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1. INTRODUCTION

The study of the mechanism of motion of lithospheric plates along asthenosphere
and their collision in the sense of new global tectonics leads in the first approxima-
tion (see [1]) to the study of thermoelastic displacements, strains and stresses at the
contact between lithospheric plates and blocks and between them and astheno-
sphere, particularly in the area of plate collision (Fig. 1).

We shall assume that the collision model can be investigated from the point of
view of thermo-elasticity. The problem leads to a coupled problem consisting of
dynamic equations and an expanded equation of heat conduction ([1]).

The fundamental dynamic equations can be written as

(1.1) Tij,j +fl = Qu;,,, 5 i= 1, 2, 3 in G(t)

(we adopt the convention on summation over repeated indices and notation f; ; =
= 0f /0x;, fi,, = 0f;[0t) with the stress tensor t;; defined by Duhamel-Neumann’s
law (the gzneralized Hook’s law in thermo-elasticity)

(1.2) Tij = cijklekl(u) + ﬂij(T_ TO) .

The second term B, (T — To) represents thermal expansibility.
The expanded equation of heat conduction can be written in the form

(1.3) oBiiToeij,e + 0c. T = W+ (x;T,); in G(1).

The first term on the left hand side represents the deformation energy dissipated in
the form of heat in the lithospheric plate. The equations (1.1)—(1.2) and (1.3) are
coupled in the terms (8;(T — T)),; and oB;;Toe; .-

In the present paper we shall adopt the following simplifications of the equations
(1.1)—(1.3):

For reasons of numerical treatment we shall study only the 2-dimensional problem.
We neglect a) the term gu; ,,, because we assume that the motion of the lithospheric
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plate during the period {1y, t,) is uniform, b) the term ¢c,T ,, because the heat con-
duction in the lithospheric plate is slow, so that during the period considered it is
stationary, c) the term ¢f;;Tpe;;,,» because the variability of the sources in the litho-
sphere and asthenosphere, and of the body and surface forces in time is slow so that
our geodynamic problem during a short (from the geological point of view) period
in the first approximation can be approximated by the steady-state problem. d) We
shall limit ourselves to obducting plates only.*)

We shall deal with the quasi-steady-staté problem consisting of the equilibrium
equation

(14) (cijkl ek,(u) + Bij(T_ TO)),j +f, =0
and of the heat conduction equation
(1.5) (i Ty). + W=0.

The problem is indeed not coupled, because (1.5) does not contain #, which makes
it possible to solve (1.5) for Tand then (1.4) in which the coupled term (8, (T — T,)) ;
will correct the vector of the body forces f;. Therefore we can consider the both
problems separately.

Boundary conditions

So far we have discussed only the description of the behavior inside the blocks.
The interaction between the colliding blocks and the environment is modelled by the
boundary conditions for the displacement vector # and the temperature T. We con-
sider the following three types of boundary conditions:

— On the Earth’s surface I', the surface ‘orces as well as the temperature are pre-
scribed, i.e.
(1.6a, b) tn; =Py, T=T, on T,.
— The boundary I', represents the contact between the colliding lithospheric plates
and between the investigated (obducting) plate and the asthenosphere (see Fig. 1).
The conditions of Signorini type describe the situation of friction-free contact of
two bodies and the fact that heat propagates from the asthenosphere into the litho-
sphere:
(1.7a,b) u, <0, 1,0, u7,=0, 7,=0 on TI,,

T<T,, g0, (T—T)q=0
where g = »;;T ;n; is the heat flow, n is the outer normal to the boundaty, s is the
unit tangential vector.

*) In Fig. 1 the obducting plate is represented by the region G. On the other hand, the model
problem discussed also describes a subducting lithospheric plate.
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Fig. 1. Plate tectonic collision model: G — obducting lithospheric plate; Gy — subducting litho-
spheric plate; G, — asthenosphere; I', — contact boundary.

— On the boundary I', the displacement vector u and the temperature T are pre-
scribed*), i.e.

(1.8a,b) u=i,, T=T, on I,.

The aim of the paper is to suggest the mathematical analysis of the present geo-
dynamical problem and to prove that this model problem, from the mathematical
point of view, is correct. As was seen above these problems can be solved separately.
The variational formulation of both problems will be given. The existence and unicity
of the solution as well as the convergence of the finite element approximations to the
exact solution are proved. The proofs are analogous to those of [3] and [4], therefore
in such cases we only refer to them.

