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SVAZEK 28 (1963) AP LI K A C E M ATE M A T I K Y ČÍSLO 6 

ON ONE TYPE OF SIGNORINI PROBLEM WITHOUT FRICTION 
IN LINEAR THERMOELASTICITY 

Jmi NEDOMA 

(Received June 11, 1982) 

1. INTRODUCTION 

The study of the mechanism of motion of lithospheric plates along asthenosphere 
and their collision in the sense of new global tectonics leads in the first approxima­
tion (see [ l ]) to the study of thermoelastic displacements, strains and stresses at the 
contact between lithospheric plates and blocks and between them and astheno­
sphere, particularly in the area of plate collision (Fig. 1). 

We shall assume that the collision model can be investigated from the point of 
view of thermo-elasticity. The problem leads to a coupled problem consisting of 
dynamic equations and an expanded equation of heat conduction ([ l]) . 

The fundamental dynamic equations can be written as 

(1.1) TUJ +ft = Quutt, i = 1, 2, 3 in G(t) 

(we adopt the convention on summation over repeated indices and notation fitj = 
= dfjdxj, fit = dfijdt) with the stress tensor TU defined by Duhamel-Neumann's 
law (the generalized Hook's law in thermo-elasticity) 

(1.2) Ty = cijklekl(u) + PU(T - T0) • 

The second term PtJ(T — T0) represents thermal expansibility. 
The expanded equation of heat conduction can be written in the form 

(1.3) QPijT0eijyt + QceTt = W + (XJTJJ in G(t). 

The first term on the left hand side represents the deformation energy dissipated in 
the form of heat in the lithospheric plate. The equations (1.1) —(1.2) and (1.3) are 
coupled in the terms (Pis(T— T0)),j a n d QPijT0eiJ9t. 

In the present paper we shall adopt the following simplifications of the equations 
(1.1)-(1.3): 

For reasons of numerical treatment we shall study only the 2-dimensional problem. 
We neglect a) the term Quiftt, because we assume that the motion of the lithospheric 
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plate during the period <fl5 t2} is uniform, b) the term QceTv because the heat con­
duction in the lithospheric plate is slow, so that during the period considered it is 
stationary, c) the term QPijT0eijt, because the variability of the sources in the litho-
sphere and asthenosphere, and of the body and surface forces in time is slow so that 
our geodynamic problem during a short (from the geological point of view) period 
in the first approximation can be approximated by the steady-state problem, d) We 
shall limit ourselves to obducting plates only.*) 

We shall deal with the quasi-steady-state problem consisting of the equilibrium 
equation 

(1.4) (cijkl ekl(u) + ^(T - T0))j + f = 0 

and of the heat conduction equation 

(1.5) {*ijTjh+ W=0. 

The problem is indeed not coupled, because (1.5) does not contain w, which makes 
it possible to solve (1.5) for Tand then (1.4) in which the coupled term (/>0-(T — T0))s 

will correct the vector of the body forces fr Therefore we can consider the both 
problems separately. 

Boundary conditions 

So far we have discussed only the description of the behavior inside the blocks. 
The interaction between the colliding blocks and the environment is modelled by the 
boundary conditions for the displacement vector u and the temperature T. We con­
sider the following three types of boundary conditions: 

— On the Earth's surface FT the surface *brces as well as the temperature are pre­
scribed, i.e. 

(1.6a, b) Tij-nj = P0i, T = T0 on FT. 

— The boundary Fa represents the contact between the colliding lithospheric plates 
and between the investigated (obducting) plate and the asthenosphere (see Fig. 1). 
The conditions of Signorini type describe the situation of friction-free contact of 
two bodies and the fact that heat propagates from the asthenosphere into the litho-
sphere: 

(1.7a, b) un = 0 , xn = 0 , unTn = 0 , TS = 0 on Fa , 

T= F2, q = 0, ( F - T2)q = 0 

where q = x^TjUj is the heat flow, n is the outer normal to the boundaty, s is the 
unit tangential vector. 

*) In Fig. 1 the obducting plate is represented by the region G. On the other hand, the model! 
problem discussed also describes a subducting lithospheric plate. 
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Go 

Ga 

Fig. 1. Plate tectonic collision model: G — obducting lithospheric plate; G0 — subducting Jitho-
spheric plate; Ga — asthenosphere; Fa — contact boundary. 

