k vectors
are mutually orthogonal and also orthogonal to E,.

In the following characterization we can restrict ourselves, in view of (2.3) and (2.4),
to irreducible systems of n + 1 vectors no n of which are mutually orthogonal.

(3.4) Theorem. Let S = {u, ..., u,,,} be an irreducible system of n + 1 vectors
in E,, no n of which being mutually orthogonal. Then the following assertions are
equivalent:

(i) S admits electrical invariance;

(ii) there exists an acute-angled orthocentric n-simplex X in the point-space
E? 10 E, with vertices Ay, ..., A,+, and orthocenter A, such that u; is a non-zero
multiple of A; — Ag for i =1,...,n 4+ 1;

n+1
(iii) there is a single linearly independent relation Y ou; = 0, the coefficints a;
i=1
are all different from zero and there exist positive numbers k. ..., k,,, such that
for all i,j=1,...,n+ 1, i % j,
(11) (v, uy) = —oo;kik; .

The resistances ry, ..., r,y,; corresponding to the vectorsu,. ..., u,,  (as segments)

are then proportional to kq, ..., k,,:

(12) ri=ok;, i=1,..,n+1.

Proof. We shall prove that (i) = (ii) = (iii) = (i).
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(i) = (ii). Let S satisfy (i). By Thm. (2.2), there exists a Euclidean (n + l)-space
E,,, containing E, and n + 1 orthogonal vectors v, ...,v,,, in E . such that
for the orthogonal projection P of E,,, onto E,, Pv; =u, i = 1,...,n + 1. Since
S is irreducible, the (unique up to a non-zero factor) vector u for which Pu = 0 is
not orthogonal to any of the vectors vy, ..., v,. In the point spaces E,, and E?
containing E, | and E, with a common origin Ay, let A, i = 1,....n + | be points
determined by

Ar— Ao =uf(uyv), i=1,...n+ L.

This can also be written as
(13) A — Ay = vil(u,v;) — ul(u, u).

We shall show that A, ..., A, are vertices of an orthocentric n-simplex X with
the orthocenter A, which is its intcrior point. Let i, j, k be mutually different indices
from {1,2,...,n + 1}. By (13),

(A = Agy Ay — A) = (A, — Ag A — Ag — (A — 4,)) =
= (vi/(u.vi) — ul(u, u) . vil(u,v)) = v(u v)) =

since v; is orthogonal to v; and v,. Thus 4; — A, is orthogonal to the (n — 1)-face
of X opposite to A;, i =1, ..., n + 1, which means that X is orthocentric with the
orthocenter A,. Since

__n+1 (U, Vi)

= — we have by (13)
i=1 (v, vy)

v

i

n+ 1 )2 nt 1 )2 ‘
v = Z ,(,u’ Vlf/* (A' — AO) + z (H_’_,Xi_, u/(u’ u) .
i=1 (V,-, V,») i=1 4V, V;)

Since u is orthogonal to all 4; — Ay, it follows that

"t (u, v,)?

A, — A,) =0,
i=1 (vip vy) ( o
n+1 2
(w v _ (u,u).
i=1 (v, v)
Thus we have
n+1
AO = éiAt
i=1

with
Eo— (wv)

T (u, u) (vi v,.-j >0,
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and

n+1
Z&l =1
i=1
Thus A, is an interior point of X.
(i) = (iii). Let
(14) Ay — Ag=28u;, & =+0, i=1,...,n+1,

where Ay, ..., A, are vertices of an orthocentric n-simplex 2 whose orthocenter 4,
is an interior point of X. Since A; — A, is orthogonal to the (n — 1)-face opposite
to A,

(4, — Ag, A; — 4) =0

whenever j # i # k. This means by (14) that

(&g, Gju; — Qu) =0
or,

&.6,(u;, u;) = @8 (u, v,) forall i, j, k,

J = i % k. It casily follows that
(15) ai&j(ui* “j) =K

for all i,j=1,...,n 41, i j. Let us show that K < 0. There exist positive
numbers f,, ..., f,,, such that

n+1 n+1

Ay = ZﬁiAia Z/’): =1.
i=1 i=1

Consequently, by (14),

n+1
M afu;=0.
i=1
Thus, we have by (15),
n+1 , n+1
0= (&1‘11* 'Zl&i[giui) = d ﬁl(“n ”1) + (;ﬂz)K

and K < 0.
Hence fori,j=1,...on+ 1,i*j, ifo; = &;f;,

(v, u)) = K _ —ook k.

