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INTRODUCTION

The following problem often occurs in experimental practice. We have to verify
if the investigated system characterized by the dependences y = F(x, 8) and y =
= F,(x, ) fulfils the following condition: there exists x, with the property O =

m n

= F(xq, 0) = Fy(xq, B). If e.g. Fi(x,0) =) 0,x" and F,(x, ) = ) B:x’ then the
i=1

i=1
condition is equivalent to the condition that the resultant of these polynomials
is zero. The resultant is a polynomial in the variables 0., ..., 0., 5, ..., f., hence
an investigation of minimal variance estimates of polynomials is actual in this
context.

m
The general case of estimating a polynomial /() = 5 a0 ... 0k, 0e R, from
i=1
measured data is considered in this paper. The measured data are viewed as a realiza-
tion of normally distributed random vector Y with a mean A@ and a covariance matrix
K. An arbitrary polynomial f(0) can be expressed as a sum of homogeneous poly-
nomials and these as sums of polynomials of the form given in a Note II. 1. Therefore
the investigation in the paper is restricted to such polynomials. We can estimate
the members of the sum as is shown in Theorem II.3. The criterion for the unbiased
estimability of polynomials is in Theorem II.1. If the functional is not unbiasedly

estimable we can use results of Theorem I1.4 in some cases.

I. PRELIMINARY ASSERTIONS

Let us consider a random vector ¥ ~ N, (O, K), where R(K) < n. Following [7]
we denote the linear subspace of L*(Q, <7, P,) spanned by the real linear combina-

tions Y a,;Y; by # = L*(Y) = [*(Q, <7, P,). Let us consider the reproducing kernel
i
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Hilbert space (RKHS) H(K) = .#(K) (the space spanned by the columns of the
matrix K) with the kernel K and the inner product defined by {x, y>yi, = x'K"y,
x,ye . /(K). (The symbol K~ means the g- inverse of the matrix K (cf. [6]).) We

denote exp O H(K) = @ [H(K)]"®, where @ [H(K)'® is the direct sum of sym-

metric tensor pr oducts Of H(K). Let J}(./K’) < o/ be the oc-algebra generated
by #. We have L*(#(#)) = L*(Q, o, Py). Then the assertions in [2] imply

Note L 1. (i) L2(Y) = H(K); exp O H(K) ~ L*(#(5¢)), where the symbol *
means the isometric isomorphism between two Hilbert spaces such that exp © Ku =

=Y J—' (Ku)"® e exp © H(K) s the image of the random variable exp (u'Y — lu'Ku)e
n=0 H:

€ L*(#(#)) under this isomorphism. Let us denote by Ly (%(#)) the image of H(K)"®
under the above mentioned isomorphism. Then we can write L*(#(X)) =

= é Lo(A(x)).

(n) The generator of the space L,(B(#)) is a system of random variables
ho(Yars Yus -5 Yo, ), where for any random variables Uy, ..., U,, we define

ny> 'nyo m

Yaij m m

hUps oo Up) = 525 (=) LU .HXCOv(U.»uj)“-'f
i= ji=

ac{0,1}™ A=/,

Here ./, is the set of all m x m matrices with elements a;; equal to 0 or 1, =
i,j=1,...,m, and such that (A + A’)i = a, where i = (1 s 1)

Lemma I. 1. [3] Let A be a matrix of order n x k, let #(A) = M(K). Then
V{0 € #"} Ppy is a probability measure equivalent to the measure Py on (Q, ),
such that V{u e #"} the random variable u'Y is normally distributed with Ezp(u'Y) =
= u'A0 and Dpy(u'Y) = u'Ku; in particular Epg(Y) = A0 Dyy(Y) = K (the co-
variance matrix of Y).

