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UNCONDITIONAL STABILITY OF DIFFERENCE FORMULAS

ToMAS ROUBICEK

(Received August 27, 1980)

1. INTRODUCTION

Consider the initial-value problem

(1) YO _ 4y, 1> o0,
dt

where A is alinear operator in a complex Banach space X with a domain D, < X.
We shall deal with the case when the problem (1) is a partial differential equation.
Let us consider the numerical solution of this equation by the current finite difference
method. Let a sequence of matrices 4, be given, where A, represent the discretization
of the original operator A, obtained e.g. by transcribing the problem into the differ-
ence form. The order of the matrix A4, is equal to the number of meshes of the net,
say m(n). Then A4, :C"™ — C™™, where C is the field of complex numbers. The
numerical integration is based on a k-step formula (k = 1) in the form

(2 po(At.A)u; = p(At . A)u;_y + ... + plAr.A) u;y,

At > 0, where the vectors u belong to C™™ and py, ..., p, are polynomials with
no common roots. Setting v; = (u;, ..., u;_4+,)" (here and throughout the paper,
the superscript T means transposition, i.e., v; is a column vector) and denoting by
C(n, At)the transition matrix of order k . m(n), C(n, At) = [C; ;], where i, j = 1,...,k
and C; ; are square matrices

(po(At. A,))" ' .p(At.4,) for i=1,
C;; = {I (unit matrix) for i=j+1,
0 (zero matrix) otherwise,

we can rewrite the formula (2) in the form v; = C(n, At) v;_;.
Definition. The formula (2) will be called stable for given n, At, if the spectrum
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of the transition matrix is inside the unit circle:
o(C(n, At)) = {4; 2] < 1} (o(+) denotes the spectrum).

Thus, given a sequence A,, the stability of the formula (2) in general depends
on n and Atr. If stability of the formula is required, then often At is bounded from
above with increasing n. Then we specak about. the so-called stability condition.
As a rule, this condition is rather restrictive, which impedes the practicability of such
formulas. If partial differential equations are involved, it is usually of special import-
ance to have Af not bounded from above. Such formulas without the stability condi-
tion are called unconditionally stable.

This paper deals with unconditional stability of difference formulas. The main
results, Theorem 5.1, is deduced from a number of general assumptions, whether
on the initial-value problem (1), the sequence A, or the formula (2). The character
of these assumptions is rather natural, which is of importance for the applications.

2. ASSUMPTIONS ON THE OPERATOR A

We introduce two conditions concerning the operator A.
a) (solvability of the equation Ay = f, fe X):

(3) The opzrator A~ exists and is compact.

Remark. Later on we shall adopt the assumption (7) concerning the sequence 4,
which will imply that the operator A~ ! is a uniform limit of continuous finite dimen-
sional, and hence compact opzrators, so that 4~ ! itself must be compact. This is
the main reason for introducing the assumption (3). By a finite dimensional operator
we mean such an operator whose image is of finite dimension. The term degenerate
operator is sometimes uscd, tco.

b) (stability of the initial-value problem (1)):

Let an initial value y, € D, be given. If there is a strongly differentiable function
y:(0, + o) > D, suchthatdy(r)/dt = Ay(t)and lim y(t) = y, uniformly, then

=0+

(4) there exists a constant K < + oo such that [[y(r)] < K for ¢ > 0,
where “ . H stands for the norm in the Banach space X.
Theorem 2.1. Let the conditions (3) and (4) be fulfiled. Then
o(A) = {A; Re L £ 0} .

Proof. By the assumption (3), the operator A has a compact resolvent at the point
0 and hence it has a compact resolvent at each point not belonging to its spectrum.
An operator with a compact resolvent obviously has a purely point spectrum (see
[4]. p. 210).
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Assume that A€ o(A). Since the spectrum of A is a point spectrum, there exists
¥o # 0 such that Ay, = Ay,. Evidently y,e D, and the function y(r) = ey,
satisfies all the assumptions from the condition (4). Consequently, by this condition
there exists a finite K such that ||[y(1)|| = ¢**|yo| < K. However, this is possible
only if Re 2 £ 0. Q.E.D.

Remark. By (3), the operator 4 has a compact resolvent and hence it is either
unbounded (provided the space X is not finite dimensional) or finite dimensional.
In the latter case the space X has a finite dimension as well (see [4], p. 210). The former
situation occurs e.g. for partial differential equations, the latter corresponds to
a system of ordinary lincar differential equations. In this last case, the situation is
essentially simple: the sequence A, can be chosen constant, 4, = A, and we may
skip the considerations of the next section.