— On the boundary FM the displacement vector u and the temperature T are pre­
scribed*), i.e. 

(1.8a, b) u = u0 , T = 7\ on Fu. 

The aim of the paper is to suggest the mathematical analysis of the present geo-
dynamical problem and to prove that this model problem, from the mathematical 
point of view, is correct. As was seen above these problems can be solved separately. 
The variational formulation of both problems will be given. The existence and unicity 
of the solution as well as the convergence of the finite element approximations to the 
exact solution are proved. The proofs are analogous to those of [3] and [4], therefore 
in such cases we only refer to them. 

2. THE SIGNORINI PROBLEM IN ELASTICITY 

x As the problem solved is quasi-coupled, we can solve both problems separately. 
Let us start with the Signorini problem in elasticity. 

Formulation of the problem 

Let G c K2 be a bounded plane region with Lipschitz boundary dG, occupied 
by an obducting plate at the moment t = t0, t E <t1? t2> (see Fig. 1). Let x = (xu x2) 

*) The vector function «0 is derived from our knowledge of the motion of the lithospheric 
plate at the moment t = t0. The vector function P0 describes the surface loads caused by the 
effect of the weight of the atmosphere, oceans, etc The temperatures T0 and T1 describe the 
spreading of the temperature on the Earth's surface FT as well as the spreading of the temperature 
with depth on the boundary FM, T2 is the temperature of the asthenosphere. 
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be Cartesian coordinates. Let n = (wl5 n2) denote the unit outward normal to the 
boundary dG. Let u = (u^x)) e W1 = [HX(G)]2 be the displacement vector, let etj(u) 
be the small strain tensor defined by 

(2.1) eu = i(uitj + uJti). 

Let the stress-strain relation, the so-called Duhamel-Neumann's law (the generalized 
Hook's law), be defined by 

(2-2) Tu = cUklekl(u)-pu(T- T0) 

(in particular, for isotropic media, 

(2.2a) TU = Xekk(u) Su + 2\x eu(u) - (3X + 2/i) <xtSu(T - T0), 

where oct is a coefficient of linear thermal expansion), where Ttj = TU(X) is a stress 
tensor, T0 = T0(x) is the input temperature at which the materials of the plate are 
in a strainless and stressless state, Pij(x) e Cl(G) a coefficient of thermal expansion, 
and let cijkl(x) e Cl(G) satisfy 

(2-3) cijki = Cjikl = ckiU 

and 

(2.4) cUkleuekl ^ c0eueu , c0 = const. > 0 , Ve0- = en . 

The stress tensor TU satisfies the equilibrium conditions 

(2.5) TUJ + / - = 0 in G , 

where fe ^l!(G)Y *S t n e v e c t o r °f the body forces. Further, we define the stress 
vector T on the boundary dG by 

T | = TU(X) Ylj 

and its normal component 
In = ti^i 

and tangential component 
T s =z ^iSi ? 

where s = (s1? s2) = ( — n2, wx) is the unit tangential vector. We define the normal 
and tangential displacement components by 

un = Uifti, us = u^i. 

Let the boundary dG consist of several disjoint parts, dG = FT u FM u Fa. Let us 
assume that fe [L2(G)]2, P0

 G [^2(I\)]2- According to [1] we have the following 
problem: 

Find a vector function u e [HX(G)]2 satisfying 

(2.60) (cijkl ekl(u))j + Ft = 0 i = 1,2 in G , 
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where Ft = ft - (PU(T - T0))j e L2(G), together with the following boundary 

conditions: 

(2.70) TijUj = P0i on FT, 

(2.80) un = 0 , Tn = 0 , unTn = 0 , rs = 0 on Fa, 

(2.90) ut = uoi on FM. 

Remark . The coupling term satisfies the condition (/?l7(T — T0))jE L2(G). 
Really, if ptJ e C\G) and T, T0 e H\G), then j»lV(T - T0) e Hl(G) and then 
(Pij(T-T0))jeL2(G).*) 

Variational Formulation: Weak Solution 

We shall transform the problem to one with homogeneous boundary conditions. 
In the equations let us replace u by u + w, where w is a sufficiently smooth vector 
function in G = G u dG satisfying (2.90) and w = 0 on Fa. According to this trans­
formation the boundary conditions, surface (P0) and body (FJ forces will be changed. 

