
Aplikace matematiky

Tomáš Roubíček
Unconditional stability of difference formulas

Aplikace matematiky, Vol. 28 (1983), No. 2, 81–90

Persistent URL: http://dml.cz/dmlcz/104008

Terms of use:
© Institute of Mathematics AS CR, 1983

Institute of Mathematics of the Czech Academy of Sciences provides access to digitized documents
strictly for personal use. Each copy of any part of this document must contain these Terms of use.

This document has been digitized, optimized for electronic delivery and
stamped with digital signature within the project DML-CZ: The Czech Digital
Mathematics Library http://dml.cz

http://dml.cz/dmlcz/104008
http://dml.cz


SVAZEK 28 (1983) APLI KACE M A T E M A T I KY ČÍSLO 2 

UNCONDITIONAL STABILITY OF DIFFERENCE FORMULAS 

TOMAS ROUBICEK 

(Received August 27, 1980) 

1. INTRODUCTION 

Consider the initial-value problem 

(1) ^=Ay(t), t>0, 
at 

where A is a linear operator in a complex Banach space X with a domain DA cz X. 
We shall deal with the case when the problem (l) is a partial differential equation. 
Let us consider the numerical solution of this equation by the current finite difference 
method. Let a sequence of matrices An be given, where An represent the discretization 
of the original operator A, obtained e.g. by transcribing the problem into the differ­
ence form. The order of the matrix An is equal to the number of meshes of the net, 
say m(n). Then An : Cm(n) -> Cm(n\ where C is the field of complex numbers. The 
numerical integration is based on a k-step formula (k ~ 1) in the form 

(2) p0(At. An) uj = px(At. An) uj_ t + . . . + pk(At. A„) Uj_k, 

At > 0, where the vectors u belong to Cm(n) and p0, ..., pk are polynomials with 
no common roots. Setting Vj = (uj,..., Uj_k+1)

r (here and throughout the paper, 
the superscript T means transposition, i.e., Vj is a column vector) and denoting by 
C(n, At) the transition matrix of order k . m(n), C(n, At) = [C, j], where i, j = 1,..., k 
and Ctj are square matrices 

((Po(At.An))-1.pj(At.An) for i = l , 
Ctj = <I (unit matrix) for i = j + 1 , 

10 (zero matrix) otherwise, 

we can rewrite the formula (2) in the form Vj = C(n, At) Vj_v 

Definition. The formula (2) will be called stable for given n, At, if the spectrum 
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of the transition matrix is inside the unit circle: 

a(C(n, At)) cz [X; |/l| < 1} (<x(*) denotes the spectrum). 

Thus, given a sequence An, the stability of the formula (2) in general depends 
on n and At. If stability of the formula is required, then often At is bounded from 
above with increasing n. Then we speak about the so-called stability condition. 
As a rule, this condition is rather restrictive, which impedes the practicability of such 
formulas. If partial differential equations are involved, it is usually of special import­
ance to have At not bounded from above. Such formulas without the stability condi­
tion are called unconditionally stable. 

This paper deals with unconditional stability of difference formulas. The main 
results, Theorem 5.1, is deduced from a number of general assumptions, whether 
on the initial-value problem (1), the sequence An or the formula (2). The character 
of these assumptions is rather natural, which is of importance for the applications. 

2. ASSUMPTIONS ON THE OPERATOR A 

We introduce two conditions concerning the operator A. 
a) (solvability of the equation Ay = f, f e X): 

(3) The operator A-1 exists and is compact. 

R e m a r k . Later on we shall adopt the assumption (7) concerning the sequence An, 
which will imply that the operator A-1 is a uniform limit of continuous finite dimen­
sional, and hence compact operators, so that A"1 itself must be compact. This is 
the main reason for introducing the assumption (3). By a finite dimensional operator 
we mean such an operator whose image is of finite dimension. The term degenerate 
operator is sometimes used, too. 

b) (stability of the initial-value problem (l)): 
Let an initial value y0 e DA be given. If there is a strongly differentiable function 

y:(0, -foe) -> DA such that dy(t)/dt = Ay(t) and lini y(t) = y0 uniformly, then 
t-»o + 

(4) there exists a constant K < + oc such that ||y(t)|| S K for't > 0, 
where || • || stands for the norm in the Banach space I . 

