Aplikace matematiky

Jindfich Spal
Fundamentals of a mathematical theory of fuzzy sets
Aplikace matematiky, Vol. 27 (1982), No. 5, 326-340

Persistent URL: http://dml.cz/dmlcz/103980

Terms of use:

© Institute of Mathematics AS CR, 1982

Institute of Mathematics of the Czech Academy of Sciences provides access to digitized documents
strictly for personal use. Each copy of any part of this document must contain these Terms of use.

This document has been digitized, optimized for electronic delivery and
stamped with digital signature within the project DML-CZ: The Czech Digital
Mathematics Library http://dml.cz



http://dml.cz/dmlcz/103980
http://dml.cz
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FUNDAMENTALS OF A MATHEMATICAL THEORY OF FUZZY SETS

JINDRICH SPAL

(Received February 20, 1980)

A system of definitions and theorems, including informational entropy, is intro-
duced in order to obtain a more adequate insight into the problems and nature of the
fuzzy sets.

Key words: Fuzzy sets, Fuzzy relations, Informational entropy, Random
variable.

1. INTRODUCTION

The fuzzy sets, introduced by Zadeh [1] in 1965, are penetrating into various fields
of application [2] Several versions of their mathematical theory have been given by
Zadeh, as well as by other authors [3, 4, 5]. The formation of an integrated theory
of fuzzy sets meets considerable difficulties, which have their reason mainly in the
following facts:

1. The mutual relation between the random variable and the fuzzy set is not clear-
cut in many cases. For example, Goguen [6] defines the fuzzy sct as a mapping from
a system of subsets of a fundamental (basic) set Z to a defined interval Q of real
numbers, thus indicating the “degree of membership” of an element z € Z in regard
to the fuzzy set F:

(1) F:Z-Q.

This does not comport exactly with the real meaning of the fuzzy set and is often
the cause of various misunderstandings. The situation was mentioned by the author
in a former paper [7]. There exists a formal similatity between these two mathema-
tical objects, both starting from a function defined over all elements of the fundamen-
tal (basic) set Z. In the case of the random variable it is the probabilistic distribution
or the probabilistic density. For the fuzzy set it is Zadeh’s membership function.
But at the same time there is a capital difference. The random variable assigns a real
value of probability (or of another quantity expressing the probabilistic measure)
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from the space of the probabilistic measure Mp to any subset of a set system (field
of events) defined on the basic set Z, thus producing the mapping:

) P:Z > M,.

On the contrary, the fuzzy set F attributes to any value m from the criterial interval Q
a subset S of the basic set Z, thus representing a mapping from the interval Q to
a set system S, S € Z:

(3) . F: Q> &s.

Thus the fuzzy set is in a certain sense (not quite exactly) an inverse notion in regard
to the random variable. It is interesting to note that inverse mappings do not generally
exist in either case.

2. The values of the membership function are usually reduced to the interval
<0; 1> of real numbers, without taking full account of all consequences of such
a reduction. This often leads to misunderstandings and misinterpretations in the
application of fuzzy sets. Moreover, such a reduction need not be always meaningful
or purposeful from the practical point of view. That is why the further exposé
assumes for the generating function over the basic set Z admissible values from any
arbitrary predefined interval of real numbers. This real function f(z) (z € Z) with an
arbitrary interval of values is called the criterial function, in contradistinction to
the membership function of Zadeh, the values of which are strictly limited to the
interval (0; 1). In addition to this purely formal side, there is a conceptual difference
between the criterial function and the membership function, too. The values of the
criterial function are supposed to express numerically the degree of the property,
forming the basis of the process of classification connected with the “verbal™ defini-
tion of the fuzzy set. The values of the membership function indicate the consequences
of the process of classification, as realized by the system of subsets on the basic set.
Thus the criterial function formulates the presumptions, the membership function
indicates the consequences of the process of classification, underlying the definition
of the fuzzy set.

3. The importance of the level value of the criterial function or of the membership
function is often underestimated.

The system of definitions and theorems, as formulated furthcr, is aimed at putting
right the mentioned inconsequences. It is concentrated on conceptual and methodo-
logical aspects of the problem, not claiming to form an exhaustive integrated mathe-
matical theory.