Theorem L. 1. [7] The Hilbert space L*(B(H#), Py) is isomorphic to the following
RKHS of functions defined on H(K):

H(G) = {fy : fu(Kv) = (U, exp (V'Y — WKV } 2y s YER" Ue LX(B(1)) .
The reproducing kernel of H(G) is G(u,u;) = exp (WK u,), u,u, e K(K). The

space H(G) can be expressed as

H(G) = ( ): f(u) = Z € Q.. ®g,u >[ll(K)]"® , UE H( ),

n=0

g2, ®...0®g,e[HK]®,

I/l = Zon! [Prioro(g ® ... ® g,)

HEOPre < 00} .
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Theorem 1.2. [7] The Hilbert space L*(4(#), P), k € H(K) is spanned by the
system of random variables

dpP
4 = exp (v — kY KY — (e}, — |
{dpk p [( ) ~(m [IH(K) |

)], ue H(K)} .
Further L*(B(#), P,) ~ H(G,), where H(G,) is a RKHS with the kernel G(u, u,) =

=exp<u — k,u; — k>uu<»~ u,u e H(K)-

H(GO = {/ ) S u) = Z g ®...0¢g, (“ - k) Jmaore » YE H(K) >
ue H(K),

Hf“fl(Gk) = 2011! ” P“(K\”f (gl ®..® gn);

2 ,
HEOT® < w} .
n=

(The symbol Pyne means the projection to the space [H(K)]"®.

1. ESTIMATION OF POLYNOMIALS

Let us consider a model (Y, A6, K), assuming that we observe the random vector Y,
N, (A0, K) distributed. The design matrix A is known, it is of order n x k, R(A) =
< k = n; the vector parameter 0 € © = #*. Let .#(A) = .#(K).

Definition 11.1. A functional {: © — A" is said to be unbiasedly estimable (u.e.)
at 0, if there exists a statistic [ = U(Y)(B(A }-measurable) such that V{0 e ©} .
CEag{U(Y)) = f(0), Epg,{(U(Y) — f(0,))?} < oo. We denote the class of unbiased
estimators of the functional f by ’//,,u. Tlxe minimum variance unbiased estimator
(MVUE) at 8, is a statistic f = U(Y) such that

fe ‘7}/'450 & V'Y / € ///00} EA()U{ /(00)) } = A()n{(f - f(oo))z} .

Lemma ILY. [S] Let %, be the class of all estimators U, having the property:
V{0 € ©} Epg(Uy) = 0. Then the statistic U(Y) is a MVUE of the functional f at 0,
iff Y{Ug € U,} covae(U(Y), Uy) = 0.

Note IT. 1. It can be shown that every polynomial

m

f0) = ¥ a 01 0% ... 0

can be expressed in the form of a sum of homogeneous polynomials and hence
in the form

m

f0) =5 PP ®...p”, 0%, pPest i=1,...m, s=1,...,i, 0eA*.
=

225



Due to Lemma I1.1. it is obvious that we can consider functionals f(6) of the form
f(0) = <Py ® ... ® p,. 0"°) only, where p;e #*, i = 1,...,m, 0 € #*. The symbol
P, ® P, ® ... ® p,, is the Kronecker product (cf. [6]) of vectors of order k x 1,
and (p; @ ... ® P, 0"®) means the scalar product in the space (#*)"®;

m

<Pl ® ® Pnn 0'"®> = Hpio .
i=1

Lemma I1.2. [7] A functional f(0) is u.e. at 0 iff f € H(G).
Theorem IL1. A functional f(0) = {p; ® ... ® P,, 0"®> is u.e. at 0 iff
Vii=1,2.....m}pic (A, ic. p, ® ... ® pue [MA)]"®.

Proof. Let us suppose V{i = 1,...,m} p, € #(A’). Then A'(A")” p; = p; and
for f(60) we have

f(0) = <A,(A,)A P®...® A’(A’)‘ P 0m® S =
= <[K(A')7]m® (Pl ®...® Pm) , (Ao)m®>[H(K)]m® )

Consequently, due to Lemma I1.2 and Theorem I.1. f is u.e.