Theorem 2.1. Let the conditions (3) and (4) be fulfiled. Then 

o(A) c {A; Re X <> 0} . 

Proof. By the assumption (3), the operator A has a compact resolvent at the point 
0 and hence it has a compact resolvent at each point not belonging to its spectrum. 
An operator with a compact resolvent obviously has a purely point spectrum (see 
[4], p. 210). 
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Assume that X e <r(A). Since the spectrum of A is a point spectrum, there exists 
y0 4= 0 such that Ay0 = Xy0. Evidently y0 e DA and the function y(t) = eAt y0 

satisfies all the assumptions from the condition (4). Consequently, by this condition 
there exists a finite K such that ||y(f)|| — eRcA,f||.y0|| < K. However, this is possible 
only if Re k S 0. Q.E.D. 

R e m a r k . By (3), the operator A has a compact resolvent and hence it is either 
unbounded (provided the space X is not finite dimensional) or finite dimensional. 
In the latter case the space X has a finite dimension as well (see [4], p. 210). The former 
situation occurs e.g. for partial differential equations, the latter corresponds to 
a system of ordinary linear differential equations. In this last case, the situation is 
essentially simple: the sequence An can be chosen constant, An = A9 and we may 
skip the considerations of the next section. 

3. ASSUMPTIONS ON THE SEQUENCE OF DISCRETIZATIONS An 

In order to be able to study the convergence of the sequence of matrices An, we 
have to embed these operators in a natural way into the space X (see [ l ] , p. 172). 
Until now the abstract Banach space has been sufficient, however, now it is indispens­
able to deal with this space in more detail. Let us point out that we have in mind 
the case when the problem (l) is a partial differential equation, which can be solved 
numerically by the finite difference method. 

Let the equation (1) be given on a certain domain Q of the Euclidean space and 
let us have a net of m(n) meshes Qn = {xn

l9 . . , . , x^ ( n ) } , Qn cz Q (the bar denotes 
closure). Functions from X are defined on Q as well. The generalization to vector-
-valued functions on Q in the case of a system of partial differential equations on the 
domain Q is straightforward and we will leave it to the reader. 

Let us introduce the following assumptions concerning the function space X. 
Let x e Q and feX. Then 

(5) the relation/f->/(x) defines a continuous functional on X. 
Further, given a finite set of points (x J different from the point x , {xt} c= Q , then 

(6) there e x i s t s / e K such that /vanishes on {x j and / (x ) = 1 . 

The assumption (5) enables us to define, for each not Qn, a continuous mapping 
Wn:X~>Cm(n) by the formula f\-> (f(x\\ . . . , /(x^ ( n ))). In virtue of continuity 
of this mapping, the kernel Ker Wn is closed in X. Since Ker Wn has a finite factor-
-dimension in the space X, there is a (continuous) projector onto this subspace, and 
even infinitely many of such projectors provided Ker Wn is a proper subspace of the 
space X. Let us fix such a projector and denote it by Pn: X -> Ker Wn. 

In concrete problems we shall consider a "nice" projector, i.e. one with a possibly 
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small norm. In particular, if X is a Hilbert space, then we evidently choose an ortho-
projector (its norm being one). While our considerations do not depend on this norm, 
in concrete problems an unsuitable choice of the sequence Pn can affect the conver­
gence of the operators in the condition (7). In what follows, denote Xn = Ker P„ 
and let \j/n : Xn -> Cm(n) be the restriction of the mapping Wn to the subspace Xn. 

Theorem 3.1. The mapping \j/n is an isomorphism, i.e. 

^n:Xn^ Cm(">. 

