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1. INTRODUCTION

The mathematical theory of particle counters is concerned with the formulation
and study of stochastic processes associated with the registration of particles due
to radioactive substances by a counting device designed to detect and record them
and placed within the range of a radioactive material. The general problem can be
described as follows.

First we consider a sequence of random events consisting of the arrivals of the
emitted particles. This sequence is called the primary sequence of events or the
primary process. We suppose that any arriving particle generates an impulse of
a random length (may be constant one, too). Due to the inertia of the counting
device, it is possible that all particles will not be counted. The time during which
the device is unable to record is called the dead time. The sequence of registered
particles forms a secondary process which is selected from the primary sequence
according to the type of the counter employed.

The basic problem in the counter theory is to determine the distribution function
of the distance between two successive registered particles if the distribution function
of the primary process, distribution of impulses and the counter type are known.

Our main aim in this note is to determine the joint Laplace transform of the above
mentioned distribution, and the generating function of the number of particles
arriving in the counting device during the dead time for the so called Type 11 counter,
and to make some remarks on the registrations of m types of particles (m = 1).

2. NOTATION AND KNOWN RESULTS
The mathematical and physical literature on the counter theory deals mainly with
two types of models. A Type I counter (counter with nonprolonging dead time)

is one in which dead time occurs only after impulses of particles have been registered.
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A Type 1I counter (counter with prolonging dead time) is one in which dead time
occurs after registration of all impulses of emitted particles. Examples of Type I
and Type II counters are the Geiger-Miiller counters and electron multipliers,
respectively. An extensive bibliography of the counter theory is found in Takdcs
[24] and Smith [21]. From the physical literature dealing on this object see, for
example, the monograph [11].

Let us suppose that particles arrive at a counter at the instances 0 = 7, < 7, <
< 1y < ... < o, where the inter-arrival times 7, — 7,_; (n = 1, 2, ...) are identically
distributed, independent, positive random variables with the distribution function

F(x) = P(t, = Ty=y < X).

Denote by x, the duration of the impulse starting at 7, (n = 0, 1,2,...). It is
supposed that {y,} is a sequence of identically distributed, independent, positive
random variables with the distribution function

H(x) = P(x,) < x),
and independent of {1,}.

At any instant ¢ there are two mutually exclusive states in which the counter may
be, state E, when no impulse covers the instant, and state E; otherwise. The interval
when the counter is in the state E; corresponds to the dead time, and the interval
when it is in E, corresponds to an idle time. The particles are registered only if the
counter is idle, and let us suppose that the registration process starts from t, = 0.

In the Type II counter the nth particle (n = 1, 2, ...) is registered iff 7,, + 7, < 1,
forany m = 0, 1, ..., n — 1. If we define, following Pyke [15], n, = 0,

nj=min{k:k>n;,_,, 15, >1 4y, r=n_4, ...k — 1}

for j = 1,2,...,then {n;}?., is a sequence of indices of registered particles. Since
the primary process is a recurrent one, the secondary process

Zi=1,,— 1, .. i=12..

is recurrent as well.
The main problem is to determine the distribution function

G(x) = P(Z; < x).,
or, equivalently, its Laplace transform
ys) = M(e™*), s=0.

This very interesting problem has been studied by several authors. The particular
case of the Poisson primary process is discussed by Takdcs [22—24, 26, 28], Pollaczek
[14], Smith [21], Sankaranarayanan [17—19], Albert and Nelson [4], Afanaseva
and Michajlova [1, 2].
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Although in the physical practice we dzal mainly with the Poisson primary process,
due to the repcated handling of particles by several counters, the initial process
input at the last counter will not be Poisson, but only a recurrent one.

The recurrent primary process with a constant length of impulses is studied in
[15, 24, 28] and the exponentially distributed impulse times are discussed in [14, 15,
25, 27, 28].