Conversely, let f be an u.e. functional. Then according to Lemma II.2 and Theo-
rem L1, 3{u; ® ... ® u, € (£")"®} such that

V{Oe gzk} /(0) = <Km®(”1 ®...Qu,), (AO)"'®>[H<K)]'"® =
=(Au, ®...Q Au,, 0"%) = (p; ® ... p,, 0"°)
and finally p; ® ... ® p,, € [.#(A")]"®. The proof is complete.

An analogous result is given for uncorrelated observations in [4].

Lemma I1.3. [7] A functional f is u.e. at 0, iff f€ H(Gpy,). If the functional f
is u.e. at O then it is u.e. at every 0 € %,

Note 11.2. It follows from Lemma II.3. that there exists a class # € H(G,,) for
f(0) = Py ® ... ® p,, 0"®) an u.e. functional, such that
F = {9() 1g(u) = (K"™(A); p, @ ... ® (A), P um®>[H(K)]'"® , ueH(K),
(A e(s') i =1,....m, g(A0) = f(A0) V{0 e #*}} .

(&1')‘ is the class of g-inverses of the matrix A’.

Theorem 112, Let f(0) = {(p; ® ... ® p,,, 0"®) be u.e. under the model (Y, A0, K).
Then J,(0) = h,(Pi[(A); ] Y, p5[(A); ] Y. ... p,[(A), ] Y is an unabiased esti-
mator of f(0), where h,, is a random variable from Note L.1.

.
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Proof. We have
f(0) = Py ® ... ® Py, 0> = ((A)] P1 ® ... ® (A),, P,y (AO)"®) =

m

=[]<K(A"); pi AD)ux) -
i=1

It can be shown that the random variable h,(Pi[(A) ] Y, ... pu[(A)n] Y corres-
ponds to g = K(A)] p, © K(A); p, © ... © K(A'),, p,, under the isometric
isomorphism between exp © H(K) and LZ(J(X (cf. Note 1.1); and

dPy,

V{0 € O} Epl(h,(pi[(A)7] Y, ..o pn[(A), 1Y) = <h,m > = f(0)-
dPO L2(B(H))

The last identity is obvious if we take into account the above mentioned isomorphism.
The proof is complete.

Note IL3. It is shown in [7] that the variance of an unbiased estimator 7,(0)
of f(+) at @, is

DAOo(fg) = Hg”fl(c,wo) - fz(oo) >
where g € # (cf. Note 11.2) and

m

1 2 m n— n-—
. ”g”é(GAOO) :.Z(J <11> U“ <P[H(K)]"'®{K ®(A )1 Pl ®..® (A )m Pm} >

(A0,)" 0 4y om0 [k e -

The symbol Py x,me means a projection to the space [H(K)]"®. It can be shown
that if g, ® ... ® g, € [H(K)]™® then

l:,H(K) O(gl O ® gm - Zgax ® ® ga ’

where the summation runs over all permutations o of the set {1, ..., m}. The symbol
<PH(K)'"®{KM®(A()1_ P®...OQ (A’)n_x Pu}> (Ao)('"Ai)®>|{(K)<'"-*)®

means the vector

Z<Pal ® ® Po‘ - 0(" _’}®> (K(A )tt_,,.- +1 Pa’ m=i +|) ® ® (K(A )Un P‘7m) °

m' o

Theorem 11.3. Letf(ﬂ) = <p, ® ... ® P, O"®) be u.e. under the model (Y, A9, K).
Then J(0) = h(Pi[(A)mao) Yo o Pl (A ] Y) is @ MVUE of f(0) in the class
of all unbiased estimators corresponding to the class F (cf. Note 11.2, Theorem 11.2),
where h,, is the random variable from Note 1.1 and (A')y«, denotes the minimum
K-norm (seminorm) g-inverse of the matrix A’ (cf. [6]).
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Proof. Duc to Theorem I1.2, f,(0) = h,(Pi[(A) ] Y, ..., p[(A), ] Y) is an
unbiased estimator of f(0). The variance of f,(9) at 0, is

