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SVAZEK 28 (1983) APLIKACE MATEMATIKY CisLo 3

SOLUTION OF SIGNORINI'S CONTACT PROBLEM
IN THE DEFORMATION THEORY OF PLASTICITY
BY SECANT MODULES METHOD

JinDRICH NECAS, IVAN HLAVACEK

(Received September 21, 1982)

A problem of unilateral contact between an elasto-plastic body and a rigid friction
less foundation will be solved within the range of the so called deformation theory
of plasticity [1], [5]. Thus the famous Signorini’s problem in linear elasticity [6]
is generalized to non-linear stress-strain relations. The weak solution is defined
on the basis of a variational inequality, which in turn is equivalent to the minimum
of the potential energy. Then the so-called secant modules (Kaganov) iterative
method is introduced, each step of which corresponds to a classical Signorini’s
problem in elastostatics. Thus a finite element analysis of the latter is available [7].

On an abstract level, we prove the convergence of the secant modules method
to the exact solution. Special effort is devoted to some cases when rigid admissible
displacements exist.

1. INTRODUCTION

Let us consider a bounded domain Q = R*® with a Lipschitz boundary 6Q and
assume that

0Q=T,0I, Vlgul,,

where I',, I',, I'y are open subsets of 0Q, I'y + 0 and the surface measure of I'y,
vanishes.

Let the elasto-plastic body, occupying the domain Q, be governed by the following
Hencky-Mises stress-strain relations

(1.1) 1y = (k = % u(y)) dyjen + 2 u(y) eij
where k is a (constant) bulk modulus,
Pu,v) = —3 9(u) H(v) + 2 e;(u) e;;(v),
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yu,u) L y(u) =y, Y(u)=divu,

) =3 (5 + 52

Ox;  0x;

and a repeated index implies summation over the range 1, 2, 3. Assumptions on the
function p will be presented in Section 3.

Finally, let the functions u® e [W"*(Q)]?, f e [L*(Q)]* and g e [ L*(I",)]? be given.
We are seeking a solution of the non-linear system

(12) = [k = $06) @] = 2 - [0 en)] = fi i = 1.2.3,

in Q, such that
(1.3) u=u’ on I,,

v =¢; on I,

where v denotes the unit outward normal to 0Q. We denote u, = uv;, T, = 7,;v,v},
(T,),- = T; — T,v;, where T; = 1;;%;, and assume that

(1.5) u, £0, T,£0, uT,=0onTyg.

The solution of the problem (1.2) till (1.5) leads to minimizing the following
functional of potential energy (cf. [1])

7(u) *
(1.6) Z(u) = %kf 9%(u) dx + %J‘ (J‘ u() dt) dx — jfiuidx ——J gu;ds
Q 2 0 o Ie
over the convex set
(1.7) K={ue[W"*Q)]|u=1uon I,u, <0 on I}.
The latter problem is equivalent to the solution of the variational inequality:

(18) ueK, f [(k — 3u()) 9(u) (v — u) + 2 4(3) ey (w) ey — u) —

2

~ o= a0 [ gfo—wpasz0 wek.
r.

Method of secant modules (or Ka¢anov method, see [1] — chapter 8 and 11-5)
consists in solving a sequence of the following variational inequalities:

(L9) u. ek, j Ll = 30060 30) 80 = ,00) +

+2 .U()’("n)) eij(un+1) eij(v - '-'n+1) — fi(v; — (“n+ 1).’)] dx —
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——J givi = (Upy1))ds 20, n=1,2,...
re

Under certain assumptions on the function u we shall prove convergence of the
method. We use an abstract approach, parallel to that of [1]. The problem is trans-
ferred to the solution of a sequence of variational inequalities with variable coeffi-
cients, in general.

2. ABSTRACT FORMULATION

Let a functional @ be given on a Hilbert space H. Assume that ¢ has the second
Gateaux differential D* &(u, h, k) and the mapping u — D?* ®(u, h, k) is continuous
on every line segment.

Assume further that

(2.1) D* &(u, h, h) = m|h|*, m = cost. > 0.

Let a bilinear form B(u; x, y) be given, symmetric in x, y and such that

(2.2) B(u; x, x) = ¢;|x|*. ¢, = const. > 0,

(23) |B(w; x, )| = eflx] v,

(2.4) B(u; u, v) = D &(u,v),

(2.5) 1B(x;y,y) — +B(x;x,x) - &(y) + &(x) 20 Vx,yeH.