Thus we obtain the following equivalent formulation of our problem (we will 
use the same symbol u and F as above): 

(2-6) (clJkleklh + Ft = 0 , i = 1, 2 in G , 

where F, = ft - ( f t / T - T0))j + (cijkl eu(w))j9 

(2.7) T ^ . - P , on FT, 

where P. = P0i - c / j U e&z(w) np 

(2.8) un ^ 0 , Tn ^ 0 , unTn = 0 , TS = 0 on Fa, 

(2.9) u = 0 on FM. 

Let FG [L2(G)]2, PG [L2(FT)]2. Let us define the space of virtual displacements as 

(2.10) V = {veW1 \v = 0 on FM} 

and the set of admissible virtual displacements as 

(2.11) K = {veV\vn = 0 on FJ . 

Multiplying (2.6) by vi9 integrating over G, using the divergence theorem and bound­
ary conditions, we obtain Euler's equation 3L = 0 for the functional 

(2.12) L(v) = iB(v,v)- S(v), 

*) For our consideration also the conditions c,7JtI€ L°°(G), xtj e L°°(G), pj e L°°(G) can 
be used. Then Off,/T- T0)),jeH~\G). 
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where B(u, v) is the bilinear form defined by 

(2.13) B(u,v) = 

and 

Cijki etJ(u) ekl(v) áG , 

(2.14) S(t>) = f FІVІ áG + f PІVІ áS, vєK. 

We have obtained the variational formulation of our problem: 

Find UEK such that 

(2.15) L(u) = L(v) V r e K . 

Theorem 2.1. A vector function ue K satisfies (2.15) if and only if 

B(u, v - u) = S(v - u) Vi> e K . 

Sketch of the proof. The set K is nonempty, closed and convex in V. The function­

al L(v) is convex. For completing the proof, see [8] . 

Definition 2.1. A function ueK satisfying (2.15) will be called a weak solution 

of (2.6)-(2.9). 

R e m a r k . It can be proved that any classical solution of our problem represented 

by the solution of (2.6) —(2.9) is a weak solution. On the other hand, if the weak 

solution is smooth enough, then it represents a classical solution of our problem. 

We have the following result: 

Theorem 2.2. Let (2.3), (2.4) hold, then there exists a unique solution of the 

problem (2A5). 

Proof. The set K is closed and convex in W1 hence it is weakly closed, as a closed 

(and convex) ball in a Hilbert space is weakly closed. It is known that if the function­

al Lis coercive and weakly lower semicontinuous then it has a minimum in a Hilbert 

space. Let us verify these assumptions: 

a) Coerciveness: From the assumption (2.4) we have 

Cijki eu(u) ekl(u) = n0 eu(u) e^u) , 

and using Korn's inequality, 

L(v) = ifi0 f eij(v)eu(v)dG - f P,vt-d5 - f FiVi dG = c\\v\\2

m -
J G J rv J G 

— Ci\v\wi V f6 V. 
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b) weakly lower semi-continuity: For two points v + u and u, using (2.4) and 
Korn's inequality we have 

DL(v + u,v)- DL(u, v) = f cUkl eu(v) ekl(v) dG ^ 

^ fi0 J eiS(v) eu(v) dG ^ | | r | |^ V» e V. 

To prove the uniqueness we shall assume that there exist two weak solutions ut 

and u2. Then u = ut — u2eK and 

B(w1? u2 - ux) ^ 5(«2 - u%) , B(«2, u1 - w2) ^ 5(11! - «2) , 

hence 
B(u2 - ul9 u1 - u2) ^ 0 , 

so that 

c\u\Wi ^ B(w, u) SO 

and then « = 0, which completes the proof. 

Numerical Solution 

The finite element method (FEM) will be used for numerical solution. We will 
assume that the domain G is a bounded domain with a polygonal boundary dG. 
Let the domain G be "triangulated", i.e. G = G u dG is covered by a finite number 
of triangles Th, forming a triangulation &~h. We further assume that the end points 
Tu n FT, Fu n Fa, FT n Fa coincide with the vertices of Th. The family {&"h}9 0 < h ^ 
g h0 of triangulations is assumed to be regular. Let Vh be the set of linear finite 
elements, i.e. the space of all continuous vector functions in G which are piecewise 
linear over 3~h. Let us define the set 

(2.16) Kh = {v\veVh, vn £ 0 on FJ ; 

then Kh c K for Vh. 