The general case has been taken into account by Pollaczek [14] who has given
the solution in the form of complicated contour integrals. Takdcs [24] and Pyke
[15] obtained only integral equations without their solutions. Similar results are
obtained by using the multiplicative processes by Smith [21]. In the present authors’
paper [9], explicit computable formulae for the discrete primary process and discrete
lengths of impulses are given. Many other problems of the theory of Type Il counters
have been investigated, for example, in [6. 20].

This problem is impoitant not only for the counter theory. The same problems
(from the mathematical point of view) are studied in the film or filmless measurements
of the particle track ionization in the so called bubble and streamer chambers (for
details see, for example, [7, 8, 12]). The description of the queueing systems with
infinitely many servers leads to analogous problems, in general.

3. TYPE II COUNTER

As has been noticed by several authors [5, 15, 21] the determination of G or y
is an extremely difficult problem. However, there arc integral equations which
formally, but not always in practice, determine G or y. Takdcs [24] obtained an
integral equation for M(t), the expected number of registered particles in a time
interval (0, 1) for all = 0.

Lemma 1. (Takdcs [24]) Forallt = 0,
T 13 T t
(1) M(t) = J H(y) dF(r) + H(1) J M(i = y) dF(y) - J J M(z — y) dH(2) dF(y).
0 [ 0J0
If we know M(t), then y(s) may be determined from

) o (s) = re“dM(t) /(1 +re-ndM(r)>, $20.

0 I/ 0

Barlow [5] generalized the equation (1) to the case of the semi-Markov primary
process.
Pyke [15] obtained an integral equation for G.

Lemma 2. (Pyke [15]) For all x 2 0,

(3) G(x) = f ) j V(= G(x = v — ) H(y + 1) dN(1) dF(y),

239



and for all s 2 0,
(4) P(s) = A(s) (L + A(s)™ ",
where

X(s) = Jy f Tem 0 i(x + 1) dF(x) AN(D) -

0odJo
These two representations are equivalent in the sense that G and N are uniquely
determined by each other. Below we give an explicit form of the Laplace transform
y of the distribution function G which determines the solutions of the equations (1)
or (3).
Let us denote by g, the number of the impulses preceding the arrival of the nth
particle (n = 0, 1, 2, ...). The sequence of events A, defined by

A, ={q,=0], n=0,1,...,

is a sequence of recurrent events in the sense of Feller [10], i.e.,
P(A,-"/Ail AL = P(Ai,.~i,._1)

for any finite system of indices

i <i,<..<i n=23 ...

no>

Hence we have

(5) P4, = Jw...JwH(xl)... H(xy + ... 4+ x,)dF(xy)...dF(x,), n=1,

0 0

P(4o) = I .

We suppose that P(4;) > 0 (the case P(A4,) = 0 corresponds to the case when
during the dead time there arrive infinitely many particles). If we denote by v the
number of particles which arrive at the counter during the dead time, then P(v = n) =
= P(A4;...4,-,A,) and for P, = P(v = n) we have

(6) PlzP(Al),

n—1
P, = P(4,) — Y P(4)P, ;, nx=2.
i=1

exists and M(v) =

0

It is clear that P(A,) = P(A,,,), and the limit lim P(4) = P

= 1/P. In [3] sufficient conditions are given guaranteeing P, > 0.
Let us put
a, = P(4,) — P(4,,), n=01,...

Hence for the generating function f(z) = M(z") of v we have

(7) f(z) = z(1 ~"§Oa,,z") (1-:z i a,z")" 1, |zl <1.

n=0
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Define

a(s) = (Je""“dF(.\'), s=0,

JO

i =er dF(x).

0

With the given recurrent primary process {‘r,,},‘,’;o we define a new recurrent one
[RRS]

Tninso for any s = 0 with the distribution function
Fix) = P — 2, < x) = a"‘(s)J e dE(r).
(4]

Let f(z) be the generating function of the number v, of the particles arriving during
the dead time according to the primary process {7} },-, and the lengths of impulses

{uiv=o- Then we obtain the following forms for @(s, z) = M(e™**'z") and (s).
respectively.