Moreover, let K be a closed convex subset of H.

Theorem 2.1. Let the assumptions (2.1) till (2.5) be satisfied and let an element
@ € H be given.
Then the problem: find u € K such that

(2.7) Dd(u,v —u) 2 (p,v—u) YwvekK

has a unique solution.
Let u,e K, n = 1,2, ..., be such that

(2.8) Bty Uy, 0 — Upyq) = (@s0 — Uyyq) V0eK.
Then
limu, =u

holds in the space H.

Proof. The existence and uniqueness of a solution of the problem (2.7) is easy
to verify.
Let us introduce the notation
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(29) m,(v) = @(u,) — (¢, 0) + 1 B(u,; v, v) — % B(u,; u,, u,) .

By virtue of (2.5) we may write

(29’) T[n(un+1) = q)(un) - ((P’ un+1) + % B(un; Uyt un+1) -
- %‘B(ll”; Uy, U,) — (p("n+1) + ¢(un+1) z

g q)(llll+l) - ((P, un+1) Sl_—f l//(un-fl) .
We have defined
(2.10) Y(v) = &(v) — (¢, 0).
Using (2.8) we obtain

(211) 1 B(uy 15 tps1) — (0, t1,01) < 1 B(uys v,0) — (¢, 0) VvekK,

consequently,

(2]2) 7(,,(1/1") = I//(U" g 7[,,(“,,+1) .
From (2.9’) and (2.12) it follows that

(213) l1b(un) ; '/’(un+1) .

Assumption (2.1) yields the coerciveness of :
(2.14) W(v) = o;fv]* — ey VveH.
Therefore, using (2.13) and (2.14) we obtain
limy(u,) =c< — .
We have "“"”

(2.15) Crftpes = wa]? S Bys sy — iy — u,) =
= B(u,; u,, u,) + B(u, Uyyr, Upiy — 2u,) 3
on the other hand, we may write
(2.16) 29(u,) — 2 (s 1) = Buys y, u,) — B(Uys thysy, Uysq) +
+ 2 B(u,; ey — u,),

using (2.8). Therefore (2.16) and (2.15) yield that

29(u,) = 27ty 1 1) = Bluy; thyy 1) + By g1y hyry — 2u,) = ¢ [1t,44

Using (2.12), (2.13), (2.9") and the convergence of Y(u,), we obtain

(2.16°) _ lim |

Upr1 — un“ =0.

202

_—-u“ 2




Moreover, we have
(2.17) im|u, — u|? < D &(u,, u, — u) — D &(u, u, — u) =
= B(u,; u,, u, — u) — D ®(u, u, — u) < B(u,; u,, u, — u) + (o, u — u,),
by virtue of (2.7).
We also may write
(2.18)  B(uys uy u, — u) + (@, u — u,) = B(u,; u, — g, 4, — u) +
+ Buys iy, u, — u) + (@, u — u,) = B(u,s u, — Uyyq, u, — u) +
t Bty Uy gs thy — Uyyy) + (@, g — u,) +
t B(uy; thyy gy tyyy — u) + (@u — u,yyq) <
S B(uys Uy = Uy 1y thy — ) + By yiys thy = i) + (@, thyyy = 1)

according to (2.8).
Using (2.18), (2.17), the boundedness of u,, (2.3) and (2.16’), we obtain u, — u.
Q.E.D.
Moreover, let us consider the semi-coercive case, corresponding to the original
problem and I', = 0.
Let P H be a subspace of H such that dim P < o. Let H = P @ Q be the
orthogonal decomposition and assume that

o(v), D ®(v,h), D> P(v,h, k) and B(u;x,y)

are independent of an addition of pe P in all variables: for example, ®(v + p) =
= P(v)Vpe P, etc.

Assume that the only element pe P n K such that also —pe PnK is p = 0.
Let ¢ € H be such that

(2.19) (p,p) <0 VpePnK = {0}.

Assume that K is a closed convex cone with the vertex at the origin.