3. ASSUMPTIONS ON THE SEQUENCE OF DISCRETIZATIONS 4,

In order to be able to study the convergence of the sequence of matrices A,, we
have to embed these operators in a natural way into the space X (see [1], p. 172).
Until now the abstract Banach space has been sufficient, however, now it is indispens-
able to deal with this space in more detail. Let us point out that we have in mind
the case when the problem (1) is a partial differential equation, which can be solved
numerically by the finite difference method.

Let the equation (1) be given on a certain domain Q of the Euclidean space and
let us have a net of m(n) meshes Q, = {x1,...., X}, 2, = @ (the bar denotes
closure). Functions from X are defined on @ as well. The generalization to vector-
-valued functions on £ in the case of a system of partial differential equations on the
domain Q is straightforward and we will leave it to the reader.

Let us introduce the following assumptions concerning the function space X.

Let x € Q and f € X. Then

(5) the relation fi—>f(x) defines a continuous functional on X.
Further, given a finite set of points {x;} diffcrent from the point x , {x;} = @, then

(6) there exists f € X such that f vanishes on {x;} and f(x) = 1.

The assumption (5) enables us to define, for each net £,, a continuous mapping
¥, :X - C"™ by the formula [ (f(x}), ..., f(xh))- In virtue of continuity
of this mapping, the kernel Ker ¥, is closed in X. Since Ker ¥, has a finite factor-
-dimension in the space X, there is a (continuous) projector onto this subspace, and
even infinitely many of such projectors provided Ker ¥, is a proper subspace of the
space X. Let us fix such a projector and denote it by P,: X — Ker ¥,

In concrete problems we shall consider a ““nice” projector, i.¢. one with a possibly
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small norm. In particular, if X is a Hilbert space, then we evidently choose an ortho-
projector (its norm being one). While our considerations do not depend on this norm,
in concrete problems an unsuitable choice of the sequence P, can affect the conver-
gence of the operators in the condition (7). In what follows, denote X, = Ker P,
and let , : X, » C™™ be the restriction of the mapping ¥, to the subspace X,.

Theorem 3.1. The mapping Y, is an isomorphism, i.e.
lpﬂ :X’l ; C,n(n) .

Proof. Let y,f = 0 for some feX, = Ker P,. Then ¥,f =0 as well and fe
€ Ker ¥, = Im P,. Since X = Im P, ® Ker P,, we have f = 0 and the mapping
¥, is injective.

In virtue of (6) the space X contains sufficiently many functions for ¥, to be sur-
jective. Consequently, for an arbitrary vector @ € C™™ there exists f € X such that
¥,/ = ¢.Setf, = (I — P,)f. Then we have fo € X, and ¥, /o = ¥Y,.fo = ¥,(I - P,).
.f =Y./ = ¢, and since ¢ was arbitrary, ¥, is surjective. Q.E.D.

Thus the fulfilment of the assumptions (5) and (6) guarantees the existence of the
mapping ¥, ', which in a natural way embeds C™™ into X. The situation actually
corresponds to the interpolation of a function whose values at the nodes are prescri-
bed in advance. Now we can formulate the assumption concerning the sequence
of matrices 4,:

For sufficiently large n let the matrices 4, be regular and let the sequence of opera-
tors Y, A, ¥, : X - X, uniformly converge to A7 %, i.e.

(7) lim ||y, 4, ', — A7 =0

([I+|| here stands for the operator norm in the Banach algebra of bounded operators
in X).
Further, let us define the extended spectrum of the operator A4 as usual:

o) = o(A) if A is bounded,
T o(A) u {0} if A is unbounded .

Theorem 3.2. Let the assumptions (3), (5), (6) and (7) be fulfilled. Given a neigh-
borhood X of o,(A) (with respect to the topology of the closed complex plane, i.e.
a one-point compactification of the complex plane), then there is such n, that
o(4,) = X for n = ny.

Proof. The assumption (3) implies that A is closed, and since the function l/z
is holomorphic in a neighborhood of the spectrum o(4), we obtain using the operator
calculus (cf. [4], p. 103) that ¢(4*) = 1/o,(A). Hence 1/X is a neighborhood of
o(471).