Definition 2.2. A function uh e Kh satisfying 

(2.17) L(«„) :g L(t>) V . e ^ 

is called a finite element approximation of (2.6) —(2.9). 

Theorem 2.3. There exists a unique finite element approximation (2.17). 

Proof. Let L(uh) be the functional defined by (2.12). As Kh is closed and convex, 
it is weakly closed. Further the proof is similar to that of Theorem 2.2. 
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Now our aim is to prove the convergence of the FEM approximation uh to the 
exact solution u, and to give an estimate of the rate of convergence of flu — uh\. 
We shall use the following lemma. 

Lemma 2.1. Let F(v) be a functional defined on a closed convex subset M of 
a reflexive Banach space B. Assume that F is twice differentiate in B (in the Gateaux 
sense) and the second differential satisfies the inequalities 

(2.18) c0\\z\\2 ^ D2F(u; z, z) ^ e\\z\\2 Vw e M , V z e B , c0 > 0 , c>0, 

i.e. it is positive definite and continuous. Let Mh c M b e a closed convex set. Let the 
minimizing elements of F(v) over M and Mh be denoted by u and uh, respectively. 
Assume that there wh e Mh exists such that 2u — whe M. Then 

(2.19) \\u - uh\\ ^ (clco)1'2 \\u - wl|| . 

Proof, see [4]. 

In our case B = V, M = K, Mh = Kh. Then we find wh e Kh such that 2u — wheK 
and wh is sufficiently close to u. Then the solution uh is of the same order of accuracy 
as wh. 

To prove the convergence of the finite element approximations we cannot a priori 
assume the solution u to be regular. To prove the convergence we shall need the follo­
wing theorem. 

Theorem 2.4. Let us assume that there is only a finite number of "endpoints", 
ra n Fx, Fu n FT, ru n Fa. Then the set K n [C°°(G)]2 is dense in K. 

For the p roo f see [3]. 

Our aim now is to prove the convergence of finite element approximations without 
regularity of the solution u. 

Theorem 2.5. Let V be a Hilbert space defined by (2.10), K <= V a convex closed 
subset defined by (2.11), Kh a K a closed convex subset defined by (2.16). Lel L(v) 
be the functional defined on Vby (2.12). Let u and uh denote the minimizing elements 
of L(v) over the sets K and Kh, respectively. Then 

(2.20) lim ||u - uh\\wi = 0 . 
h-+0 

The p roo f with the aid of Theorem 2.4 is parallel to that given in [3]. 

To give an estimate of the rate of convergence of ||n — uh\\wi, we shall used Falk's 
technique discussed in [6], 

Lemma 2.2. For ueK, uheKh we have 
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(2.21) \\u - uh\\wt ^ C0{B(uh - u,vh- u) + B(u, v - «„) + B(u, » » - » ) -

- (F, v-uh)- (F, vh - « ) } ^ , V r e X , t)heK f t , 

where C0 > 0 is a constant. 

Proof. The proof follows from the conditions 

B(«, v - u) - (F, v - u) ^ 0 Vu G K , 

B(«h, !>,, - «,) - (F, vh ~ uh)^0 Vvh e Kh. 

Adding these inequalities, adding and subtracting the terms B(u, uh) — B(uh, u) to 
the resulting inequality and performing some modifications we obtain 

B(u - uh, u - uh) S B(u, v - uh) + B(uh, vh - u) + (F, uh - vh) + (F, u - v) = 

= B(«, 1? — %) + B(«, I7fc — «) + B(«, rft — tt) + 

+ B(W,., ^ - tt) + (F, «ft - V) + (F, M - V) = 

= B(% — U, vh — u) + B(u, v — uh) + B(«, rfc — ») + 

+ (F, uh - v) + (F, a - fy) . 

Then 

£ i | | w ~ wJWi -S B(u - uh, u - uh) <; B(uh - u, vh - u) + B(«, » - irA) + 

+ B(w, ^ - u) + (F, «,, - v) + (F, II - vh) . 

This immediately implies our assertion (2.21). Q.E.D. 

Corollary. Let Kh a K. Then substituting v = uh in (2.21) we obtain 

(2.22) > - uh\\wi S C0{B(tth - a, vh - u) + B(«, i>„ - «) + (F, u - < )} 1 / 2 

Vl^EK , . 