2. BASIC DEFINITIONS

The non-empty closed basic set Z of real numbers z € Z may be supposed to be
obtained by a bijectional isomorphic mapping from a fundamental set B of objects
of arbitrary nature.
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Definition 1. The criterial function f(z) is a real function of bounded variation
defined for all elements z € Z with values from a given interval of real numbers

“) 0 = {Gmin; G -
For any level value m € Q there exists a set of real numbers
) M(m) = {4: q = m}
and another set of real numbers
©) Fi(m) = {q: g < m},
() M(m) G ¥(m) = @ M(m) ~ M(m) = 0.

Definition 2. 4 realization R(m) at the level m is the set

(8) R(m) = {zeZ; f(z) =2 m}.
Definition 3. A complementary realization E(m) at the level m is the set:
) R(m) ={zeZ; f(z) < m}.
Evidently:
(10) Vvme Q R(m)u R(m)=2Z.

The conditions (5), (6) define on Q two systems of subsets:
(11) Fr = {M(m); Vme Q},
(12) Sy = (M{m); Yme Q} .

Il

Similarly, the conditions (8), (9) define on Z two systems of non-empty or empty
subsets:

(13) Fr = {R(m); Yme Q},
(14) Fr = [R(m); Vme Q} .

It

Thus there exists a mapping between the systems &,, and ¥, as well as between
the systems &5 and &g, mediated through the values of the level parameter m € Q.

Definition 4. A fuzzy set F is the mapping from the system &, to the system
S, induced by the criterial function f(z):
(15) F: &y > i

Definition 5. A complementary fuzzy set F is the mapping from the system &y
to the system ¥ induced by the critical function f(z):

(16) \ F: %y Sx.
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Remark. Accordingly, a fuzzy set is not a set in the sense of the classical set theory.
It is a quintuple (Z, Q, M, R,f), where Z is the basic set, Q is an interval of real
values, M is an element of the system of subsets M < Q, R is an element of the system
of subsets R = Z, f is a function defined for all elements of Z, mapping any me M
onto some R(m) = Z.

The procedure, which was taken advantage of in Definition 4, consisted in trans-
ferring to the whole system of subsets F,,,, a property valid for all realizations R(m)
at any value m e Q. This principle can be generalized by the following definition:

Definition 6. Any property, which is valid for all realizations R(m) (or for all
complementary realizations ﬁ(m), respectively) for all me Q, is considered to be
the respective property of the fuzzy set F (of the complementary fuzzy set F,
respectively) itself.

Let us define special cases of fuzzy sets:

Definition 7. The fuzzy set, the realizations R(m) of which are empty sets for all
me Q, is called the empty fuzzy set E.

Definition 8. The complementary fuzzy set, the complementary realizations
R(m) of which are empty sets for all me Q, is called the empty complementary
fuzzy set E..

Theorem 1. The fuzzy set, defined by the criterial function of the empty com-
plementary fuzzy set E,, consists of realizations, equal to the basic set Z for all
m e Q (universal fuzzy set U). The complementary fuzzy set, defined by the criterial
Sfunction of the empty fuzzy set E, consists of complementary realizations, equal
to the basic set Z for all me Q (uniuersal complementary fuzzy set U,).

The proof results directly from the preceding definitions.

Definition 9. A fuzzy set is called definite on the level my, if for all m = m,
all realizations R(m), and consequently all complementary realizations R(m),
too, are equal:

(17) Vm = my: R(m) = R(my) = R,
R(m) = R(my) = R, .
Definition 10. A complementary fuzzy set is called definite on the level my, if for

all m < mq all complementary realizations R(m), and consequently all realiza-
tions R(m), too, are equal:

(18) Vm < my: R(m) = R(m,) = R, ,
R(m) = R(mo) = R, .
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Definition 11. 4 fuzzy set (complementary fuzzy set) is called completely definite,
if for all m € Q all realizations, and consequently all complementary realizations,
too, are equal:

(19) Vm, e Q
Vm,e Q: R(m,) = R(m,) = R,,
R(m,) = R(m,) = R, .
3. OPERATIONS ON FUZZY SETS AND FUZZY RELATIONS

3.1. The set algebra of fuzzy sets defined on the same basic set

Two fuzzy sets are supposed to be defined on the same basic set Z, namely a fuzzy
set F with the criterial function f(z) and a fuzzy set G with the criterial function g(z).