Theorem 1. For any s = 0, |z] £ 1

(8) &(s. z)

Il
o~
AN

S
A~
w
N
T
ap

©) ws) = fla(s)).
(10) M(Z,) = p M(v).

Proof. Since Z, = 1,, we have

D(s,z) = j e *™z'dP =
{v=n)

n=1

= z [j e_s("+"'+"";"dF(ll) dF(r,,)dH(x,) ...dH(x,) .
n=1/} Cn

where the integration area C, is of the form

(xy < 1), [xp <ty 4+ 1\ o [x; <ty + .o+t \¢,
X, < 1 :

Xn—-1 < 1n—1

Xy <t +...+1,

(here the superscript “c” denotes the complement of the set indicated in the paren-
theses).
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Hence

(s, z) = Z " P(vy = n) = fa(s) 2) .
Analogously we proceed for (s). The mean value of Z, is obtained from the Wald
identity. Q.E.D.

4. THE PROPERTIES OF v

The integer-valued random variable v — | determines the number of the non-
registered particles between two successive registrations. Although in the physical
practice it is hardly observable during the registration process by counters, it is of
importance in other practical applications. For example, in the film handling of
track information, v means the number of the streamers with constant diameters
with constant diameters in the blobs [ 7, 12]. Some limit properties of v when P, — 0
are investigated in [3]. It was proved that P(v > n) ~ e~ "=".

Now we examine the dependence of P(v = n)on n. To this end we need the follow-
ing notion.

A distribution function F concentrated on {0, o0 >is a Cramer distribution function

sup {). >0 :J‘ e dF{x) < oc} = .

0

if

It is clear that the set C of all Cramer distribution functions is convex. Moreover,
if F{xo) =1 for some x, > 0, then Fe C, and if dF(x) = aexp(—bx°), x 20,
forsome a > 0,b > 0, ¢ = 2, then FeC.

Theorem 2. Let the durations of impulses have the Cramer distribution function
H. and P(A,) > 0. Then
(1) P = (B BT
where
L

(12) — 1+ 3 LS )

z=1>

L )

(13) i

and

z=1»

r| < CR™"

(the constant C does not depend on n, and R > 1).

Here Y(z) = P(A,) = + 3 (P(4,) — P(A,_,)) ="
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Proof. According to the Cauchy formula [13] we have

P, = —1~§; fz)dz Lfﬁ y(z) dz
=1

21 2nt! 21 J =y (1 = 2 4+ Y(2)) 2" ! )

From the conditions of the theorem we have
0 :<: an = P(An) - P(An+l) = P(Xl < Tli M Xn < Tn’ Xn+l g Xn+l) g

é P(Xn+1 ;. Tn+l) N
Since F € € we obtain

P(Zn+1 ">— 1n+1) é Al(elh) M(e_ltl)"+l

o
for any 4 = 0. Hence the series ) a,z" has the radius of convergence
n=0

R = 1M ") >1;

when 2 — o0, then R — 0. Therefore the cquation I — z + (z) = 0 has a unique
(simple) positive root z = f > 1 with the minimal module. This follows from the
following relations:

l—z+y(z)=1—-2z)Y a2, a,20.

Let R > 1 be the radius of a circle in which the function | — z + (z) has a unique
zero z = f1. Then

(14) r, = i L(Z:)‘d_f_' [ — ,,,,i{p,_(,ﬁf),,_,,, + P

21“' |21 =R Zn+1 (w’(ﬂ) _ 1) ﬁ"+1
The integral on the left-hand side of (14) may be estimated by the maximum module
[r] < CR™". Putting f; = 1/(1 — /'(B)) we obtain the formula (11).

To obtain explicit expressions for f# and f8;, we consider the function w = z —
— y(z) which conformly transforms some neighbourhood of the point w = 1 to
another one. Therefore w = w(z) has its inverse function z = z(w). It is clear that
f==(1)and B, = z'(l). Using the Lagrange expansion formula we obtain (11)
and (13). Q.E.D.

n-

5. TYPE III COUNTER

G. E. Albert and L. Nelson [4] used a more general form of the counter model
which includes both the above mentioned Type I and Type Il counters as special
cases.