As Fa is a polygonal boundary we can prove the following estimate: 
\ 

Theorem 2.6. Let Fa be polygonal. Let the solution u fulfil ueKn W2 and 
« | r a e[H 2 (F a ) ] . Then 

(2.23) ||u - uh\\wi = 0(h). 

Proof. Using Lemma 2.2 we estimate (2.21). This estimate can be applied provided 
the solution «is sufficiently regular. In (2.21) the two terms B(«, v — uh) — (F, v— uh) 
and B(w, vh — u) — (F, vh — u) are estimated by using Green's theorem and later 
by using a suitable choice of vh e Kh, veK. Then Green's theorem implies 

B(w, vh - u) - (F, vh- u)=\ -(cijklekl)j(vh - K^dG + ry(«) nj(vh - u)t dS -
JG J dG 
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f Pt(vh -u)tdS - í Ft(vh - «) ř dG = 
J rT J G 

(-(cijk,eki)j ~ Ft) (vh - u)tdG + xtj(u) tij(vh - u)t dS -
J G J raur., 

í P i ( » f c - « ) i d S = f t ; X « ) n X ť f t - « ) , . d S = í xn(u)(vh-u)ndS^Q. 
Jrx J T* J r* 

Thus 

1/2 
< 

-(PukAi^'j = Fi , i = 1» 2> a.e. in G . 

In virtue of (2.22) and of this fact we have 

(2.24) 

\\u-uh\\wi = C 0 J B ^ - w, vh- u) + T,X«) nfah-u)xdS + .F^-i^dsl 
(. J<?G JTT J 

= C 0 | B ( n n - «, vh - «) + f xn(u) (vrtn - «„) d s j = 

= c o { | K - "||Wi | K - "||Wi + C2||vww - wJ[L2 (T a )p}1 / 2 = 

= C 0 { i e
_ 1 | | vh - u\\wi + Cjllv^ - u„||[L2(ra)F + ifi||«fc ~ " | |W i } 1 / 2

5 

where ^ > 0 is an arbitrary given number. Now we must estimate the relevant norms 
in (2.24). 

Let vh = «L/, where uL1 e Vrt is the Lagrange interpolation of u on the triangulation 
zFh. But (wL/)n = 0 on Fa so that uL1 e K. Since uL1 e Vh, then uL1 e Kh. Hence 

(2.25) | | u L / - u\\wi = Crh||u\W2, 

( 2 - 2 6 ) II(»LJ)» - wn||[L2(Ta)]2 = C s h
2 EIIWJ[H2(T«)]2 

and 

||« - uh\wi = C0{i6||«fc - u\\wi + i e " 1 ! ! ^ - u\\wi + C2\\vhn- w r t | | r L 2 ( r a ) ]2}1 / 2
 = 

= C 0 {a* |« | | k + s " 1 h2||«||^ + h2I||t/w||[H2(ra)p}1/2 = 0(h), 

where C 0 = C0[max (iC^^ iCtCr, C^Cs)] and ^ is chosen sufficiently small, which 
completes the proof. 

3. THE SIGNORINI PROBLEM IN THERMICS 

The studied problem (see Section 1) is quasi-coupled, so that both problems are 
solved separately. In this section we will discuss the problem in thermics only. 
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Formulation of the Problem 

Let G c R2 be the same plane region with a Lipschitz boundary dG, occupied 
by an obducting plate at the moment t = t0, t e <t1? t2>, and defined in Section 2. Let 
the boundary dG consist of several disjoint parts dG = FT u FM u Fa. Let Te Hl(G) 
be the temperature, xtj = xu(x) e C*(5) the thermal conductivity, W = W(x) e 
e L2(G) the heat sources in the lithospheric plate. 

Then we solve the following problem: 

Find a function Te H*(G) that satisfies the equation 

(3.1) -{xtj{x)Ttj)A=W in G, 

with the boundary conditions 

(3.2) T= T0 on Tr, 

(3.3) T = T! on TM, 

(3.4) T=T2, q = 0,(T^-T2)q = 0 on Ta, 

where xtj(x) e CX(G), We L2(G) and 

(3.5) 3c > 0 , c = const. , V£ e R2 

xu(x)££j = c\\£\\2 a.e. in G, 

and where T0, Tx, T2 are the given functions on TT, FM, and Fa, respectively, with the 
properties that T0 = 7\ for x e FT n FM, T0 = T2 for x e FT n Fa, Tx = T2 for 
x e FM n Ta and f̂ = XjT^rij is the heat flow. 