DAoo(fy(o)) = “g”PZNGAoo) - fz(()o) » where “g”fz”GAao)
is the norm of the functional g € # from Note I1.2 and Note II.3. Further we have

. m 2. Il S e
Dualo) = 5, (7] it} T b @@ (A

=0

2

- fl(ao) =

(AOO)‘”' - U®>H(K)('" -DE

IH(O'®

m\?* . 1 PPN -
<1‘ > 1’” Z 7] <PG; ® ® Prfm".’ 0(() )®/ K(A )gn)'—|4| Pavyx-i+) ®
1 o IM!

m m 2 .
= il
i=1 \ 1

n

il

. @ K(A), P, e =

X 1 _ . -
K‘® Z 7, (A/)"'VH'AI‘#»X ® (A, T~ i+2 ® ® (A/)Um <P01 ® @ Pﬂ'm—i 4

a M

s

0% (. @ .. ® Pa,,,))

K 1'®

m 2 \“1 . l B ﬁ
<r.“) it K (A © e ® (A (W), ® o © ()] <
1 i m!

Om~i+1

I
112

Py ® e @ P 0" "D Py, @@ P, ||

To minimize the variance it is sufficient to minimize every member of this sum.
Let us consider the j-th member. We need to choose the g-inverse from (y/’)‘ SO
that the K/®-norm (seminorm) of this j-th member be minimal. It can be shown

that the matrix
1 - e o e
L[ © o © W) (A, @ (4]

is a g-inverse of the matrix ((A’)’®’, ..., (A')®’). To get the minimal K/®-norm
(seminorm) we have to choose

{LAYe) - (A)Y2) T f s
g-inverse. The minimum norm (seminorm) solution is independent of various choices

of minimum norm (seminorm) g-inverses. One choice of such a g-inverse is l/m!.
ALA) a0 V8 - [(A) o} ®}- If we utilize the last result in the expression for h,,
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we obtain the MVUE at 0, of the form h,(pi[(A)muc] Ye - - Pul(A)mac] Y):
This is valid V{0, € O}, so this unbiased estimator has the uniformly minimum
variance. The proof is complete.

Let us now consider a functional f(8) = (p; ® ... ® p,,, 0™®) such that 3{i,] .
. Pi, & A(A"), so that the functional is not u.e. For this kind of functionals we can
prove the following theorem.

Theorem IL4. Let f(0) = {p, @ ... @ P, 0"®> be not u.e. under the model
(Y, K0. K). Then [(0) = h,,(Pi[(A) ] u)mac] Yo oo Pul(A)i 0y mic ] ¥) is the statistic
which minimizes both the maximal bias, max{'EA,,(f'(ﬂ) —~ f(0)): o] = 1} and
the variance. (A'). 1) mac) is @ minimum K-norm (seminorm), I-least squares g-inverse
of the matrix A’ (Cf. [6]) The minimization of the variance is in the class of statistics
of the form h,, (cf. Note 1.1) corresponding to functionals from the class

gif = {g ;g(u) = <K,"®(A’); P.,/t(A’) P ®..0 (A,)'; Pdt(A') Pus um®>[m,s(>]v”® s
ue HK), (A); e(=2)",i=1,..,m}.

Proof. In virtue of the isomorphism between L*(Z(#)) and exp © H(K) the
following identity holds:

HAn , AN , o dp
%m@ﬂmmmunmwmuwmdvb/%ﬁ> -
\ dP0 LA(AH))

= <Km@[(A/):(I),m(K)]m@ PI ® ® Pm: (Ao)m@>““()m® =
= <[A,(AI):(1).m(K)]m® pi @ ® P/m 0m®>.