Lemma 2.1. Let the conditions (2.1), (2.2), (2.3) be fulfilled for elements h, x,
y € Q and let (2.4), (2.19) hold.
Then the functionals y(v) and

o(x) = 1 B(v; x, x) — (¢, x)
are coercive, weakly lower semi-continuous in K. Consequently, solutions of the
variational inequalities (2.7), (2.8) exist.
If e.g. i and u are two solutions af(2.7), thenti = u + p, wherepe P,u + peK,

(o, p) = 0. Each such u represents a solution of (2.7). A parallel assertion holds
for solutions of (2.8).
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Proof. To prove the coerciveness of V, it is sufficient to show that positive con-
stants cs, ¢g exist such that

(2.21) Y(v) = csfv]| — ¢ VoeEK.
The latter inequality is equivalent to the following
(2.22) lim infl’—[/(—v) =c5>0.

wize o]

Assume that (2.22) is false. Then there exist v, € K such that for n — oo

W) . g

7=
i

From (2.1) (for h € Q) and (2.4) we obtain

“v,,” — 00, lim

(2.23) D(v) = cg| o] = ¢,
where I1, stands for the projector of H onto Q and c¢g > 0. Consequently, we have
(2.29) Y(v) = cf,”HQv”2 — o — (@, v).

Setting v, = v,/|v,

’, we may write
Y(v,)
[

Therefore it must hold that

C ’
2o % (p,0).
v

n

2 cal] |

HHQU'I'” - 0.

We can assume that v, — v’ in H and therefore v’ € P n K, “u’ ! = 1. We thus obtain

lim %) 2 —(p,0)>0
v’l

in accordance with (2.19), which is a contradiction. Consequently, (2.21) is valid.
The rest of the existence proof is easy, since Vs is convex in virtue of the assumptions
on @.
Let u and @ be two solutions of (2.7). Then

Dy(u, i —u)z0, Dy(#,u—1u)z0,
m||Iyit — Igu|* < D &(i, i — u) — D S(u, it — u) 0.

Consequently, # — u € P. Let us denote #f — u = p. We have

D ®(u,p) — (p,p) 20, —Dd(u,p)+ (p,p)=0;

since D ®(u, p) = 0 by assumption, we are led to the conclusion that (o, p) = 0.
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It is easy to verify that u + p is a solution, provided u is a solution and pe P
fulfilsu + peK, (¢, p) = 0.
The analysis of the problem (2.8) could be carried out in a parallel way. Q.E.D.

Theorem 2.2. Let the assumptions of Lemma 2.1 be fulfilled. Moreover, let (2.5)
hold and for any h, ke H,

(2.25) w, > w = B(w,; h, k) - B(w; h, k) .
Let K be a closed convex cone with the vertex at the origin, let u, and u be as

in Theorem 2.1.
Then

Hyu, — I yu

and if lim u,_ — v, then v is a solution of (2.7); we have <c¢< .

k— o

u,

Proof. As previously, we deduce that positive constants cyq, ¢y; exist such that
(2.26) 1 B(v; w,w) — (o, w) 2 cw”wH — ¢y, YwekK
holds uniformly with respect to v and

(2.27) Y(w) = cw“w” — ¢y -

Hence Lemma 2.1 implies the existence of a sequence {u,}. There exists a constant
¢y, such that Hu,,“ =< ¢, Vn. Indeed, this is a consequence of (2.8), if we insert v = (
and use (2.2), (2.26).

Now the proof follows the same lines as the proof of Theorem 2.1 till (2.15),
where we obtain

(228) 4| Mou,sy — Myu,

2 é B(un; Uy, un) + B(U,,; Uyt 1> Uns1 — 2u,,) .

Consequently,
(2.28") Mg,y — Myu,

Next, we may write

- 0.

(2:29) Im|Mgu, — Myu

1> < D d(u,, u, — u) — D d(u,u, — u) =
= B(u,; u,, u, —u) — D D(u,u, — u) = D P(u, u,+1 — u,) +
Bty Uy g5 Uppyg — ) + Bty thyy gyt — Upsy) +
Bty = g1ty — ) = D By — 1) S
S DO(u, tyyy — uy) + B(Uy; Upsys thyg — ) +

+ B(un; Upt1, Uy — un+1) + B(un; Uy — Upypq, Uy — u) +
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+ ((P’ u - un*]) é D (p(u’ Uppr — un) + B(U"; Uy Uy — “n+1) +

+ B(uu; Uy, — Uy Uy — ll) -0 >

where we have used the boundedness of Hu,, and the convergence (2.28’).
Suppose now that a subsequence u, — v. Then we have for all we K

ni

B(u,, 13w — ) Z (0, w — u,),
consequently,
B(u,, —y;0,w —0) = (@, w — v) + &, (W),
where
W) > 0.