2. THE SIGNORINI PROBLEM IN ELASTICITY

N

As the problem solved is quasi-coupled, we can solve both problems separately.
Let us start with the Signorini problem in elasticity.
Formulation of the problem

Let G = R? be a bounded plane region with Lipschitz boundary G, occupied
by an obducting plate at the moment t = t,, t € {t;, 1, (see Fig. 1). Let x = (x4, x,)

*) The vector function u, is derived from our knowledge of the motion of the lithospheric
plate at the moment t = t,. The vector function P, describes the surface loads caused by the
effect of the weight of the atmosphere, oceans, etc. The temperatures T, and 7; describe the
spreading of the temperature on the Earth’s surface I"; as well as the spreading of the temperature
with depth on the boundary I',, T, is the temperature of the asthenosphere.
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be Cartesian coordinates. Let # = {n,, n,) denote the unit outward normal to the
boundary 0G. Let # = (u(x)) e W' = [H'(G)]? be the displacement vector, let e, ;(u)
be the small strain tensor defined by

2.1 ei; = Yui; + uy).

Let the stress-strain relation, the so-called Duhamel-Neumann’s law (the generalized
Hook’s law), be defined by

(2.2) i = i eu(8) = BifT — Tp)
(in particular, for isotropic media,
(2.2a) Ty = Ae(u) 6, + 2pe () — (32 + 2p) 0,8, (T — Tp),

where a, is a cosfficient of linear thermal expansion), where 7;; = 7;;(x) is a stress
tensor, To = To(x) is the input temperature at which the materials of the plate are
in a strainless and stressless state, f8;;(x) € C'(G) a coefficient of thermal expansion,
and let ¢;;,(x) € C'(G) satisfy

o

(2.3 Cijir = Cjikl = Criij
and
(2.4) Cijki€ijexr = Coeije;j, Co = const. >0, Ve;; = e, .

The stress tensor 7;; satisfies the equilibrium conditions
(25) Tij,j + fi =0 in G N

where fe [I*(G)]? is the vector of the body forces. Further, we define the stress
vector t on the boundary dG by
T = Ty(x) ny
and its normal component
= T.n.
and tangential component
T

s = TiSi»

where s = (s, s,) = (—n,, ny) is the unit tangential vector. We define the normal
and tangential displacement components by

U, = un;, U= Us;.

Let the boundary 4G consist of several disjoint parts, G = I',u I, U T,. Let us

assume that fe [L*(G)]? P,e[LXI)]*. According to [1] we have the following

problem: . .
Find a vector function u € [H'(G)]? satisfying

(2-60) (cmen(n); +F,=0 i=12 in G,
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where F; = f; — (B;,(T — To)).; € L2(G), together with the following boundary
conditions:

(2.7) ;= Po; on T,
(2.80) u, <0, 7,20, u7,=0, 1,=0 on I,,
(2.90) u; =1y on T,.

Remark. The coupling term satisfies the condition (B;,(T — Ty)) ;€ L*(G).
Really, if B;;€ C'(G) and T, T, € H'(G), then B, (T — T,) e H'(G) and then
(BifT — To)),; € 12(G).*)

Variational Formulation: Weak Soluticn

We shall transform the problem to one with homogeneous boundary conditions.
In the equations let us replace u by u + w, where w is a sufficiently smooth vector
function in G = G U 0G satisfying (2.9,) and w = 0 on I',. According to this trans-
formation the boundary conditions, surface (P,) and body (F ) forces will be changed.

Thus we obtain the following equivalent formulation of our problem (we will
use the same symbol # and F as above):

(2.6) (cijklekl),j +F, =0, i=1,2 in G,
where F; = f; — (Bi/(T — To)),; + (ciju ew(w)). s
(2.7) =P, on I,

where P; = Py; — ¢,y (W) nj,
(2.8) u,<0, 7,=0, ur1,=0, 7,=0 on I,
(2.9) u=0 on TI,.
Let Fe [I*(G)]? Pe[I*(I,)]* Let us define the space of virtual displacements as
(2.10) V={veW' |v=0o0nT,}
and the set of admissible virtual displacements as
(2.11) K={veV|vn§0 on I,}.

Multiplying (2.6) by v;, integrating over G, using the divergence theorem and bound-
ary conditions, we obtain Euler’s equation L = 0 for the functional

(2.12) L(v) = 1B(v, v) — S(v),

*) For our consideration also the conditions ¢;ji € L*(G), %;;€ L*(G), B;;€ L*(G) can
be used. Then (B, (T — Ty)),j€ H™ HG).
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where B(u, v) is the bilinear form defined by

(2.13) B(u,v) = -[ ciur €(u) ey(v) dG
G
and .
(2.14) S(v)=JFividG +I Pp;dS, vekK.
G r.