It is well known that the spectrum is an upper semicontinuous function of the
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operator with respect to the uniform operator topology (see [4], p. 167), hence
by the assumption (7) we have a(y, ‘A4, '¥,) = 1/ for n sufficiently large.

Now we shall prove that (4, ') = o(y, "4, '¥,). Let Aeo(4,"). The matrix
A;! has only the point spectrum, and hence there exists a nonzero u € C™™ g,ch
that A, 'u = Au. From the identities ¥, 'Ay "W 'u = ¥, "Ay u = 27 'y we
conclude that v, 'u is an eigenvector of the operator ¥, 'd,'¥, corresponding
to the eigenvalue 4, hence 2 e a(y, ‘4, '¥,).

Consequently, o(4, ') = 1/X and o(4,) = 1/o(4, ') < Z. Q.E.D.

Remark. The assumption (5) in fact represents a certain smoothness requirement
for the right hand side of the nonhomogeneous initial-value problem dy/dt — Ay = f.
Most frequently, it is the space of functions integrable on £ or a space of Sobolev
distribution on Q which are used as the space X. However, in such spaces it is mean-
ingless to define the mapping ¥,. Appropriate function spaces are e.g. the space
of uniformly continuous bounded functions on Q or a Sobolev space with a suffi-
ciently strong topology.

4. ASSUMPTIONS ON THE INTEGRATION FORMULA

First we shall prove a theorem on the mapping of the spectrum of the matrix
At . A, by the integration formula (2). Put Az = 1 for simplicity.

Theorem 4.1. Let (po(A,))” ! exists. Let A€ o(A,) and let A, satisfy
(8) 2po(Z) =241 p(A) + -+ pl(A).
Then ) € o(C(n, 1)).

On the other hand, if 1, € 6(C(n, 1)), then there exists A € o(A,) such that the identity
(8) holds.

Proof. Denote Z(1,) = 2. po(A4,) — 447" . py(4,) — ... = pi(4,). The inclusion
2. € 0(C{n, 1)) holds if and only if there is a nonzero vector v with C(n, 1) v = 4.
Calculating the indicated product we find that v has the formv = (2™ 'u, ..., Ju, u)",
where Z(2.) u = 0. Hence 2, € 6(C(n, 1)) if and only if the matrix Z(4,) is not regular.

Let us express the matrix 4, in the form PJP ™!, where the matrix J is in the Jordan
normal form, so that its diagonal is formed exactly by the eigenvalues of the matrix
A,. Then

Z() = P[A . po(J) = 2271 py(J) = ... — p(J)] P71

Since J is in the lower triangular form, the matrix in the brackets is in the lower
triangular (but generally not Jordan) form as well, and its diagonal consists exactly

of the numbers A% . po(4) — 4~ . py(2) — ... — p(2), where 1 are the eigenvalues
of the matrix A4,. Consequently, the matrix Z(4,) is not regular if and only if there
is A€ o(4,) satisfying the relation (8). Q.E.D.
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Hence the formula (2) maps each point of the spectrum o(4,) generally onto k
points of the spectrum o(C(n, 1)). Define a k-valued complex function, notation
F : C - 2% by the relation F(z) = {z,, ..., z,}, where z; are exactly k roots of the
equation z§.po(z) = i7" . py(z) + ... + pi(z). Theorem 4.1 then asserts that
o(C(n, 1)) = F(o(4,)), more generally

(9) o(C(n, A1) = F(o(At . A,)) .

Further, let us define a nonnegative function F,, = max{[z1 s e ]zkl}. F, is
a continuous function except for those points z for which py(z) = 0 and possibly
except the point oo (provided some of the polynomials py, ..., p, have a higher
degree than p,). F,, is unbounded in neighborhoods of these points, and at the points
we sct F,, = +o0. Now we introduce an important property of the formula (2).
It will be obvious that this property depends only on the polynomials py, ..., p;-

4

Definition. The formula (2) is called A-acceptable, if

F,(z)
F,(o0)

1 for Rez =0,
1.

A TIA

In literature, the A-acceptability has been defined only for one-step formulas
(k = ]) and, moreover, consistency of the function F with the function e at the point
0 is required. Here we only deal stability leaving aside the problem of consistency,
even if we do tacitly assume the consistency of the formula (2). The consistency
implies that at the point 0 one of the values of the function F equals one, i.e. F,,(0) = 1
If, moreover, the formula is A-acceptable, then F,(0) = 1.