By the assumption (2.25) and using (2.28) we obtain

B(u, 30, w —v) = Blu,, + t, | — Up;0,w — ) =

ny
= B(u,, + Mgt — Iy, ;v,w —v) > B(o;o,w — v) =

=D d(v,w — ). Q.ED.

ny

3. APPLICATION TO AN ELASTO-PLASTIC BODY

We assume that the function p is continuously differentiable in [0, o) and satis-
fies the following conditions

(3.1) 0 < po = uly) < 3k,
du

(3.2) 0<a§,u(y)+2ya»—(y)§[u’< o0 .
Y

Then the inequalities (2.1) till (2.4) and (2.25) in the sense of Theorems 2.1 and 2.2
are fulfilled. For the details see [1] — chapter 8 and 11.5. Obviously, we put

B(v:w. u) = j [(k — 3 1) 5() 9(w) + 2 u(v)) ei(w) ex ()] dx

¢ =92 (see(l6)),

(0, v) :J‘fivi dx +J gv;ds,
I

o
P={pe[W" Q)] |e,p)=0ae}={p=a+bxx},

where a, b € R® are arbitrary constant vectors.
Let us recall a result from [1] — 11-5 (see also the references in [1]).
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Theorem 3.1. If du/dy < 0, then the condition (5.2) is fulfilled.

Proof. Setting

M(y) = J"/“(I) dt,

0

the condition (2.5) takes the following form
03 [ 66 60) — 3~ (M6 = MG dx = 0.

Consequently, (3.3) is satisfied if the function M(y) is concave. Q.E.D.

Remark 4.1. The above conclusion can be verified also in two-dimensional
problems of elastoplastic bodies.

4. SOME FURTHER SEMICOERCIVE CASES

In the present section we consider two-dimensional problems and the cases when
I', = 0 but on a part I'y of the boundary of the domain Q = R? the conditions of the
so called bilateral contact, i.e.

(4.0) u, =0, T,=0 on I,

are prescribed. The latter conditions hold for example on the axis of symmetry.
Then the space of virtual rigid displacements has the dimension one and we can
formulate uniquely solvable original and approximate contact problems. Besides,
we shall prove that the solutions of the approximate problems (2.8) converge to the
solution of the original problem (2.7).
First of all we study the cases when the whole problem can be solved in a sub-
space Q < H. We start again with an abstract analysis.

4.1. Solution of the Signorini problem in a subspace

Let P(__H be a subspace of a Hilbert space H, H = P @ ¢ the orthogonal
decomposition of H, dim P < co.

Assume that @(v), D @(v, h), D> ®(v, h, k) and B(u; x, y) are independent of an
addition of p e P in all variables.

Let an element ¢ € Q and a convex cone K with its vertex at the origin be given
such that

(4.1) PcK.



Lemma 4.1. Let the conditions (2.1), (2.2) (2.3) hold for h, x, y € Q and let (2.4)
be satisfied.
Then the functionals

Y(v) and o(x) = % B(v; x, x) — (@, x)

are coercive and weakly lower semicontinuous on Q.
There exists a unique solution e K n Q and #l,+1€ K n Q of the inequality

2.7) D &(i,v— )= (p,v— 1) YveKnQ
and
(2.8) B(tiy; s 150 = Bysq) = (@, 0 — dye1) YK Q,

respectively. Any solution of (2.7) and (2.8) can be written in the form
u=ﬁ+p and un+1=an+1+pa

where @t and 4,., are the solutions of (2.7°) and (2.8°), respectively, and p € P.

If @ and 4, are solutions of (2.7') and (2.8’), respectively, then u = @ + p and
U,r1 = Uyy1 + p, where pis any element of P, represent solutions of (2.7) and (2.8),
respectively.

Proof. From (2.1) it follows that D* yy = D? @ is positive definite on Q and there-
fore Y is coercive on Q. Y is also strictly convex and differentiable, K n Q convex
and closed. Hence a unique solution of (2.7°) exists.

Similar conclusions are valid for the functional w(x), as follows from (2.2).