P ey
&8;

for k; = B; |K|'?[af, i=1,...n+ 1.
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(iii) = (i). Let (iii) hold. We shall show that

n+1 nt+1

(16) i; kit(x,u)? = (i;loc,.zk,.) (x,x) .

It suffices to show that

n+1 n+1

(1) Tk ) ) = (S k) ()

fory=u,p=1,...,n+1
We have

n+1
Skt (x,u) (v u) =k, (u, u,)(x,u,) — 2%, k, ; (x, o) =
i=1 i*p

= (aikﬁ + k;l(up’ l/,,)) (X* un) :

However,
n+1

Uy Y ol;) = o(u,, u,) — a2,k > aik;,
i=1

1*p

which implies
n+1

(up’ up) = kp( Z “?ki - 1;2: kp) .

i=1

Therefore,
n+1

aﬁk,, + l(;'(u[), u,) :'Zla,-zk,-

and (17) is proved for y = u,,.

The rest follows immediately from (iii).

Another particular case which is closely connected to the previous one is that
of a closed polygon in E, with n + 1 sides. We can restrict ourselves to the case that
the cyclically ordered vertices By, B, ..., B, of this (n + 1)-gon are linearly inde-
pendent. The vertices B;, B;., i = 1, ..., nas well as B, , {, B; are called neighboring,
and also the (n — 1)-faces of the corresponding n-simplex opposite to B;, B;,; as
well as opposite to B, ;, B; are called neighboring.

In [17, such an (n + 1)-gon was called cyclic if any two non-neighboring (n — 1)-
faces are orthogonal. It was shown that of the remaining n + 1 interior angles
(between the neighboring (n — 1)-faces), at least n are acute; one can be obtuse or
right. Cyclic (n + 1)-gons have the property that, given the lengths |B;B;, | = I,
i=1,..,n+1(B,,, =B,), satislying

nt1

2 max L, <Y ),
k=1

k=1,..n+1

there exists up to congruence a unique (n + 1)-gon in E,, the corresponding n-simplex
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of which has the maximum n-dimensional volume. This (n + 1)-gon is always cyclic
and has all interior angles between neighboring (n — 1)-faces acute, has one this
angle right, or has one this angle obtuse according to whether
n+1
2max [p < Y [ 2max [ =Y I} or 2max [[> YI7 .
k k=1 k k k k

We shall need only the first two cases. The cyclic (n 4+ 1)-gon with one right angle
has, in fact, n mutually orthogonal sides, for instance B,B,, B,B;, ..., B,B,,, {and
another side B, B;). As for the cyclic (n + 1)-gon By, B,. ..., B,,; with acute
angles between neighboring (n — 1)-faces, it was proved in [ 1] that it is characterized
by the fact there exist positive numbers n,, ..., m,,, such that the vectors a; =
=B, —B,i=1,....n+1,B,,, = B,,satisfy for i % j

(18) (0,0)) = —mmjfo, i j=1,...n+1,

where
n+1

o= 7.
i=1

It is easily checked by virtue of (18) that the vectors
(19) pi = ”:—llai—l —m;a;, i=1,...n+ 1(00 =0,4q, Mg = 75n+1)

are the vectors from (7), (8) and (9) corresponding to the n-simplex with vertices
By, ..., B, . Since, as is also easily computed,

(Pia Pi+1) = —n',
we have by (10) and Thm. (3.1)

(20) T, = LWMZVLI’ i

COS @i+t

where [w,-] is the length of the altitude from B; and ¢, ;,, the interior angle between
the faces opposite to B;, B;, ;.
We are now able to prove:

(3.5) Theorem. A closed (n + 1)-gon B|B,,...,B,,, in E, admits electrical
invariance in E, iff it is cyclic without obtuse interior angles. If one interior angle
between neighboring (n — 1)-faces is right, the resistances corresponding to
orthogonal sides are proportional to the squares of their lengths while the remaining
resistance is infinite. If all interior angles between neighboring (n — 1)-faces are
acute, the resistance r; of B;B;, is

rp= alwi

IW1+1I/C05 Pisivi1 >
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where o is an arbitrary positive constant, !wii the length of the altitude from B,
in the corresponding n-simplex and ®i,i+1 the interior angle between the (n — 1)-fa-
ces opposite to B; and B, ,.