Proof. Let ij/J = 0 for some feX„ = Ker Pn. Then WJ = 0 as well and fe 
e Ker Wn = lm Pn. Since X = Im Pn © Ker Pn, we have f = 0 and the mapping 
\jjn is injective. 

In virtue of (6) the space X contains sufficiently many functions for Wn to be sur-
jective. Consequently, for an arbitrary vector cp e Cm(w) there exists feX such that 
WJ = <p. Setfo = (I - Pn)f. Then we havef0 e Xn and i/fj0 = WJ0 = Wn(l - Pn). 
. f = WJ = cp, and since cp was arbitrary, i/>M is surjective. Q.E.D. 

Thus the fulfilment of the assumptions (5) and (6) guarantees the existence of the 
mapping i//"1, which in a natural way embeds Cm(n) into X. The situation actually 
corresponds to the interpolation of a function whose values at the nodes are prescri­
bed in advance. Now we can formulate the assumption concerning the sequence 
of matrices An: 

For sufficiently large n let the matrices An be regular and let the sequence of opera­
tors xj/^A^Wn : X -> Xn uniformly converge to A~1, i.e. 

(7) l i m l l ^ A ; 1 ^ - ^ 1 ! = 0 
n-*co 

(|| • || here stands for the operator norm in the Banach algebra of bounded operators 
i n l ) . 

Further, let us define the extended spectrum of the operator A as usual: 

'•w-{: (A) if A is bounded , 
(A )u{oo} if A is unbounded 

Theorem 3.2. Let the assumptions (3), (5), (6) and (7) be fulfilled. Given a neigh­
borhood I of cre(A) (with respect to the topology of the closed complex plane, i.e. 
a one-point compactification of the complex plane), then there is such n0 that 
cr(An) cz I for n ^ nQ. 

Proof. The assumption (3) implies that A is closed, and since the function l/z 
is holomorphic in a neighborhood of the spectrum o(A), we obtain using the operator 
calculus (cf. [4], p. 103) that c(A~x) = ljae(A). Hence ljl is a neighborhood of 
a{A->). 

It is well known that the spectrum is an upper semicontinuous function of the 



operator with respect to the uniform operator topology (see [4], p . 167), hence 
by the assumption (7) we have (?($~lA~lWn) <= \jl for n sufficiently large. 

Now we shall prove that o(A~x) <~ a(\j/~lA~1Wn). Let Xea(An
i). The matrix 

A"1 has only the point spectrum, and hence there exists a nonzero u e Cm{n) such 
that A~xu = Xu. From the identities ij/^A^W^^u = i/z^A^u = X\jj~x

u we 
conclude that ^/~xu is an eigenvector of the operator \l/~1An

1Wn corresponding 
to the eigenvalue X, hence X e a(^/~lA~1 lFn). 

Consequently, a(A~1) - -/£ and o(An) = lja(A~1) c I. Q.E.D. 

Remark . The assumption (5) in fact represents a certain smoothness requirement 
for the right hand side of the nonhomogeneous initial-value problem dyjdt — Ay = f. 
Most frequently, it is the space of functions integrable on Q or a space of Sobolev 
distribution on Q which are used as the space X. However, in such spaces it is mean­
ingless to define the mapping Wn. Appropriate function spaces are e.g. the space 
of uniformly continuous bounded functions on Q or a Sobolev space with a suffi­
ciently strong topology. 

4. ASSUMPTIONS ON THE INTEGRATION FORMULA 

First we shall prove a theorem on the mapping of the spectrum of the matrix 
At. An by the integration formula (2). Put At = 1 for simplicity. 

Theorem 4.1. Let (p0(An))
-1 exists. Let X e a(An) and let Xc satisfy 

(8) Xk . Po(X) = Xk~1 . Pl(X) + ... + Pk(X) . 

Then Xc e a(C(n, l)). 

On the other hand, if Xc e a(C(n, 1)), then there exists X e a(An)such that the identity 
(8) holds. 