It is evident from Theorem 3.2 that due to the generality of the above introduced
assumptions the spectrum of the matrix A, may lie in the right-hand halfplane as
well. Then the A-acceptability does not guarantee the stability of the formula (2)
even if the definition of stability of the formula (2) admitted eigenvalues of the tran-
sition matrix on the boundary of the unit circle. This leads us to the definition of
a new notion. ’

Definition. The formula (2) is called A,-acceptable, if

F.(z) <1 for Rez<0, z+0,
F,(0) <1.

If the formula (2) is A,-acceptable, then it is A-acceptable as well. Further, it is
evident that the roots of the polynomial p, of an 4-acceptable formula lie in the open
right-hand halfplane.

5. PROOF OF UNCONDITIONAL STABILITY

The next theorem represents the result at which all the foregoing considerations
have been directed.
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Theorem 5.1. Let ¢ > 0. Let the following conditions be fulfilled: The formula
(2) is A,-acceptable, the operator A satisfies (3), the initial-value problem is stable
in the sense of the condition (4), the function space X satisfies the conditions (5)
and (6) and the sequence of matrices A, approximates the operator A in the sense
of the condition (7).

Then there is ny such that for n 2 ny and At = ¢ the the formula (2) is stable.

Proof. Given d such that 0 < § < J/‘[A"I‘, then evidently {4; IAI > 0} is a neigh-
borhood of o,(A). The set S = {4; Re 1 < 0 and ]/1[ 2 ¢d} U {0} is compact with
respect to the topology of the closed complex plane. Since the formula (2) is A,-
acceptable, F,, is continuous on S and satisfies F,, < 1 on S. The compactness of S
implies existence of such d, that F,, <, < 1 on S. Denote S; = {4; F,(1) < 1}.
In virtue of continuity of the function F,, at all points at which F,, is finite we obtain
that S; is an open neighborhood of the set S.

Consider the set X = {1; ]}, - él > /(&% + €26%)} with & > 0. X is the exterior
of a circle with its center at £ and with the points +ied lying on its boundary. In
virtue of Theorem 2.1 and of the choice of J, the set X is a neighborhood of ae(aA).

We shall prove that F,, < 1 on 2 for ¢ sufficiently large. Let us put 2 = 2, u X2,
withZ; =2Xn{Z;ReA<0o0ordl= o}, 2, =2n{i;Rel> 0}. We have F,, < 1
on X since the formula (2) is A,-acceptable and 0 ¢ X. As for X, for every neighbor-
hood of the set S (naturally in the topology of the closed complex plane) we can choose
¢ so large that X', belongs to this neighborhood. In particular, there is such & < + o0
that 2, < §,, and hence F,, < 1 on 2,.

Making use of Theorem 3.2 we conclude that there is n, such that o(ed,) = X
for n 2 no. However, o(Af. 4,) = Ate™"' . o(¢A4,) = Ate™' . 2. Further, taking into
account the geometric shape of the set 2 and its location with respect to the point 0
we obtain for At 2 ¢ the inclusion Ate™ ' < X, that is, o(At . 4,) = 2. Thus F,, < 1
on a(At. A,), and the relation (9) together with the definition of the function F,,
complete the proof of the stability of the formula (2) Q.E.D.

6. EXAMPLES OF A4,-ACCEPTABLE FORMULAS

Example 1. As the first example let us consider the usual one-step formula, which
is frequently used. It is given by the polynomials

po(z)=1—0z, p(z)=1+(1-0)z.

It is easily seen that for ® > 4 this formula is A,-acceptable, for @ = 4 A-acceptable
but not A4,-acceptable, while for ©® < it is neither A4, - nor A-acceptable.
Example 2. Another example of one-step formula, in this case of higher order,
are the rational Padé approximations of the function e¢®. Let nonnegative integers p,
q stand for the degrees of the polynomials p, and p,, respectively. These polynomials

87



are given by the relations

Z=p (p+q—Jj)p —zy
po(2) j;,(erq)!j!(p—J)’( a

ﬂ:‘l (r+4q-J)q!
ne) =% (r+ q)'it (g — J)!

zl.