They supposed that if a particle arrives at the counter, then the impulse (of the
length ,) starts with probability p if at the moment , an impulse occurs, and with
probability 1 otherwise. If p = 0, then we obtain the Type I counter while p = 1
leads to the Type 1I counter discussed above.
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This model has been studied by several authors [4, 24, 26—28, 15, 17—15]. The
distribution function related to the secondary process for p > 0 may be easily de-
duced from the one of the Type Il counter as was mentioned by Takacs [28].

Indeed, let us suppose that 0 < p < 1. We define the primary process with the
distribution function

F(x)=p Zlq”"" F.(x).

where ¢ = | — p, and F,(x) denotes the nth iterated convolution of the distribution
function with itself. It is easy to see that the only difference beiween the secondary
process of the Type HI counter determined by F(x), H(x) and p, and that of the
Type 1 counter determined by F(x). H(x) is that the latter contains an additional
interval spent in the state E, immediately before every transformation E, — E,.
The lengths of these intervals are identically distributed, independent random
variables with the distribution function

O(x) = pniq” Fi(x),

and these random variables are independent of any other random variables involved.

If y(s) and ?(s) denote the Laplace transforms of the distance between successive
registrations by the Type III counter and by the Type II counter mentioned above,
then we have

7(s) = v(s) p(1 = qa(s))™" -

where a(s) is the Laplace transform of the distribution function F(x). Hence we have

(15) 9s) = 5(5) (1 = g als)) p™" -

Here $(~) is determined by (9) in which we replace F(x) by F(x).

6. MARKOV RENEWAL PRIMARY PROCESS OF ZERO ORDER

In this section we consider a generalization of the problem of the registration
of particles with one type of particles to the problem with m types of particles (1 <
< m < o) which arrive at the Type II counter.

Let us suppose that there are m types of radioactive materials which emit m types
of particles according to the Markov renewal primary process of zero order. These
processes have been introduced and studied by Pyke [16].

Thus, we suppose that the relationships between different types of particles and
their impulses are as follows. Let the nth particle (n = 0) arriving at the counter
be of the type J, and let us suppose that the type of the particle does not depend
on the previous types of particles, and

P(J,=k)=p,, k=1,...m) p. = 1.
K=1
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Let Fi(x)and H{(x), i = 1, ..., m, be distribution functions with ¥{0) = H,(0) = 0
for each i. Then we define the process of interarrival times {T,} % ;, where T, is the

njn=

time between the arrivals of the (n — 1) th and nth particles, specifying T, = 0 and
(16) P(T, < x|Tps oo Ty s Jgs v J,) = Fu(x) as.

forallx 2 0and n > 0. R

We sce that the primary process 1, = » T;, n 2 0, is a recurrent one, determined

by the function i=0

F(x) = :glpj Fi(x)

The lengths of the impulses {y,} 2., of particles arriving at the moments t,, n = 0,
are the determined as follows

(17) P(yo < x|Jo, To) = Hy(x) as. forall x=0,
Pty < x[Joeoos Iy 200 oo os Hu=1s Ton - Tymy) = Hy (x)  aus.

forallx 2 Oand n > 1.
From (16) and (17) we have that the lengihs of impulses are independent, positive
random variables with the common distribution function

H(x)=ipjf1j(_x), x=0,

and they do not depend on {r,}. Then the above interesting characteristics of the
resulting secondary process may be determined by the methods developed in Section 3.

7. EXAMPLES

Example 1. Let F(x) = | —e™*%, x = 0. and let H(x) be an arbitrary distribu-
tion function. Then

H&)zﬂ“wfwfmnﬂyﬁ“m,anLw
J exp( J:(] - :H(x))dx)dt>_1, lz| <1,

(0
Bs,z) = 1 — (/1 +s .[ exp(-—st - ;.'[;(1 ~ 2 H(X)) dx)dt)nl,
0,
(
>0.