Since ¢ € Q, we have

(4.2) y(v) = y(v + p) VpeP.
The assumption (4.1) implies
(4.3) KnQ=1I,K),

where IT,, denotes the projector of H onto Q. In fact, let v € K. Then
Ow=v—Ipw=v+ (-Iw)ekK,
consequently ITo(K) = K n Q. The converse inclusion is obvious:
K0 Q= I,(K n 0) < M(K).
Let u be a solution of (2.7). Using (4.2), we may write
Y(ITgv) = Y(ITgv + ITpv) = Y(v) YoeH.
Since ITyu € ITH(K) = K n Q and we have
W(ITg) = W) S 90) = W(IT) VoeK,

ITyu = diis a solution of (2.7),u = & + p, pe P.
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In a parallel way we may prove that ITyu,+1 = @4, is a solution of (2.8"), hence
Upp1 = ﬁn+1 + p,PeP'
Let 7 be a solution of (2.7°). Then for u = & + p, p € P we have

(4.49) Y(u) = Y(i) < Y(z) VzeKn Q.
Let ve K. Then Iy e ITy(K) = K n Q and
(4.5) \ Y(ITy0) = Y(v).

Combining (4.4) and (4.5) we obtain

Y(u) < y(v) YoekK.

By the assumption (4.1) pe P < K, consequently u = @ + pe K and u is a solution
of (2.7).
The same argument is applicable to the functional w.

Theorem 4.1. Let the assumptions of Lemma 4.1 be fulfilled. Moreover, let (2.5)
hold and let for all h, k € H the condition (2.25) be satisfied.
Denote by i and 4, the solutions of (2.7') and (2.8’), respectively. Then

lima, = 4.
Proof. By the assumption (2.2) we have
I B(v; w,w) — (o, w) = % 6‘1HW”2 - c2||w“ Ywe @,
with ¢;, ¢, independent of v. Furthermore, we may write (by virtue of (2.1))

W) 2 el = eufw] ¥weo.

Lemma 4.1 implies existence of a sequence 7, € @ N K and ¢, = const such that

U, <co Vn.

The proof then proceeds like that of Theorem 2.1 with the only change — the space H
is replaced everywhere by the subspace Q.

Application. Let @ = R? be a bounded domain with a Lipschitz boundary 4Q and let
0Q=T,ul, UlgxuTly,

where I'; and I'y have a positive length, whereas I'y, has zero length. Let the condi-
tions (4.0) hold on I'y. We define

K= {ue[W”Z(Q)]2|uv =0 on Iy, u, <0 on Iy},

209



H=V={ve[W"}Q)]?
R ={ve[W" Q)] |v, = a; — bx,,v, = a; + bx,},

v, =0 on I},

where ay, a,, b are arbitrary real constants;
P={peRnK|-peRnK}={pe?|p. =0o0nT,uUl}.

o

The same bilinear form B and the functional y will be chosen as in Section 3.
Only the coefficient (—2/3) has to be replaced by (—1) and 3k/2 in the formula (3.1)
by k.

Obviously, the condition P = K is fulfilled. Assume that I'; and I'y consist of
straight segments parallel with the x;-axis. Then

P = {P = (anPz)IIh = a; = const, p; = 0};

¢ € Q if and only if

V1EJ‘f1dx+J‘ g, ds=0
2 r.

holds for the resultant of the external forces.
The space V will be decomposed by means of some suitable inner product. We may
choose for instance

(u,v), = j eufu)eu(9) 85 + p(s) ().

p(v) = J‘ v, ds, I'; = @, I'; has a positive length.
r,

Then
Q=VeP={veV|p(v)=0}.

4.2. Solution of more general problems with unilateral contact

Lemma 4.2. Let the assumptions of Lemma 2.1 be satisfied. Moreover, let us
assume that

(4.5) (p,p) +0 VpeP = {0}.
Then there exist unique solutions of the problems (2.7) and (2.8).

Proof. Like at the beginning of the proof of Lemma 2.1 we derive for any two
solutions i and u of the inequality (2.7) that

i—u=peP, (p,p)=0.
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By means of (4.5) we conclude that p = 0 and there exists at most one solution.
The argument for the inequality (2.8) is quite analogous.

The proof of coerciveness of ¥ and w on K follows the same lines as that of Lemma
2.1. Both functionals are convex and differentiable, hence they are weakly lower
semicontinuous. Consequently, the solutions exist.

Theorem 4.2. Let the assumptions of Lemma 4.2. be fulfilled. Moreover, let (2.5)
and (2.25) hold. Denote by u and u,., the solutions of the problem (2.7) and (2.8),
respectively.

Then

limu,=u.