The formula is of the order p + ¢. These formulas have lately attracted considerable
attention. It is evident that for p < ¢ the formula cannot be A-acceptable. Further,
it is easily seen that for p = g the formula is A-acceptable but not A,-acceptable.
The A-acceptability for p = g + 1 and p = g + 2 is proved in [2], and the proof
easily yields that such formulas are even A,-acceptable. On the other hand, in [3]
it is proved that forp > g + 3and p £ g + 2 (mod 4) the formula is not 4-accept-
able (and, a fortiori, it is not 4,-acceptable). There are no results available concerning
p = q + 2(mod 4), however, it seems probable that in this case the formula is not
’A-acceptable, either.

Example 3. When applying the formula (2) we have to determine the vector u;
by solving a system of linear algebraic equations with the matrix pb(At . A,). For
partial differential equations solved by the finite difference method the matrices
A, usually are sparse, but the matrices pO(A.A,,) gradually loose this property
when the degree of the polynomial p, increases. This may be a drawback from the
numerical point of view. The increase of the degree of the polynomials py, ..., p;
.also complicates the evaluation of the right hand side of the system of equations.
The following two-step formula of the second order is very advantageous. It is given
by the polynomials

po(z2) =3 —z, piz) =2, poz) = —1%.

Another advantage of the formula consists in its A,-acceptability. In spite of the
simplicity of the given formula, the proof of its A,-acceptibility is relatively difficult,
since it is considerably complicated by the fact that the formula is not a one-step
formula.

The values of the function F are z, , = (2 & /(1 + 22))/(3 — 2z). Obviously
they are holomorphic functions of the argument z except for the points z = 3 (the
root of the polynomial py) and z = —% where z; = z,.

Consider the set M = {z; Re z < 0} \{z; z < —%}. On this domain there exist
univalent branches of the square root \/(1 + 2z). In the sequel, the symbol \/ will
stand for the branch of the square root with \/1 = 1. Let us distinguish the values
of the function F : z, = (2 + /(1 + 22))/(3 — 22), z, = (2 — /(1 + 22))/(3 — 22).
Our aim is to show that [zl| <1, |22| < 1 on the boundary of M except the point 0,
where z,(0) = 1. Since z,, z, are holomorphic in the domain M and continuous
on the boundary of M, by virtue of the Maximum Modulus Principle this will prove
the A,-acceptability of the formula in question.
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The boundary of M is the set {c0} U {z; = £ —4} U {z; Re z = 0}. For the point
o we have z,(c0) = z,(0) =0, and we easily find that |z,(z)] = |2,(z)] =

=1/{/(3—2z) £ % <1 for z £ —3%. The situation is a little more complicated
on the imaginary axis (Re z = 0), i.e. for z of the form z = iw with w real. Denote
a+bi=/(1+2iw), az1, b real (Thus a* + b> = /(1 + 4w?).) Getting rid
of the square root and comparing the real and imaginary parts we obtain the system
of equations a® — b*> = 1, ab = o for a, b. The solution satisfying the inequality
azlisa=./(3(1 + /(1 + 40?))) and we further have

24+ (1 +2i0))=02+a)P+b>=4+4a+a* + b* =
=4+ 4301 + J(1 + 40%) + (1 + 40?).

Moreover

|z (i0)]* = (4 + 4 JE(1 + V(1 + 40?) + V(1 + 402))/(9 + 40?)
and
|72(i0)]> = (4 — 4 (31 + J(I + 40?)) + (1 + 40?))/(9 + 40?)
Now we already use the standard argument to show that o = 0 fulfils the inequalities
0 < |z5(iw)|* < |zy(iw)|> < 1. This completes the proof of the A,-acceptability.

It is evident that this way of the discussion of the A,-acceptability complicates
very considerably with increasing k. Already for k = 3 it is impracticable while for
k > 4 it is in principle inexecutable since there is no analytical descrlptlon available
for the values of the function F.
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Souhrn
BEZPODMINECNA STABILITA DIFERENCNICH FORMULI
TomAS ROUBIGEK

Mgjme ddnu parcidlni diferencidlni rovnici evoluéniho typu a feSme ji piiblizné
metodou siti. Cldnek se zabyvd obecnymi pfedpoklady jak na plivodni rovnici,
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tak na jeji diskretizaci, za kterych je diferenéni schema bezpodmineéné stabilni, tj.
stabilni bez kriteria stability na asovy krok. Zavddi se novy pojem A,-akceptability
integraéni formule a v zdvéru €ldnku se uvddi nékolik ptikladd takovych formuli.
Dokdzané vysledky lze jednoduse aplikovat i na obycejné diferencidlni rovnice.
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