Theorem 2. The criterial function u(z) of the union of fuzzy sets

(20) U=FuG
) :
(21) u(z) = Max (f(2), 9(2)) .
Theorem 3. The criterial function v(z) of the intersection of fuzzy sets
(22) ‘ . V=FngG
is
(23) v(z) = Min (f(2), g(2)) .
Theorem 4. The criterial function 17(2) of the union of complementary fuzzy sets
(24) U=FuG
is
(25) i(z) = Min (/). o(2)).

Theorem 5. The criterial function ©(z) of the intersection of complementary
fuzzy sets

(26) V=FnG
is

(27) n i(z) = Max (f(2), 9(2)) -
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Proof of Theorems 2 to 5:
a) The meaning of the unions and intersections results from Definition 6.

b) The following, mutually disjoint, non-empty or empty subsets are defined on Z
by means of the functions f(z), g(z) for all m e Q:

(28) Ry(m) = {ry: f(r) = m, g(r)) <m}, rieZ
(29) Ro(m) = {ra: f(r) < m, g(r2) 2 m}, r,eZ
(30) Rylm) = {ry: f(rs) 2 m, g(rs) 2 m}, rsez
(31) Ry(m) = {ry: f(rs) < m, g(ry) <m}, ryeZ

These subsets form a complete system:
(32) Ry(m) U Ry(m) U Ry(m) U Ry(m) = Z

and evidently

(33) f(r) > g(ry), f(r2) < g(ra).
Further,

(34) Ry(m) = R,(m) L Ry(m)

(33) Re(m) = Ra(m) L Ry(m)

(36) " Re(m) = Ry(m) U Ry(m)

(37) Re{m) = R,(m) U Ry(m)

and thus

(38) U(m) = Ry(m) U Ry(m) U Ry(m)
(39) U(m) = Ry(m) U R(m) U Ry(m)
(40) C O V(m) = Ry(m)

(41) V(m) = Ry(m)

The relations (21), (23), (25), (27) result from (38), (39), (40), (41) as sufficient and
necessary.
(End of the proof) .

In the preceding considerations, the set operations on fuzzy sets and complementary
fuzzy sets have been expressed in terms of set relations on realizations and com-
plementary realizations, which are sets in the sense of the classical set theory. Thus,
the axiomatic theory of the classical set theory remains valid for the fuzzy sets and
complementary fuzzy sets, as defined by the above system of definitions.
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3.2. Operations in the space of values of criterial furctiors

Various operations may be defined in the space of real values of the criterial func-
tions. A new criterial function h(z) is derived in this way from the original criterial

functions (operands) f1(z), f2(z), ... :
(42) h(z) = Op (f1(2). f2(2), ...).

Such operations are generally accompanied with changes of the variational span
of the criterial functions and may lead to exceeding the limits of the predefined inter-
val of the values @ = {Gumin> dmaxy- It depends on the concrete problem which the
fuzzy set is to serve for, if and how the limits of the interval are to be adapted when
applying such operations.

Definition 12. Operations in the space of real values of the criterial functions,
mapping the operands f,(z), f2(z), ... with a common interval of values Q =
= {Gpmin> Gmaxy ONt0 the same interval, are called invariant operations.

3.2.1. Examples of unary operations. The general formula of such operations is

(43) h(z) = Op (f(2)) -

Let us introduce two examles:

a) Linear transformation
(44) h(z) = A.f(z) + B,

A, B being real values. A special case is the reduction of the critical function to the
unit interval <0; 1>, applicable in transforming a general criterial function into the
respective Zadeh’s membership function:

(45) h(z) = 1)~ o
9imax — dmin

b) Non-linear invariant operation

Let us formulate the following problem:

For qumin > 0, 4.« > O the coefficients A, B are to be determined in such a way as
to make the operation

(46) h(z) = (4.f(z) + B)?

invariant. The conditions of invariance

(47) (A N qmax + B)Z = qmax ’
" (A «Imin T B)z = qmin
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lead to the equation:

) B B?
(48) q~+<2.;—A2).q+2—2=0

which should have the roots ¢min> @ma- 1his yields
(49) A= (Qmin +  max + 2 . (qmin . qmax).}ﬂl/z)ﬁl/z s
B = (qxnin M qmux)l/z . A M

3.2.2. Examples of binary operations. The binary operations used in defining the
unions and intersections of fuzzy sets and complementary fuzzy sets

(50) h(z) = Max (£,(2). /2(2)) »
(51) h(z) = Min (f,(z). f,(2))
may serve as an example.