Proof. Let an (n + 1)-gon By..... B,y in E, admit electrical invariance in E,.
The vectors g, = B;,, — B, i = 1,....n + 1 (B,,, = By) satisfy

n+1

(21) 2.a=0

and, since they cannot be contained in a smaller space than E,. any n of these vectors
are linearly independent. Let us distinguish two cases:

A) n of these vectors are mutually orthogonal. Then we clearly have the case
of a cyclic (n + 1)-gon with one angle between the neighboring (n — 1)-faces right.
The corresponding resistances are then by Thm. (2.3) as asserted.

B) No #n of these vectors are mutually orthogonal; since none of these vectors a;
can be orthogonal to the remaining ones, these vectors form an irreducible system
in the sense of Thm. (3.4). By this theorem, since in (iii) the coefficients o, can be
taken as ones, there exist positive numbers k. ..., k,,, satisfying for all i,j = 1, ...
o+ i E]

(a,, a;) = —kik;.

If we set
n+1
(22) mo=kiY kj,
j=1
n+1

=Y,

(]8) will be satisfied so that the (n + 1)-gon is cyclic with acute interior angles
between neighboring (n — I)-faces as asserted. From (12), (22) and (20), we obtain
the formula for resistances as asserted.

The converse is also true as is easily checked by using (2.3) in the case that n of the
vectors a; are mutually orthogonal and Thm. (3.4) in the other case.

For n = 2, we obtain the following corollary:

(3.6) Corollary. A triangle (i.e. a closed 3-gon in E,) admits electrical invariance
in E, iff it has no obtuse angle. In this case, the corresponding resistances r; (i =
= 1,2,3) for the triangle AA,A; are proportional to l;fcos a; (or, to tg a;)
where I; is the length of the side opposite to A; and «; is the angle at A;, i = 1,2, 3.
(If one of the angles is right, the opposite side has infinite resistance.)
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Remark. It seems interesting that in the cases of n vectors in E,, of n + 1 vectors
in E, as well as of the (n + 1)-gon in E,, these vectors admit electrical invariance
in the case only that the geometric configuration of the segments fulfils the following
condition: Among all possible configurations with given lengths of the segments,
these have the maximum possible n-dimensional volume of the convex hull of the
segments.

Corollary (3.6) suggests importance of n-simplices without obtuse angles in this
problem. This will also be confirmed in the following theorem:

(3.7) Theorem. Let A, ..., A,,, be vertices of an n-simplex X in E,. The set
of edges A;A, (i + k,i,k=1,...,n + 1) as segments admits electrical invariance
in E, iff £ has no obtuse interior angle between (n — 1)-faces. In this case, the
resistances ry (=7, i * k) corresponding to the edges A,A, can be chosen as

(23) P = !w,l !wk!/cos Qi »

where [wi’ is the length of the altitude of X from A; and @y is the interior angle
between the (n — 1)-faces opposite to A; and Ay. (If @y = 1|2, ry will be infinite.)

Proof. Assume that the vectors uy = 4, — A, i<k, i,k=1,...,n+ 1 (or,
in fact, the corresponding edges as segments) admit electrical invariance. Suppose £
has an obtuse interior angle between the faces, say, w, and w, opposite to 4, and 4,.
One can then choose a quadrant-space S in E, whose basic space is the intersection
of , and w,, which is contained in the intersection of half-spaces (w,4,) N (w,4,)
but contains neither 4, nor A,. It is geometrically clear that S contains no half-line
parallel or anti-parallel to uy, except those parallel to its basis. By Thm. (2.5), we
obtain a contradiction.

To prove the converse, assume none of the interior angles of X is obtuse. By Thm.
(1.1), it suffices to prove that

(24) z 1';‘1(X, ui,‘.)2 = (x, x)

for ry, defined by (23).
It follows immediately from (23), Thm. (3.1) and (10) that

ra = — (s, Pk)
where p; are vectors satisfying (7), (8) and (9). Thus (24) is equivalent to

(25) =13 (b 20 (6, 1) (1 0) = (x.9)

i, 1

where, of course, u;; = —ugandu; = 0,i, k = 1,...,n + 1, and it suffices to prove
thisforx=p,y=p,rs=1,...n + 1.
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By (9) and (8),

-1 ) (ps pr) (Pn i) (pss uy) =

ik=1

+

n+1

= % (Pz’ Pk (()lr = Yk (61'.\ - (sk.s‘) .

i, 1

=
I

If r = s, the right-hand side is

n+1
% Z Pl Pl ( ir + O - 2(Sir(sl‘;r) =

k=1

n+1

= —(p.. ZPO + (P p) = (P P)) -

If r & s, we obtain, since J,,0;, = 0,

%‘_ Z (Pn Pk)( Olr(>lcs (Skr(sis) = (Pﬂ Ps) .