Proof. Denote Z(XC) = Xk
c. p0(An) - A*"1 . px(An) - ... - pk(An). The inclusion 

Xc e a(C(n, l)) holds if and only if there is a nonzero vector v with C(n, 1) v = Xcv. 
Calculating the indicated product we find that v has the form v = (Xk

c~
 xu, ..., Xcu, u)T, 

where Z(XC) u = 0. Hence Xc e a(C(n, ))) if and only if the matrix Z(XC) is not regular. 
Let us express the matrix An in the form PJP" i

9 where the matrix J is in the Jordan 
normal form, so that its diagonal is formed exactly by the eigenvalues of the matrix 
An. Then 

Z(XC) = P[XC . p0(J) - X\~x . Pl(J) - . . . - pk(J)] P"1 . 

Since J is in the lower triangular form, the matrix in the brackets is in the lower 
triangular (but generally not Jordan) form as well, and its diagonal consists exactly 
of the numbers Xk . p0(X) — X1^'1 . p}(X) ~ . . . — pk(X), where X are the eigenvalues 
of the matrix An. Consequently, the matrix Z(XC) is not regular if and only if there 
is X e a(An) satisfying the relation (8). Q.E.D. 
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Hence the formula (2) maps each point of the spectrum o(An) generally onto k 
points of the spectrum o(C(n, 1)). Define a k-valued complex function, notation 
F : C -» 2c , by the relation F(z) = {z1? ..., zk}, where z{ are exactly k roots of the 
equation z\. p0(z) = z\"1 . px(z) + ... + pk(z). Theorem 4A then asserts that 
o(C(n, 1)) = F(o(An)), more generally 

(9) a(C(n, At)) = F(a(At. A,,)). 

Further, let us define a nonnegative function Fm = max {|zi|,...» Uk\}- Fm is 
a continuous function except for those points z for which p0(z) = 0 and possibly 
except the point oo (provided some of the polynomials Pl5..., pk have a higher 
degree than p0). Fm is unbounded in neighborhoods of these points, and at the points 
we set Fm = +oo. Now we introduce an important property of the formula (2). 
It will be obvious that this property depends only on the polynomials p0, ..., pk. 

Definition. The formula (2) is called A-acceptable, if 

Fm(z) ^1 for Re z ^ 0 , 
Fm(co) g 1 . 

In literature, the A-acceptability has been defined only for one-step formulas 
(k = 1) and, moreover, consistency of the function F with the function ez at the point 
0 is required. Here we only deal stability leaving aside the problem of consistency, 
even if we do tacitly assume the consistency of the formula (2). The consistency 
implies that at the point 0 one of the values of the function F equals one, i.e. Fm(0) ^ 1 
If, moreover, the formula is A-acceptable, then Fm(0) = 1. 

It is evident from Theorem 3.2 that due to the generality of the above introduced 
assumptions the spectrum of the matrix An may lie in the right-hand halfplane as 
well. Then the A-acceptability does not guarantee the stability of the formula (2) 
even if the definition of stability of the formula (2) admitted eigenvalues of the tran­
sition matrix on the boundary of the unit circle. This leads us to the definition of 
a new notion. 

Definition. The formula (2) is called An-accept able, if 

Fm(z) < 1 for R e z ^ O , z + 0 , 
Fjoo) < 1 . 

If the formula (2) is An-acceptable, then it is A-acceptable as well. Further, it is 
evident that the roots of the polynomial p0 of an A-acceptable formula lie in the open 
right-hand halfplane. 

5. PROOF OF UNCONDITIONAL STABILITY 

The next theorem represents the result at which all the foregoing considerations 
have been directed. 
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Theorem 5.1. Let s > 0. Let the following conditions be fulfilled: The formula 
(2) is An-acceptable, the operator A satisfies (3), the initial-value problem is stable 
in the sense of the condition (4), the function space X satisfies the conditions (5) 
and (6) and the sequence of matrices An approximates the operator A in the sense 
of the condition (7). 

Then there is n0 such that for n ^ n0 and At ^ s the the formula (2) is stable. 