Examples of binary invariant operations:

Generalized multiplication:
(52) hm(:) = fl(:) @ fZ(Z) =

= (qmax - (Im;n)_z . (f](:) - (Jmin) . (f2(z) - qmin) + 9min + ’
Generalized addition:
(53) h(z) = f1(z) @ f>(z) =

= (qmax - qmin) . (jl(:) + /2(2) - 2. qmin) - fl(z) QfZ(Z) .

In these operations the value g, is the null element and the value

(54) e = (qmux - qmin)2 + G min

represents the unit.

3.3. Fuzzy relations

3.3.1. Remarks on relations. The starting point in defining a relation is the Carte-
sian product of sets.

Definition 13. 4 Cartesian product of the sets Z{, Z,, ..., Z,,
(55) K=2Z,x2,%x..x2,,

is an ordered progression of these sets (components).

A Cartesian product, all the sets Z,, Z,, ..., Z, of which are mutually different,
determines a vector space. Several components on the same common basic set, i.e.
Z,=Z, = Z,= ..., establish a multicriterial evaluation of this basic set.
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Definition 14. A subset of a Cartesian product, containing non-empty or empty
subsets of the basic sets of all components in the given order, is called a relation o
on this Cartesian product:

(56) 0=S8, %8, x...x8S,
Sl S ZI’ S2 = ZZ* AR Su S Zn'

The most remarkable type of relations are functions. Here the components are
divided into two groups:

1. The independent variables, for which the respective subsets are arbitrarily
defined.

2. The dependent variables, the subsets of which are unambiguously established
by the choice of the independent variables.

In real systems, functions serve as a means of description of events. The independent
variables determine the conditions of the implementation of the event, while the de-
pendent variables describe the resulting effect.

Often further auxiliary variables are introduced, serving the aims of evaluation
(classification) of the events.

Some or all components can be measurable. An additive measure is attributed to
the elements of these components. Its value for a union of disjoint subsets (parts)
is equal to the sum of the measures of these parts.

Sometimes a subset is completely represented by the value of its measure. In this
case the individuality of the elements gets lost and subsets of the same value of the
measure are freely interchangeable. The respective variable can be substituted by
intervals of real numbers, the subsets being represented by segments of the interval,
which corresponds to the whole basic set.

A random variable can be given as an example of such a measurable functional
relation. Here the space (field of events) is represented by an ensemble of measurable
independent components. The additive probabilistic measure is established in such
a way as to give the unit value of probability to the whole space, which corresponds
to the Cartesian product of the basic sets of the independent variables.

3.3.2. Vector fuzzy sets and multicriterial fuzzy sets. A vector fuzzy set consists
of n components, each of them being defined by an individual criterial function.
In the case of a monocriterial evaluation any of these criterial functions has its own
basic set. In a multicriterial evaluation of a basic set some or even all criterial func-
tions are applied to this common basic set.

Moreover, a vector fuzzy set has an interval of real numbers Q, common for all
components, on which the values of the critical functions are represented.

For any value m € Q the basic set Z, is divided by the criterial function f(z,) into
the realization R,(m) and the complementary realization R,(m) in the same manner
as in the case of one-dimensional fuzzy sets (Chap. 2).
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Thus the space, in which a vector fuzzy set is established, is represented by the
Cartesian product

(57) K=QxZ, xZy%..x2Z,

where some, or even all of the basic sets Zy, Z,, ..., Z, can be identical (if multi-
criterial components occur).
A relation is formed on this Cartesian product by the ensemble of realizations

(58) o(m) = M(m) x Ry(m) x Ry(m) x ... x R,(m)
and another by the ensemble of complementary realizations
(59) o(m) = M(m) x Ry(m) x Ry(m) x ... x R(m).