We have obtained the variational formulation of our problem:
Find u € K such that

(2.15) L(u) < L(v) VveK.

Theorem 2.1. 4 vector function ue K Satisﬁes (2.15) if and only if
B(u,v — u) 2 S(v — u) VYveK.
Sketch of the proof. The set K is nonempty, closed and convex in V. The function-
al L(v) is convex. For completing the proof, see [8].
Definition 2.1. 4 function u € K satisfying (2.15) will be called a weak solution
of (2.6)—(2.9).

Remark. It can be proved that any classical solution of our problem represented
by the solution of (2.6)—(2.9) is a weak solution. On the other hand, if the weak
solution is smooth enough, then it represents a classical solution of our problem.

We have the following result:
Theorem 2.2. Let (2.3), (2.4) hold, then there exists a unique solution of the
problem (2.15).

Proof. The set K is closed and convex in W! hence it is weakly closed, as a closed
(and convex) ball in a Hilbert space is weakly closed. It is known that if the function-
al Lis coercive and weakly lower semicontinuous then it has a minimum in a Hilbert
space. Let us verify these assumptions:

a) Coerciveness: From the assumption (2.4) we have
Cijki eij(") ekl(") 2 Uo eij(") eij(u) >

and using Korn’s inequality,

1) 2 4o [ e ef0)d6 - [

Pup;dS —f Fv;dG = c”v";zw -
G I. G

— cyf|o)w: VoeV.
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b) weakly lower semi-continuity: For two points » + # and u, using (2.4) and
Korn’s inequality we have

DL(v + u,v) — DL(u, v) = J‘Gc,-jk, e;(v) eu(v) dG =
= U J'Geij(v) ei(v)dG 2 [o]}e YoeV.

To prove the uniqueness we shall assume that there exist two weak solutions u,
and u,. Then u = u, — u, € K and
B(uy, u, — u,) = S(u, — uy), Bluy, uy — uy) = S(uy — u,),

hence
Bluy — uy, uy — u) 20,
so that
c|ufw: < B(u,u) <0

and then u = 0, which completes the proof.

Numerical Solution

The finite element method (FEM) will be used for numerical solution. We will
assume that the domain G is a bounded domain with a polygonal boundary 4G.
Let the domain G be “‘triangulated”, i.e. G = G U 0G is covered by a finite number
of triangles T,, forming a triangulation ,. We further assume that the end points
Irynrl,I,nT, I, nT,coincide with the vertices of T,. The family {7,},0 < h <
< h, of triangulations is assumed to be regular. Let V, be the set of linear finite
elements, i.e. the space of all continuous vector functions in G which are piecewise
linear over . Let us define the set

(2.16) K,={v|veV, v,<00nT,};
then K, = K for Vh.

Definition 2.2. A function u, € K, satisfying
(2.17) L(u,) < L(v) Vvek,

is called a finite element approximation of (2.6)—(2.9).

Theorem 2.3. There exists a unique finite element approxima‘tion (2.17).

Proof. Let L(u,) be the functional defined by (2.12). As K, is closed and convex,
it is weakly closed. Further the proof is similar to that of Theorem 2.2.
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Now our aim is to prove the convergence of the FEM approximation #, to the
exact solution u, and to give an estimate of the rate of convergence of |[u - u,,||.
We shall use the following lemma.

Lemma 2.1. Let F(v) be a functional defined on a closed convex subset M of
a reflexive Banach space B. Assume that F is twice differentiable in B (in the Gateaux
sense) and the second differential satisfies the inequalities

(2.18) co”z”2 S D*F(u;z,z) £ c||z|> VueM, VzeB, ¢ >0, ¢>0,

i.e. it is positive definite and continuous. Let M, = M be a closed convex set. Let the
minimizing elements of F(v) over M and M, be denoted by u and u,, respectively.
Assume that there w, € M, exists such that 2u — w, € M. Then

(2.19) lu = will = (cfeo)’ u = wl -

Proof. see [4].

Inourcase B =V, M = K, M, = K,. Then we find w, € K, such that 2u — w,e K
and w,, is sufficiently close to u. Then the solution #, is of the same order of accuracy
as w,.

To prove the convergence of the finite element approximations we cannot a priori
assume the solution # to be regular. To prove the convergence we shall need the follo-
wing theorem.