Proof. Given S such that 0 < 3 < 1/||A-1||, then evidently {X; \X\ > 6} is a neigh­
borhood of (Je(A). The set S = {X; Re X ^ 0 and JAJ jj£ eS} u {oo} is compact with 
respect to the topology of the closed complex plane. Since the formula (2) is An-
acceptable, Fm is continuous on S and satisfies Fm < 1 on S. The compactness of S 
implies existence of such 5X that Fm :g d1 < 1 on S. Denote S\ = {X; Fm(X) < 1}. 
In virtue of continuity of the function Fm at all points at which Fm is finite we obtain 
that S! is an open neighborhood of the set S. 

Consider the set I = {X; \X - £\ > 7 (£ 2 + s252)} with t > 0. I is the exterior 
of a circle with its center at £ and with the points ±isS lying on its boundary. In 
virtue of Theorem 2.1 and of the choice of 3, the set I is a neighborhood of ae(sA). 

We shall prove that Fm < 1 on I for £ sufficiently large. Let us put I = It u I2 

with Ix = I n {X; Re X g 0 or X = oo}, I2 = I n {A; Re 2 > 0}. We have Fm < 1 
on 2^ since the formula (2) is A„-acceptable and 0 ^ I. As for I2, for every neighbor­
hood of the set S (naturally in the topology of the closed complex plane) we can choose 
£, so large that I2 belongs to this neighborhood. In particular, there is such £ < + oo 
that I2 cz S1? and hence Fm < 1 on I2. 

Making use of Theorem 3.2 we conclude that there is n0 such that o(sAn) c= I 
for n ^ n0. However, G-(At. An) = Ate - 1 . a(sAn) cz Ate"1 . 1 . Further, taking into 
account the geometric shape of the set I and its location with respect to the point 0 
we obtain for At ^ s the inclusion Ats'1! cz I , that is, o(At. An) cz I. Thus Fm < 1 
on or(At. An), and the relation (9) together with the definition of the function Fm 

complete the proof of the stability of the formula (2). Q.E.D. 

6. EXAMPLES OF ^-ACCEPTABLE FORMULAS 

Example 1. As the first example let us consider the usual one-step formula, which 
is frequently used. It is given by the polynomials 

p0(z) = 1 - Qz , Pl(z) = 1 + (1 -e)z. 

It is easily seen that for 0 > \ this formula is A„-acceptable, for 0 = \ A-acceptable 
but not A„-acceptable, while for 0 < \ it is neither An - nor A-acceptable. 

E x a m p l e 2. Another example of one-step formula, in this case of higher order, 
are the rational Pade approximations of the function ez. Let nonnegative integers p, 
q stand for the degrees of the polynomials p0 and px, respectively. These polynomials 
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are given by the relations 

*,(-)--1 (p + q-J)lpl (-zy, 
y> J=o(p + q)lj!(p-j)r ' 

P»( - ) - f {p + q-j)lql z>. 

The formula is of the order p + q. These formulas have lately attracted considerable 
attention. It is evident that for p < q the formula cannot be A-acceptable. Further, 
it is easily seen that for p = q the formula is A-acceptable but not A,racceptable. 
The A-acceptability for p = q + 1 and p = q + 2 is proved in [2], and the proof 
easily yields that such formulas are even A,racceptable. On the other hand, in [3] 
it is proved that for p = q + 3 and p + q + 2 (mod 4) the formula is not A-accept­
able (and, a fortiori, it is not An-acceptable). There are no results available concerning 
p = q + 2 (mod 4), however, it seems probable that in this case the formula is not 
A-acceptable, either. 

E x a m p l e 3. When applying the formula (2) we have to determine the vector Uj 
by solving a system of linear algebraic equations with the matrix p0(At. An). For 
partial differential equations solved by the finite difference method the matrices 
An usually are sparse, but the matrices p0(A . An) gradually loose this property 
when the degree of the polynomial p0 increases. This may be a drawback from the 
numerical point of view. The increase of the degree of the polynomials pl9 ..., pk 

.also complicates the evaluation of the right hand side of the system of equations. 
The following two-step formula of the second order is very advantageous. It is given 
by the polynomials 

Po(z) = i ~ z , px(z) = 2 , p2(z) = - i . 