By the procedure of generalization for all m € Q, in the same way as in (11), (12),
(13), (14), we get set systems:

(60) FLrts Lri> LR2s ooor LR »

(61) Lt rts Lr2s s LR »

defining vector fuzzy sets as ensembles of ordinary (one-dimensional) fuzzy sets:
(62) ¢ = (L= Lnt) X (Pt > Fry) X (Fyp = Fra) X oo X (Lyr = Fr,)

and vector complementary fuzzy sets as ensembles of ordinary (one-dimensional)
complementary fuzzy sets:

(63) ¢=(Fm—In) X (I~ Lr1) X (P> Fr2) X oo X (g > L) s

where the identities (¥ = ), (¥ 5 = S5 are introduced only in order to obtain
formal completeness as to the number of the components.

The fuzzy sets (complementary fuzzy sets) of the components are in either case
interconnected through the common real interval Q. The formulae (62), (63) may be
considered as a kind of “generalized relations”, in which the respective components
of the vector fuzzy sets (of the vector complementary fuzzy sets, resp.) are represented
by the “‘partial” fuzzy sets (complementary fuzzy sets) of the components.

Remark. The following important fact is worth mentioning. While the definition
of the random variable is based on the existence of a measure on the basic set (on
the field of events), the definition of the fuzzy set does not make any use of the notion
of measurability. The existence of a measure is not necessary on the sets participating
in the specification of a fuzzy set (realizations, basic sets).

3.3.3. Binary relations. Let us pay some attention to binary relations, which are

the simplest case of relations. Moreover, relations of higher orders can be decomposed
into an ensemble of binary relations.
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A binary relation is defined by the indication of two criteria) functions f,(z,),
/2(z,) with a common interval of values Q. Their basic sets Z;, Z, can be different
(vector fuzzy sets) or identical (bicriterial fuzzy sets).

Two functions can be defined by means of these binary relations:

a) The relation ¢,,, for which the component derived from fy(z;) is the independent
variable and that derived from f,(z,) is the dependent variable.

b) The relation g,, with interchanged components, where f,(z,) represents the
independent variable, f; (zl) is the dependent variable.

The spans (intervals of values) of the criterial functions have an important role in
the valuation of the functional mappings:

(64) AM; = My — My, = Max f(z); — Min f(z;),
Z; € Zi .

The non-empty realization of the independent variable

(65) R,(m) = {z,: z, € Zy, fi(z:) = m}
is mapped onto a non-empty realization R,(m), if
(66) me(4M, n AM,).
For
(67) me(AM, n AM,)

the image R,(m) is an empty set.
The interval of

(68) me (AM, n AM,)

is not affected by the mapping ¢;,.
The situation is quite similar for complementaly realizations.

Remark. The symbol ... indicates the “outside” of the respective interval.

Definition 15. The mappings ¢;;, 0,; are inverse to each other, if
(69) Vme Q: 0,/(0i,(R(m))) = Rym),
2i(2,i(Ry(m))) = R,(m).
Theorem 6. Two mappings ¢, 0;i» established by the criterial funcnon\ £z,
/,(z;), are inverse to each other, if and only if
(70) AM; = AM;.
Proof. 1. For any m e AM;, m € 4M there exist non-empty realizations R/(m),

Rj(m), making both the mappings ¢i,> ;i Possible.
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2. For any me AM;, m ¢ AM the realization R;(m) is non-empty, the realization
Rj(m) is empty. Thus there exists a mapping ¢;,, but theinverse mapping ¢;; does not
exist, the definitory set of this mapping being empty.

3. Similarly, for any m ¢ AM;, m € AM ; there exists a mapping g;;, but the inverse
mapping ¢;; does not exist.

4. For m ¢ AM;, m ¢ AM ; neither of the mappings ¢;;, 0;; exists.

(End of the proof) .

Let us define three fuzzy sets:

F; with a criterial function fi(z;) and with a span 4M,,
F, with a criterial function fi(z;) and with a span 4M, ,
F, with a criterial function fi(z,) and with a span 4M, .

There exist non-empty realizations:
Rm) forany medM,,
R(m) forany medM;,
R,(m) forany meAdM,.