Theorem 2.4. Let us assume that there is only a finite number of “‘endpoints”,
I,nl,I,nT,I,nT, Then theset K n[C*(G)]* is dense in K.
For the proof see [3].

Our aim now is to prove the convergence of finite element approximations without
regularity of the solution u.

Theorem 2.5. Let V be a Hilbert space defined by (2.10), K = V a convex closed
subset defined by (2.11), K, = K a closed convex subset defined by (2.16). Let L(v)
be the functional defined onV by (2.12). Let u and u, denote the minimizing elements
of L(v) over the sets K and K,, respectively. Then

(2.20) lim Ju — @)y = 0.
h—0

The proof with the aid of Theorem 2.4 is parallel to that given in [3].

To give an estimate of the rate of convergence of ||u — w1, we shall used Falk’s
technique discussed in [6].

Lemma 2.2. For ue K, u, € K, we have
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(221) |u - w|p: < Co{Bl#, — u, v, — u) + B(u,v — u,) + B(u, v, — u) —
—(F,v—w)—(Fv,—u)}'?*, VveK, v,ek,,
where Cy > 0 is a constant.
Proof. The proof follows from the conditions
B(u,v — u) — (F,v — u) =0 YoveK,
B(wy, v, — w,) — (F, v, — w,) 20 Vv, eK,.

Adding these inequalities, adding and subtracting the terms B(w, u,) — B(uy, u) to
the resulting inequality and performing some modifications we obtain

B(u — w,, u— w) < B(w,v — u,) + B(uy, v, — u) + (F,u, — v,) + (F,u — v) =
= B(u,v — w,) + B(u,v, — u) + B(u, v, — u) +
+ B(uy, v, — u) + (F, m, — v) + (F,u — v) =
= B{w, — u, v, — u) + B(u,v — u,) + B(u,v, — u) +
+ (Fou,—v)+ (Fu—uv,).

Then

Cy|lu — w|j < Bu— w, u—wu) < Bu, — u, v, — u) + Blu,v — u,) +

+ B(u, v, — u) + (F, u, — v) + (F,u — v,).

This immediately implies our assertion (2.21). Q.E.D.

Corollary. Let K, = K. Then substituting v = u, in (2.21) we obtain

(222) |u — w)|w: £ Co{B(w, — u, v, — u) + B(u, v, — u) + (F, u — v,)}"/* -
Yv, e K, .

As I', is a polygonal boundary we can prove the following estimate:

Theorem 2.6. Let I, be polygonal. Let the solution u fulfil ue K n W? and
u|, € [H*(I,)]. Then

(2.23) lu — ww: = O(h).

Proof. Using Lemma 2.2 we estimate (2.21). This estimate can be applied provided
the solution u is sufficiently regular. In (2.21) the two terms B(u, v — u,) — (F, v—u,)
and B(u, v, — u) — (F, v, — u) are estimated by using Green’s theorem and later
by using a suitable choice of v, € K, v € K. Then Green’s theorem implies

B(u, v, — u) — (F, v, — ) =J' —(cijuien),; (vn — u); dG +f v,(w) nj(v, — u); dS —
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~ P (v, —u);dS —J F{v, — u);dG =

I G

.
= | (=(cijuen); — Fi) (vp — u); dG +J 7,(u) n(v, — u); dS —
G Ieul.

— [ P(oy—u)ds = f

J I, Iy

i) nj(v,—u); dS = J. 7,(u) (v,—u),dS < 0.

Iy
Thus

—(cijuen), ;= Fi, 1=1,2, ae. inG.
In virtue of (2.22) and of this fact we have
(2.24)

: 1/2
u—w|wi £ CodB(u,—u, v,—u) + | t,(u)nj(v,—u);dS +| P(v,—u)dS} <
J J |
re

G

< CO{B(u,, —u, v, — u) +I

Ie

() (e — 1) ds}’” <

IIA

Cofllm — ulwr [lon = wlws + Cllomn = wallerargr} ™ =
< Colde™ | vy — uli + Cillow — tallcraeran + defun — i},
where ¢ > 0 is an arbitrary given number. Now we must estimate the relevant norms
in (2.24).
Let v, = u,;, where u;; € V,, is the Lagrange interpolation of u on the triangulation
T, But (uu),, < O0on I', so that #;; € K. Since u;,; € V,, then u;, € K,. Hence