It is easy to verify that [A'(A") ) mu]"® is a projection operator on [./Z(A")]"°.
It follows that

5P [Eno(haPi LA} Vooovs PN mac ] ¥) = S10)] =
0l =1

= Sup )<P[.//(A')]"'®(P1 ®...® Pm) - P ®...® P 0m®>| =

e =1

= min i(gl ®‘*-®gm“ Pl ®"'®Pm’0m®}|‘
219..QgmeM(A)"®
Due to the last equalities it is clear that our choice of the statistic fulfils the condition
concerning the bias. The proof of the minimality of the variance is similar to that
in Theorem II.3. The proof is complete.

Example. Let us consider the following experiment. Let y,, y,, y; be the measured
data of the dependence y = 0,x + 0, at the points X, x,, Xx; and let y,, Vs, Ve
be the measured data of the dependence y = 0;x? + 0,x + 05 at the same points
Xy, X5, X3. We assume the covariance matrix of the vector Y = (Y, ..., Yq), D(Y) =
= ¢?I. The aim of the experiment is to verify the hypothesis that there exists a point
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Xo such that 0,x, + 0, = 03x5 + 0,x, + 05 = 0. The measurement was made
in the interval {a, b) $ x,. If the hypothesis is valid then the resultantf(O) of these
polynomials is zero. The procedure for testing the hypothesis can be established
on the statistic f(0) from Theorem II.3. In our case the design matrix is

A=]x, 10 0 0]; p;=p)=p,=(,0,...,0)
x, 10 0 0 ps =p; =ps =(0,1,0,...,0)
x310 0 0 p5=(0,..,01) p;=(0,0,0,1,0)
0 0x} x| ps = (0,0,1,0,0);
0 0x3x, 1
10 0x3 x;1

the resultant is

f(0) =10, 0, 0 | =0705 + 030, — 0,0,0, ;
10 0, 0,
:‘03 04 05

hy(uy, vy, us) = ugtiyuy — uy cov (uy, us) — uy cov (uy, uz) — uz cov (uy, uy)
(cf. Note L. 1 (ii)) and finally, the estimator is

SN

/(0) = pCAY . p,CAY . p,CA’Y — c2(p,CA'Y . p,Cp, + p,CA'Y . p,Cp, +
+ PLCAY . p|Cp,) + p,CA'Y . piCA'Y . p,CA'Y — o2(p,CA'Y . psCp, +
+ pLCAY . p,Cp, + p,CAY . p,Cps) — p,CAY . p,CA'Y . p,CAY +
+ oX(PLCAY . pyCpy + PLCAY . p,Cpy + poCAY . piChy),

where
_ 3 -
C=|Yx Yx 0 0 0 ot

i=1 i=1

3

Y x; 3 0 0 0

i=1
3 3 3

0 0 Yoxi Y x? Y x}
i=1 i=1 i=1
3 3 3

0 0 Yoxi Y xi Y x
i=1 i=1 i=1
3 3

0 0 Yxi Yx, 3

L i=1 i=1 A

The value of D(f(0)) can help us to get a criterion for rejecting or accepting the
null hypothesis. (The distribution function of the statistic f(0) is rather complicated
and is the matter of further study.)
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Souhrn

ODHADY POLYNOMOV V REGRESNOM MODELI

JuLlA VOLAUFOVA

Nech (Y, ;. A, 0,1, K, ) je vieobecny regresny model, kde R(A,,) < k< n a
R(K,,) < n. Uvazujme polyném f(0) nezndmého vektorového parametra 6 e 2*
tvaru f(0) = <{p; ® ... ® P, 0"®). V prici je pre nevychylene odhadnutelny
funkciondl f(0) ukdzany najlepsi nevychyleny odhad.

Author’s address: RNDr. Jilia Volaufovd, Ustav merania a meracej techniky SAV, Dubravska
cesta, 842 19 Bratislava.

231



		webmaster@dml.cz
	2020-07-02T04:30:06+0200
	CZ
	DML-CZ attests to the accuracy and integrity of this document