Definition 16. The mapping

(71) Ol = Qi ° Qji

is called the composition of 9;;, 0 . if

(72) Vim e AM, : o¥(m) : Ri(m) = Ry(m).

Theorem 7. A composition (71) exists, if and only if
(73) AM, € AM;.

Proof. According to (73) there exist non-empty realizations R(m), R (m) for any
me AM;. But if there exists me AM,, m¢ AM, and consequently, if (73) is not
fulfilled, the realization R;(m) is empty for this m and therefore the subsequent
mapping
(74) 05 : Rj(m) = Ry(m)
is not defined in this case.

(End of the proot).

4. INFORMATIVENESS OF FUZZY SETS
The main field of application of the fuzzy sets are processes of classification,

namely in connection with decision-making. The informational entropyisa suitable
means of evaluation of their informative effect.
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Definition 17. The informational entropy of a complete system of disjoint subsets
S (k =1,...,n) on a basic set Z is

(75) E =3 plgp.
k=1

where p, are measures of the respective subsets S, such that
(76) 2p=1,

(77) US,=Z.

As a rule binary logarithms are used in expressing the informational entropy.

In the classical information theory (Shannon) the measure p is interpreted in terms
of probability of the respective event, described by the subset S,.

This kind of interpretation is not applicable to fuzzy sets, because no such pro-
bability (except the “subjective probability”, which consists in a quite arbitrary
selection of the respective parameters) can be derived from a single step of the process
of classification.

But it is possible to proceed in the following manner:

a) If a measure p exists “a priori” on the basic set Z, it can be used in defining the
parameters p,:

(78) D = HL 5
Uz

where p, is the measure of the basic set Z,
;. is the measure of the event k.

b) If no measure is defined on the basic set Z, an auxiliary measure can be introduced
for any event k:

(79) e = wy . hy,

where w, is an arbitrarily chosen weight coefficient,
h, is the power of the subset S,. Then

ow by
(50) L LS
Y owi . by,
K=1
In monocriterial classification the basic set Z is divided at the level m into a realiza-

tion R(m) and a complementary realization R(m), so that the informational entropy
of this partitioning at the level m is

(81) e(m) = pgr(m) g pr(m) + pr(m)lg pr(m) .
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In multicriterial classification with m criteria the number of subsets, which are
formed on the basic set, is

(82) N=2"

and
(83) e(m) =k§1pk(m) Ig pi(m) .

Of course some of the subsets may be empty, thus giving a zero contribution to
the entropy. Nevertheless the informational effect may be considerably raised in
multicriterial classification.

Definition 18. The informational entropy of realizations and complementary
realizations at the level m is given by the formula (83), where p, are measures
or auxiliary measures of the segments induced on the basic set Z by the criterial
function (in monocriterial case) or by the ensemble of criterial functions (in
multicriterial case).

Definition 19. The informational entropy of the fuzzy set is the weighted average
of the informational entropies of the realizations at all levels m of the interval Q.
The weight v(m) is supposed to be selected in such a way as to give

(84) J " o) dm = 1.

9min

The formula of the informational entropy of the fuzzy set is then:

(85) E = quaxv(m) e(m)dm .

Imin
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Souhrn
ZAKLADY MATEMATICKE TEORIE NEOSTRYCH MNOZIN
JINDRICH SPAL

Podstatou neostrych mnozin je zobrazeni z intervalu hodnot kriteridlni funkce
na systém podmnozin zdkladni mnoziny. Uvddi se systém definic a vét, pfimé&fené
vyjadfujici tato hlediska. Pouzitd kriteridlni funkce s libovolnym intervalem hodnot
pii tom ¢iselné vyjadiuje skute¢nou objektivni vlastnost, kterd je podkladem pfi defi-
novdni neostré mnoziny.

Vénuje se pozornost vztahu mezi neostrou mnozinou a ndhodnou proménnou.

Zavddi se pojem informacni entropie neostré mnoziny, ktery slouZi na vyjadfeni
jeji informacni ucinnosti.

Author’s address: Prof. Ing. Jindrich Spal, CSc., VST, katedra techn. kybernetiky, Svermova 9,
041 20 Kosice.
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