(2.25) lar — ulw: < Coh|ufy-,
(2.26) 1) = walltacrore = Ch* 3 )|unl oz
and

o= s £ Coltlin — w16 s = affe + Calth— ) <
< Cofeh|ulfyn + ™" W||uffn + h* Y |lu|lmaerae} 12 = O(h),

where C, = Co[max (1C,C,, 1C,C,, C,C,)] and ¢ is chosen sufficiently small, which
completes the proof. : . '
3. THE SIGNORINI PROBLEM IN THERMICS

The studied problem (see Section 1) is quasi-coupled, so that both problems are
solved separately. In this section we will discuss the problem in thermics only.
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Formulation of the Problem

Let G = R? be the same plane region with a Lipschitz boundary 8G, occupied
by an obducting plate at the moment ¢ = t,, t € {t, t,, and defined in Section 2. Let
the boundary 0G consist of several disjoint parts 0G = I'. v I, U I',. Let Te H'(G)
be the temperature, x;; = x;,(x)€ C}(G) the thermal conductivity, W= W(x)e
€ I*(G) the heat sources in the lithospheric plate.

Then we solve the following problem:

Find a function Te H'(G) that satisfies the equation
(3.1 —(#ij(x) T;); =W in G,

with the boundary conditions

(3.2) T=T, on I,
(3.3) T=T, on I,
(3.4) T<T,, ¢g<0, (T—-T)g=0 on I,,
where x;)(x) € C'(G), We I*(G) and

(35) 3¢ >0, c¢=const., VEéeR?

wif(x) & z c|€]* ae. in G,

and where T,, T,, T, are the given functions on I',, I',, and I, respectively, with the
properties that T, = T; for xel,nT,, To=T, for xel,n T, T, =T, for
xel,nT,and q = %;;T n; is the heat flow.

Variational Formulation. Weak Solution

We shall transform the problem to a problem with homogeneous boundary con-
ditions. Let us replace Tby T + z, where z is a sufficiently smooth function satisfying
(3.2),(3.3) and z = 0 on I',. This transformation changes the functions in the bound-
ary conditions. It can be shown that the heat sources are Q = W + (%,-jz'j)lie
€ I*(G).

Then we solve the following problem (the same symbol T will be used as above):

(3-6) —(eif(x) T)).i = Q in G,
(3.7) T=0 on I,
(3.8) T=0 on T,,
(3.9) T<T,, q<0, (T-T,)gq=0 on I,,

where Q = W+ (%2 ;) ;-
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Let Q€ I*(G), »;(x)e C'(G). Let us set
(3.10a, b) W ={v|veH'(G), v=0o0nT,UT,},
1K={v|ve‘V, v<T,onl,},

where we assume as above that the domain G is a polygonal one. We have

(3.11) L(T) = 12 B(T, T) — S(T),
where

(3.12) B(T, v) = f % (x) Tjv,dG YT,ve'K,
(3.13) s = J 0vdG VoelK.

We will consider the following variational problem:

Find Te 'K such that
(3.14) L(T) = min L(v).

velK

Theorem 2.7. A function Te 'K is a variational solution of our problem if and

only if
B(TLv—T)= S —T) Vve'K.

Proof. The set 'K is a nonempty, closed and convex subset of V. The functional

L(T) is convex. To complete the proof, see [8].

Remark. It can be shown that any “classical” solution of (3.6)—(3.9) is also
a weak solution. On the other hand, if the solution is smooth enough, then it is also
a classical solution of our problem.

Theorem 2.8. There exists a unique solution of the problem (3.14).

Proof. The set 'K is closed and convex in H'(G) so that it is weakly closed. We
shall prove the coercivity and weakly lower-semicontinuity and the assumptions for
the existence and uniqueness of the problem. Let us prove: a) Coercivity: as (3.5)
holds we have |B(v, v)| = C|v||}, where C > 0. b) Weakly lower semi-continuity:
For two points v + T and v we have

DL(v + T,v) — DL(T, v) =J xi(x)v v, dG = koj v ,dG = ¢|v|7 .
G G

To prove the uniqueness we will assume that there exist two weak solutions T
and 2T. Then T = T — 2Te 'V and

J‘ }f,-j(x) T’jv’idG é 0.
G
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For v = T, by virtue positivity of »;/{(x) and Friedrich’s inequality, it follows that
IT|y £0,i.e. 'T = 2T, which compictcs the proof.

Numerical Solution

The finite element method will be used. Let 7, be a system of regular triangula-
tions as above. Let 'V, be the space of linear finite elements, i.e. the space of all
continuous functions in G, which are piecewise linear over . We define

(3.15) Ky ={v|ve'V,, v< T, on I,}.
Let 'K, < 'K for VYh.