~

—

N
Il

“
v

[z](l

(wuwemoa—ﬁm—(mmyyﬂ

~
~~

3
~

It
—_

|
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If h = [§ xdH(x) < oo, then by [29] lim P(4,) = ¢ *". Hence

M(V) — Cu, ,
M(Z,)) = ™2

The expression for y agrees with that in [24]. In an analogous way we may obtain
the formula for y for the Type IT counter since F{x) = [ — e **, x 2 0.

Example 2. Let F(x) = 1 if x > a > 0 for some a, clsewhere 0, and let H be
an arbitrary distribution function with H(«) % 0. Then

P(4,) =[] H(ia), n=0,1,...,
i=1

where the empty product is put cqual to 1.
Hence M(v) < oo iff [§ xd H(x) < .
Now let ny + 1 be the minimal integer n such that H(na) = 1, then

M(v) = 1 /[] Hia),

and for generating function of v we have
f(z) = (1 —"OZI(J,,Z")(J -~ znozla,,z”)"1 ,
where " "
an = (1= H((n + 1)a)) ] H(ia)
Hence we obtain o
D(s,z) = flze™™), s
s) =fle™™), s=20.

Example 3. Let F be an arbitrary distribution function, and let H(x) = 1 if
x > b > 0 for some b, and zero elsewhere. Then

P(A,,) =1, n=12,...,
P, =I(1-1)"”1 n=12,...,

s

v

0, |7 =1,

where

I=1-Fb—0)
(we assume that F(b — 0) = 1).

Moreover,
MGy) =11,
flz) =I1z(1l—-(1-Dz)"", |7 =1,
&(s, z) = zjjc“"" dF(x)/(] - thc“‘"dF(x)), s=>0, lzl <1,
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o = [eanaf(i- [ o). vz o
b 4]

/

The expression for y(s) is the same as that in [15, 28].
Let us put

F(x) = P(tr, < x|t, < b),

<
1:’()() = P(t; < x/t; 2 b),

and let i, and g, be the rth moments with respect to the distribution functions F(x)
and F(x), respectively. Then for the dead time B we obtain

1\4(13)

b+ (L+1)al,
r—1
M(B") = b+ (1 — 1)1*1201v1(3f) A, r=23 ..,

j=

and for the moments of Z; we have

M(Z,) = pI,
M(Zy) = Y  M(B")(=b*u,, r=23...,
ritratri=r
ri=0
where
o= J xdH(x) < w.
0
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Sahrn
POZNAMKA K PROBLEMU CITACA TYPU II
ANATOLI) DVURECENSKII*), GENNADIJ A. OSOSKOV
Vysetruje sa explicitny tvar zdruZenej Laplaceovej transformdcie vzdialenostt
medzi dvoma susednymi momentami registrdcie astic &itaSom typu 1I (&ita¢ s pre-

dlZujicim sa mftvym &asom), vo vieobecnom pripade, a vytvdrajucej funkcie poétu
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Castic. ktoré prisli na &itaé pocas mftveho Casu. Tym sa naSli explicitné rieSenia
zlozitych integrdlnych rovnic, ktoré odvodili L. Takdcs a R. Pyke. Okrem toho sa
Studuje geometrické sprdvanie rozdelenia poslednej zmienenej ndhodnej veliiny
a su spravené nicktoré poznamky o &itaci typu III, ako aj registrdcia m typov Castic
sa uvazuje.

Author's addresses: RNDr. Anatolij Dvureéenskij, CSc.. Dr. Genadij A. Ososkov, CSc., Labo-

ratory of Computing Techniques and Automation. JINR Dubna, Head Post Office, P.O. Box. 79,
101 000 Moscow, USSR.

*} Permanent address: Ustav merania a meracej techniky CEFV SAV, Dubravska cesta,
885 27 Bratislava, Czechoslovakia.

249



		webmaster@dml.cz
	2020-07-02T05:13:56+0200
	CZ
	DML-CZ attests to the accuracy and integrity of this document