Variational Formulation. Weak Solution 

We shall transform the problem to a problem with homogeneous boundary con­
ditions. Let us replace Thy T + z, where z is a sufficiently smooth function satisfying 
(3.2), (3.3J and z = 0 on Fa. This transformation changes the functions in the bound­
ary conditions. It can be shown that the heat sources are Q = W + (xjZj)Ae 
eL2(G). 

Then we solve the following problem (the same symbol Twill be used as above): 

(3.6) - Ы * ) T,І),І = Q in G, 

(3.7) т= 0 on Гr 

(3.8) T= 0 on T„ 

(3.9) T=T2, q = 0 , (T -- T2) q - 0 on T. 

where Q = W + (XJZJ)^ 
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Let Q e L2(G), x0(x) e C\G). Let us set 

(3.10a, b) XV = {v | v e H*(G), v = 0 on Fu u FT} , 

XK = {v\vexV9 v S T2 on Fa} , 

where we assume as above that the domain G is a polygonal one. We have 

(3.11) L(T) = 1/2 B(T, T) - S(T) , 

where 

(3.12) B(T, v) = j *;0<x) 7> > f dG VT, v e *K , 

(3.13) S(t>) = í Qv dG Vvє^K. 

We will consider the following variational problem: 

Find TelK such that 

(3.14) L(T) = minL(v) . 
ue!K 

Theorem 2.7. A function Te 1K is a variational solution of our problem if and 

only if 

B(T, v - T) ^ S(v - T) Vv e *K . 

Proof. The set *K is a nonempty, closed and convex subset of XV. The functional 

L(T) is convex. To complete the proof, see [8] . 

R e m a r k . It can be shown that any "classical" solution of (3.6) —(3.9) is also 

a weak solution. On the other hand, if the solution is smooth enough, then it is also 

a classical solution of our problem. 

Theorem 2.8. There exists a unique solution of the problem (3.14). 

Proof. The set 1 K is closed and convex in H*(G) so that it is weakly closed. We 

shall prove the coercivity and weakly lower-semicontinuity and the assumptions for 

the existence and uniqueness of the problem. Let us prove: a) Coercivity: as (3.5) 

holds we have |B(v, v)| ^ C||i;||f, where C > 0. b) Weakly lower semi-continuity: 

For two points v + T and v we have 

DL(v + T, v) - DL(T v) = í xj(x) vjvгi áG ^ k0 f VjVл dG ^ c x | |v | 
JG JG 

To prove the uniqueness we will assume that there exist two weak solutions 1 T 

and 2T. Then T = XT- 2TeiVand 

Xij(x)TjV}idG S 0 . 
G 
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For v = T, by virtue positivity of xu(x) and Friedrich's inequality, it follows that 
ilFli ^ 0, i.e. XT= 2T, which completes the proof. 

Numerical Solution 

The finite element method will be used. Let 5r
h be a system of regular triangula-

tions as above. Let lVh be the space of linear finite elements, i.e. the space of all 
continuous functions in G, which are piecewise linear over 2Fh. We define 

(3.15) 1Kh = {v\ve1Vh, v^ T2 on FJ . 

Let 1Kh c XK for V/z. 

Definition 2.3. Let iKk be the set defined above. Let Th e
 xKh. Then Th is a finite 

element approximation of our problem if 

(3.16) L(Th) = minL(v) . 
ve^Kh 

Theorem 2.9. There exists a unique solution of the finite element approximation 
(3.16). 

P roof is analogous to that of Theorem 2.3. 

Lemma 2.3. We have 

(3.17) ||T - T„||2 S C{B(Th ~T,vh-T) + B(T, v - Th) + B(T, vh - T)-

-(Q,v-Th)-(Q,vh-T)}112 V v e ' K , vh e
 xKh, C = const. > 0 . 

P roo f is analogous to that of Lemma 2.2. 