The proof is complete.
We are now able to prove a geometric theorem.

(3.8) Theorem. A necessary and sufficient condition that an n-simplex ¥ in E,
has no interior angle obiuse is: for any quadrant space S in E,, there is an edge
of £ which is not parallel with the basis of S but which is parallel with a half-line
inS.

Proof. Let X have an obtuse interior angle. Then as in the proof of Thm. (3.7)
there is a quadrant space S which contains no line parallel to an edge of X except
those parallel to its basis. Conversely, if X has no interior angle obtuse, the set
of cdges admits electrical invariance by Thm. (3.7). By Thm. (2.5), the set of edges
has the property mentioned above.

Let us recall now that in [3], and previously without proof in [2], it was shown
that to any connected electrical resistive network (i.e., a network containing resistors
only) with n + 1 nodes Ny, ..., N,; and conductivity c;, in the branch between
N;and N, (i # k, k = 1,...,n + 1), there exists in E, an n-simplex ¥ with vertices
Ayq, ..y Ayyq such that

(26) co=—Pub), iLk=1...n+1, i+k,

p; being the vectors defined by (7) and (8). This simplex X has thus no obtuse interior

angle. For any i,k =1,...,n + 1, i + k, the total resistance R;, of the network

between the nodes N; and N, i1s equal to the square of the length of the edge A4;4,.
We shall prove the following theorem:
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(3.9) Theorem. Any connected electrical resistive network with n + 1 nodes can
be realized by a network in E, which is electrically invariant.

Proof. By the recalled result, there exists an n-simplex X in E, satisfying (2.6).
Comparing this with the formula in Thm. (3.7), it follows that edges of X admit
electrical invariance exactly with given resistances.

In the conclusion, we shall investigate this simplicial network X in more detail.
First, let us prove:

(3.10) Lemma. Let A, be a fixed vertex of X, let w be a non-zero vector parallel
to the face opposite to A,. Let F,, be a homogeneous field in E, corresponding to the
vector w. Then the absorption of energy of the system S, of segments AiA;,j =1, ...

wn+ 1, j % k, between any two parallel hyperplanes H,, H, orthogonal to w
is proportional to the distance of H{, H,, whenever the (open) layer between H,
and H, has a non-void intersection with S, but does not contain any vertex A; of
2 unless the vector A;A, is orthogonal to w.

Proof. Denote by My, M, M, the sets of indices j = 1,...,n + 1, j &+ k for
which (uj, w) = 0, (uy, w) > 0, (u;,, w) < 0. respectively. Let H;, H, be hyper-
planes satisfying the conditions above and let H be the hyperplane orthogonal to w
which contains A,. Then either H is contained in the (open) layer between H; and H,,
or it is not. In the former case, the absorption A, of S, between H, and H, is equal
to the sum of absorptions 4,; between H and H, and A4,, between H and H,. Since
one of the hyperplanes H;, H, intersects all segments A4;4, for i e M, the other all
segments A;A4, for i e M,. we can assume that H, is the first and H, the other. If d;
is the distance between H and H,, i = 1, 2, we have

0i T T Z P/*pl-.)LLJ dz =

JjeM; |W]2

- _'3_ (= X (P Pe) [(ujes W)))

IWI JeM;

since the conductivity of the part of A;A, between H;and H is —(p;, p,) ‘(uj,‘, w)\/(d,—|w‘)
while the potential between H; and H is d;/|w].
Let us show that

(27) - ? (Pn Pk ‘(u,A W)‘ = - V (Pp Pk) I(Uﬂa W)l

JEMl

For any vector x € E,,

nt1

x =Y (p;, x)u

i=1
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since this is true, by (9), for the basis vector u,,, m = 1,...,n + 1, m + k. Con-
sequently,

nt+1

n+1
Y (P i) (U W) = (X (Pjs P) Ui W) = (P W) = 0
J=1 i=1

since w is in the face opposite to 4, and thus orthogonal to p,. Therefore,

> (P i) (Ui w) + 3 (Pgs i) (U W) = 0

JjeMy JjeM>
(since (uj, w) = 0 for j € M,), which implies (27). Consequently,
Ay, = Cd,. Aoy = Cd,

and thus A, is a C-multiple of the distance between H; and H,. It is easy to check
that the same is true if H is not contained in the open layer between H; and H,.
We are now able to prove:

(3.11) Theorem. The resistive simplicial network X in E, described above has the
Jfollowing property: Let S, S, be any non-void disjoint subsets of the set of vertices
of X, let H{, H, be (uniquely determined) parallel hyperplanes in E,, H; containing
S;, i = 1,2, both orthogonal to all the (n — 1)-faces opposite to the vertices A;
which belong neither to S| nor to S,. If w is a non-zero vector orthogonal to H, and
F., a homogeneous electrical field corresponding to w then the absorption of energy
of the part of X between H, and a variable hyperplane H parallel to H, and lying
in the (closed) layer between H, and H, is a linear function of the distance of H
Jrom Hy.

Proof. Let H' & H, be the nearest hyperplane to H, satisfying the above condi-
tions which contains at least one vertex of X. The mentioned function @ is clearly
linear for H between H, and H'. If H' = H,, we are finished. If not, let us show
that @ is linear also in the neighborhood of H'. Let H’ contain exactly the vertices
Ay,s - Ay By Lemma (3.10), the contributions of thesets S, ..., Si, to @ are all
linear in the neighborhood of H'. The segments which belong to two of these sets do
not intervene since they are parallel to H,, and eventual segments joining other
pairs of vertices contribute linearly to @. Therefore, @ is linear up to the second
nearest hyperplane to H, containing at least one vertex of X and the same argument
shows that @ is linear in the whole layer between H, and H,.

This theorem enables us to state a theorem on a general connected resistive network.
It proves and strengthens the result from [3] already mentioned above.

(3.12) Theorem.. Let A~ be a resistive network with n + 1 nodes, let S,, S, be dis-
joint subsets of the set of nodes. Let X be the corresponding simplicial network,
S., S, the sets of vertices corresponding to S; and S,. Then the total resistance
R(S;, S;) of N between S| and S, (each S; is considered as joined by shortcuts)
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is equal to the square d*(S,, S,) of the distance of the hyperplanes H,, H, defined
in Thm. (3.11). The potential P at a node N, if S|, S, have potentials P, P,, is
given by

(28) P=iP, + (1 - i) P,,

where /. is the number satisfving
(29) A= 2B+ (1 = 1) Cy,
By, C, being the feet of perpendiculars from A, to H,. H,.

Proof. By Thm. (3.9), there exists a simplicial network X in E, which is electrically
invariant and has the same resistances between its nodes as A”". If H, H, are hyper-
planes satisfying the conditions of Thm. (3.11) with respect to S,, S, choose a homo-
genous field Fin E, for which the potential on H; is constant and equal to P. i = 1, 2,
P, % P,. By (24), the absorption of energy of X with respect to F is then

— ¥ 1 —(Pis Pi) (Ui W)

(W, W)z 1£isksn+

where w = (d(5,, 5,)/|P; = P,|)wo. w, being a unit vector orthogonal to Hj.
This is, by (24), equal to

(30) (w.w) ' = (P, — P,)*/d*(S,.5,).

On the other hand. it follows from linearity in Thm. (3.11) that ¥ behaves in F like
a homogeneous resistive segment in E, which is perpendicular to H,, has length
d(S,, S,), touches both H, and H, and whose resistance R yiclds the same absorption
(P, — P,)*|R as X. By (30). (P, — P,)*[d*(§,, §,) = (P, — P,)*|R so that

R =d*5,,S,).

However, R is equal to the total resistance of A between S, and S, since the current
between S, and S,, with potentials P, and P,, is the same as in the field F. Therefore,
also the potentials in the nodes N, are the same as the potentials of A, in F which
proves (28) with (29).
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Souhrn

INVARIANTNI ODPOROVE OBVODY
V EUKLIDOVSKYCH PROSTORECH A JEJICH SOUVISLOST
S GEOMETRII

MirosLAV FIEDLER
Vysetiuji se geometrické vlastnosti koneénych soustav sloZzenych z homogennich
odporovych elementt tvaru Gseéky s vlastnosti, Ze absorpce energie soustavy v libo-

volném elektrickém poli se nezméni pti jakékoliv ertogondlni transformaci soustavy.
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