Another advantage of the formula consists in its A„-acceptability. In spite of the 
simplicity of the given formula, the proof of its A,racceptibility is relatively difficult, 
since it is considerably complicated by the fact that the formula is not a one-step 
formula. 

The values of the function F are z1>2 = (2 + ^/(l + 2z))/(3 — 2z). Obviously 
they are holomorphic functions of the argument z except for the points z = •§ (the 
root of the polynomial p0) and z = — \ where zx = z2. 

Consider the set M = {z; Re z < 0} \ {z; z = — £}. On this domain there exist 
univalent branches of the square root <J(1 + 2z). In the sequel, the symbol ^/ will 
stand for the branch of the square root with y/l = 1. Let us distinguish the values 
of the function F : z1 = (2 + v

7(l + 2z))/(3 - 2z), z2 = (2 - , / ( l + 2z))/(3 - 2z). 
Our aim is to show that ^ l < 1, |z2 | < 1 on the boundary of M except the point 0, 
where z^O) = 1. Since z1? z2 are holomorphic in the domain M and continuous 
on the boundary of M, by virtue of the Maximum Modulus Principle this will prove 
the A„-acceptability of the formula in question. 



The boundary of Mis the set {00} u {2; z ^ — \} u {z; Re z = 0} . For the point 
00 we have z^oo) = z2(oo) = 0, and we easily find that |z1(z)| = |22(z)| = 
= 1/7(3 — 2z) ^ \ < 1 for z ^ —-J, The situation is a little more complicated 
on the imaginary axis (Re z = 0), i.e. for z of the form z = ico with co real. Denote 

a + b i = 7 ( * + 2ico)> fl = !» 6 r e a ] - ( T h u s ^2 + ^2 = \ / ( ! + 4c°2)-) Getting rid 
of the square root and comparing the real and imaginary parts we obtain the system 
of equations a2 — b2 = 1, ab = co for O, b. The solution satisfying the inequality 
a ^ 1 is a = -7(1(1 + 7 ( 1 + 4co2))) and we further have 

|2 ± 7 (1 + 2ico)|2 = (2 ± tf)2 + b2 = 4 ± 4O + O2 + b2 = 

= 4 ± 4 7(1(1 + 7 ( 1 + 4co2))) + 7 (1 + 4co2) . 

Moreover 

| z , ( » | 2 = (4 + 4 V ( i ( l + V ' ( l + 4co2))) + V(l + 4co2))/(9 + 4a;2) 

and 

|z2(io))|2 = (4 - 4 V(i(l + V(l + 4«2))) + V(l + 4«>2))/(9 + 4«2) 

Now we already use the standard argument to show that co #= 0 fulfils the inequalities 
0 < |z2(io>)|2 < [z^icO)]2 < 1. This completes the proof of the A„-acceptability. 

It is evident that this way of the discussion of the A;i-acceptability complicates 
very considerably with increasing k. Already for k = 3 it is impracticable while for 
/c > 4 it is in principle inexecutable since there is no analytical description available 
for the values of the function F. 
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S o u h r n 

BEZPODMÍNEČNÁ STABILITA DIFERENČNÍCH FORMULÍ 

TOMÁŠ ROUBÍČEK 

Mějme dánu parciální diferenciální rovnici evolučního typu a řešme ji přibližně 
metodou sítí. Článek se zabývá obecnými předpoklady jak na původní rovnici, 
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tak na její diskretizaci, za kterých je diferenční schéma bezpodmínečně stabilní, tj. 
stabilní bez kriteria stability na časový krok. Zavádí se nový pojem A„-akceptability 
integrační formule a v závěru článku se uvádí několik příkladů takových formulí. 
Dokázané výsledky lze jednoduše aplikovat i na obyčejné diferenciální rovnice. 
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