Proof. Following the proof of Theorem 2.2, we arrive at the conclusion (cf.

(2.29)) that

(4.6) ”ITQu,, - HQu” -0, n— .

Besides, we derive the boundedness of norms lu,, . Hence a subsequence {u,}
exists such that

(4.7) U, — u* (weakly in H), m — oo.

Since K is weakly closed, u* € K. It follows from (4.7) that
(4.8) yu, — Myu* .
On the other hand, from (4.6) we obtain that
Iy, - My,

consequently, ITou* = ITyu and the convergence (4.8) is even strong. Moreover,
by virtue of (4.7), we have

4.9) u,, — Iu*

(the subspace P being finite-dimensional).
Combining (4.8) and (4.9) we obtain the convergence

Hu,,, — u*” - 0.

In the end of the proof of Theorem 2.2, however, we have shown that the limit
element u* solves the inequality (2.7). The uniqueness of the solution implies u* = u
and the whole sequence {u,} converges to u strongly.

Application. The assumption (4.5) can be satisfied if and only if dim (2 N V) = 1.
Indeed, let H = V, K, &, B, { be defined as above, P =2~ V. If ', = 0, then
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R=RnV,dimZ = 3 and
(o, p) = a1Vi + a,Vy + DM, pe,

where V; are the components of the external forces resultant and M is the moment
resultant. The condition (4.5) does not hold, since ((p, p) = 0 for each vector
(ay, ay, b) e R* orthogonal to the vector (Vy, V,, M). The case dim (Z n V) =2
is not possible.

Let I', consists of straight segments parallel with the x,-axis. Then obviously

RNV ={peR|p, =a, =const,p, =0}, dim(ZnV)=1.

The condition (4.5) is fulfilled if and only if the component V; of the force resultant
does not vanish.
Next, let I'y be such that (see Fig. 1)

b

Fig. 1.

PAnK=2nK={pe|p =a, £0,p,=0}.

Then the condition (2.19) is satisfied exactly if V, is positive.

Lemma 4.3. Let P = {0}, let P be a subspace of H as in Section 2, dim P < co.
Let (4.5) and

(4.10) PAK = {0}

hold. Assume that (2.1), (2.2), (2.3) hold for h, x, y € Q and (2.4) is valid.
Then there exist unique solutions of (2.7) and (2.8).

Proof. The assumption (2.1) yields
(4.11) B(v) = ¢; — callv]| + cs|gv|> VoeH.
On the other hand, we have

(4.12) ' UHQUH > 05“0“ Ywek.
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In fact, “HQU” is a seminorm in H such that the assumptions of Theorem 2.2 in [4]
are satisfied.

By combining (4.11) and (4.12) the coerciveness of y on K follows. Since ¥ is
weakly lower semicontinuous, we obtain the existence of a solution of (2.7). The
uniqueness is a consequence of (4.5) as in Lemma 4.2.

The argument for @ and (2.8) is analogous.

Theorem 4.3. Let the assumptions of Lemma 4.3 and (2.5), (2.25) be satisfied.
Denote by u and u,. the solutions of (2.7) and (2.8), respectively.

Then

limu,=u.

n— o

Proofis the same as that of Theorem 4.2.

Fig. 2.

Applications. Define H = V, K, #, B, y and P = # n V as above. Let I';, consist
of straight segments parallel with the x,-axis. Then the condition (4.10) is satisfied,
if I'y has a proper form (see Fig. 2), i.e. if the component v, of the normal changes
the sign. The condition (4.5) is again equivalent to V; = 0.
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Souhrn

RESENI SIGNORINIHO KONTAKTNIHO PROBLEMU
V DEFORMACNI TEORII PLASTICITY METODOU
SECNYCH MODULU

JINDRICH NECAS, IvAN HLAVACEK

Resi se uloha jednostranného kontaktu mezi pruzné plastickym télesem a dokonale
hladkou tuhou podporou v mezich tzv. deformaéni teorie plasticity. Reeni je for-
mulovdno pomoci variacni nerovnice, ekvivalentni s principem minima potencidlni
energie. Metodou se¢nych modultt (Kaganova) je sestrojen iteralni algoritmus,
jehoz kazdy krok odpovidd klasické Signoriniho uloze v teorii pruznosti. Dokazuje
se konvergence této metody k presnému feSeni a studuji se také n€které tlohy, kdy
existuji pripustnd pole posunuti tuhého télesa.
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