Definition 2.3. Let 'K, be the set defined above. Let T, € ‘K,. Then T, is a finite
element approximation of our problem if

(3.16) L(T,) = min L(v).

velKy

Theorem 2.9. There exists a unique solution of the finite element approximation
(3.16).

Proof is analogous to that of Theorem 2.3.

Lemma 2.3. We have
G17) |[T-T|} £C{B(T, -~ T. v,-T)+ B(T,v—T,) + B(T,v, — T) —
-(0,v—T,) - (Q, v, — T)}'* Vve'K, v,e’K,, C=const.>0.

Proof is analogous to that of Lemma 2.2.
To estimate the rate of convergence of | T — T,| we establish

Theorem 2.10. Let T,e HI,) n HYT,), T<'K n H*G) and T|r, € H*(T,).
Let 'K, < K. Then

(3.18) IT— T = o(h).

Proof. Using Green’s formula we have
(3.19)  B(T,o,— T) — (0 vy — T) = j (=si/(x) T,).1 (0n — T)dG +
G
+j T,(v, — T)dS —J Q(v, — T)dG 2 0, Vv,elK,,
Te G

where T, = x;,(x) T ;n;, n; are components of the unit outward normal to 9G.
Almost everywhere in G we have

(3.20) —(efx) T, = Q.
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According to (3.17), (3.19) and (3.20), we obtain after some modifications

IIA

~
|

=

A

T, (v — T;) dS +j

I

1/2
C {B(T,, - T v,— T) +J T, (v, — T) ds}

Ta

IIA
IIA

1/2
T,(v—T,)dS + Cyfv, — T”Lz(m}

c{un—Tul Jow = 7], +j

Ie

< c{;gur— L + 1T - o +j T(v — T,)dS +

I«

_ 1/2
+ Csfv, — THLZ(,«“)} , Wwhere &> 0 is arbitrary.

Let v, = Ty, Ty; € 1V, be the Lagrange interpolation of T on the triangulation 7.
As (Ty;), £ T, on I',, we have T, € 'K and as Ty € 'V,, we also have T;;e 'K,.
Hence

(3-22) [T — T))y < 1C, H||T),
(3-23) I(Teon = Tl sy < CH2 Y| T,

To estimate the third member on the right hand side in the last inequality in (3.23)
the technique of [7] will be used. We define

‘Hz(ra) .

w=sup(T,, T,) on I,,

w=0 on G~ 1T,.
Then we H'(3G), w < T, on T, and there exists a function v e H(G) such that
v=won 0G. Then ve'K, T, —w=0for T,<T,and T, — w= T, — T, for
T, > T,. Let s; be the vertices of 77, on I',. Then, as T(s;) < Ty(s,), i = 1, ..., N,
we have T, < (T,); on I, where (T,),; is the linear Lagrange interpolation of T,
onTl,. Let

T={xe | T,(x) > T(x)} -

Then

f (w— T,)*dS =L (T, — T,)*ds gf (Ty)r — T,)* dS = 0(h*),
as on 'T,, 0 < Ty(x) — T(x) = ((Tx(x)); — T(x)) holds. Hence

IT- T, = Co {8/2 IT= T3 + 41| T - o2 +J T,(v — T;)dS +

Iy

1/2
+ Caflon — THLz(m} < Col3s'Couh|| T|, + 4671 1C, h| T, + O(h*) +
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+ Cp ' Ch* Y| Tz} = O(R)
which completes the proof.

Theorem 2.11. Let T, =0 on I, Te'K nHXG). T|, € H*I,). Then
IT— T, = o(h).
Proof is similar to that of Theorem 2.10.
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Souhrn

O JEDNOM TYPU SIGNORINIHO ULOHY BEZ TRENI
V LINEARNI TERMOELASTICITE

JIRi NEDOMA

V c¢ldnku je vySetfovdna uloha Signoriniho typu v teorii termoelasticity pro ptipad
ustdleného stavu. Uloha je modelovou tilohou z geodynamiky, jejiZ fyzikdlni analysa
je zaloZena na hypotéze o tektonice litosferickych desek a teorii termoelasticity.

Je diskutovdna existence a jednoznacnost feSeni Signoriniho tlohy bez tfeni pro
pfipad ustdleného stavu v teorii termoelasticity a jeji numerické feseni metodou
koneénych elementii. Je ukdzdno, Ze konvergence pfiblizného feSeni k pfesnému je
fadu O(h), za pfedpokladu, Ze feSeni je dostateCné reguldrni.
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