To estimate the rate of convergence of \T — Th\\ we establish 

Theorem 2.10. Let T2e H2(Ta) n Hx(ra), TexKnH2(G) and T\rxe H2(Ta). 
Let % c *K. Then 

(3.18) \\T- Th\\x = 0(h). 

Proof. Using Green's formula we have 

+ (3.19) B(T, vh-T)- (Q, vh-T)=t (~xu(x) Tj)fi (vh - T) dG 

+ f Tn(vh - T)dS - f Q(vh - T)dG ^ 0 , Vv„ e xKh, 
JT« JG 

where Tn = KU(X) Tjnt, nt are components of the unit outward normal to dG. 
Almost everywhere in G we have 

(3.20) -(xu(x) T,),; = Q . 
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According to (3.17), (3.19) and (3.20), we obtain after some modifications 

(3.21) 

|| T - Th\\\ S C W - T, vh - T) + f Tn(v - Th) dS + f Tn(vh - T) ds\ = 

rg C|||n- T||i | K - T||! + f T „ ( v - T„)dS + C 2 | |v„- T||L2C 

= c | i e | | T - Ti||f + ie - ' f lT - vh\\\ + f T > - T„) dS + 

+ C2||yA — ^||L2(Ea)> ? where 2 > 0 is arbitrary . 

Let v^ = TL/, TL Je
 2V̂  be the Lagrange interpolation of Ton the triangulation &~h. 

As (TLJ)n = T2 on Fa, we have TLJe
1K and as TLJe

1Vh, we also have T L I G % , . 
Hence 

(3-22) l-If-rfln^-c.fcllrfa, 

(3-23) ||(TL/)„ - T„||L2(/a) <. iCsh
2 I | T B | H 2 ( r a ) . 

To estimate the third member on the right hand side in the last inequality in (3.23) 
the technique of [7] will be used. We define 

w = sup (Th,T2) on Fa, 

w = 0 on dG --- Fa. 

Then w e Hx(dG), w = T2 on Fa and there exists a function v e H^G) such that 
v = w on dG. Then i? e *K, Th - w = 0 for Tft = T2 and Th - w = Th - T2 for 
Th > T2. Let st be the vertices of *Th on Fa. Then, as Th(st) ^ ^ (s , ) , i = 1, ..., N, 
we have Tft = (T2)LJ on Fa, where (T2)LJ is the linear Lagrange interpolation of T2 

on Fa. Let 
1Fa = { x e F a | T , ( x ) > T 2 ( x ) } . 

Then 

f (w - Thy ds = f (T2 - Thy ds ^ f ((T2)L/ - T2)
2 d s = o(h4), 

J r. J >r« J i/tt 

as on - r „ 0 < Th(x) - T2(x) ^ ((T2(x))u - T2(x)) holds. Hence 

I T - n l ^ C0 |e /2 | | T - Th\\\ + i e - i | r - P„||2 + f T> - T„) dS + 

+ C2\\vh - T | | M r X ^ C0{ielCrlh\\T\\2 + ie-11Cr2 h\\T\\2 + 0(h*) + 
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+ C2
1Csh

2Z\\Tn\\HHrJ = 0(h), 

which completes the proof. 

Theorem 2.11. Let T2 = 0 on Fa, Te XK n H2(G), TjFa e H2(Fa). Then 

| | T - Th\\x = 0{h). 

P r o o f is similar to that of Theorem 2.10. 
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S o u h r n 

O JEDNOM TYPU SIGNORINIHO ÚLOHY BEZ TŘENÍ 
V LINEÁRNÍ TERMOELASTICITĚ 

JIŘÍ NEDOMA 

V článku je vyšetřována úloha Signoriniho typu v teorii termoelasticity pro případ 
ustáleného stavu. Úloha je modelovou úlohou z geodynamiky, jejíž fyzikální analysa 
je založena na hypotéze o tektonice litosferických desek a teorii termoelasticity. 

Je diskutována existence a jednoznačnost řešení Signoriniho úlohy bez tření pro 
případ ustáleného stavu v teorii termoelasticity a její numerické řešení metodou 
konečných elementů. Je ukázáno, že konvergence přibližného řešení k přesnému je 
řádu O(h), za předpokladu, že řešení je dostatečně regulární. 

Authoťs address: Ing. Jiří Nedoma, Středisko výpočetní techniky ČSAV, Pod vodárenskou 
vězí 4, 182 00 Praha 8. 
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