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SVAZEK 29 (1984) A P L I K A C E M A T E M A T I K Y ČÍSLO 5 

CONVERGENCE OF APPROXIMATION METHODS 
FOR EIGENVALUE PROBLEM FOR TWO FORMS 

TERESA REGINSKA 

(Received April 13, 1983) 

INTRODUCTION 

In [2] R. D. Brown investigated approximation methods for eigenvalues of a real 
quadratic form b relative to a positive definite quadratic form a, where a and b 
are defined on a vector space V. He considered a general procedure for approxima­
tion, outlined by Aronszajn in [1]. His investigations were carried out on the basis 
of the theory of discrete convergence in Banach spaces in the form developed by 
Stummel in [6]. In this paper we prove a general convergence theorem in a different 
way. Namely, it is shown how the theory of external approximation of eigenvalue 
problems described in [5] can be adopted to the study of the methods considered 
by Brown. The convergence criteria obtained are somewhat weaker than those 
presented in [2]. 

1. EXTERNAL APPROXIMATION OF EIGENVALUE PROBLEMS 

In this section we present a brief summary of the results contained in [5] con­
cerning external approximation of eigenproblems. 

Let X be a Banach space and Te £?(X), Let F be a normed space such that there 

exists an isomorphism co :X—-—> F. Next, let {X,.}„°=1 be a sequence of Banach 

spaces with norms denoted by || )[,. and let {r„}™=1 and {p„}^=l be sequences of linear 

maps from X onto Xn and Xn into F (n = 1,2,...), respectively. 

Definition 1. An approximation {Xn, rn, pn} ofX is said to be an external approxi­
mation convergent in F if rn and pn are uniformly bounded and 

Mu eX lim \\cou - pnrnu\\F = 0 . 
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Let us introduce a sequence {Tn}^x of linear bounded operators Tn e &(Xn), n = 
= 1, 2, .... As usual, O"(T), O(F) and o-(T„), O(T„) denote the spectrum and the resol­
vent set of Tand Tn, respectively. 

Definition 2. The approximation {Tn}n°=1 is stable at a point X e O(T) iff 3N; and 
3MA V/i > NA X G Q(Tn) and \\(X - Tn)~' || g M, < oo. 

Let N(rM) denote the null space of r„. We assume that for any n, N(rIJ) has a com­
plementary subspace in X. So, we can introduce the set J^ of all sequences of com­
plementary subspaces for N(r„): 

>~ = {{K,}r=. : K cz X, V„ © N(r„) = X} . 

Theorem 1. If there exists {Vn} e 3F such that 

(1.1) Sn = sup ||coTv - PnT„r„v||F -» 0 , 
veVn 

(1.2) £/J = sup ||cot? - pnrnv\\F -> 0 , 
veVn 

IMl ' 8 8 -

then for any X e O(T) there exists a constant Mx < oo such that 

\\(X-Tn)^\\^Mk. 

Remark 1. If the residual spectrum ar(Tn) of Tn (or(Tn) = {X e o(Tn): (X - Tn) 

x = 0 == x = 0 , and (X — Tn)Xn 4= Xn}) does not contain the points of Q(T), 

then Theorem 1 implies that {Tn} is stable at any X e Q(T). 

Definition 3. We will say that o(Tn) approximates o(T) if the following three 
implications take place: 

i) if Q cz C is open and Q n o(T) #= 0, then Q n o(Tn) =j= 0for sufficiently large n; 

ii) if X e cr(T) and there is S0 < 0 such that K(A, <50) n cr(T) = {A}, where K(2, S0) 

is a circle with radius 30 and center X, then for every S such that 0 < <5 < <50 : 

cr(Tn) n K(/l, c50) c K(A, S) for sufficiently large n; 

iii) if/ln G cr(T;.) and Xn -> X0 as n -+ oo, then /l0 G <x(T). 

In the sequel we quote four theorems concerning the convergence of an approxim­
ation. 

Theorem 2. Let {Xn, rn, pn} be an external approximation of X, convergent 
in F, and let {Tn} be stable in Q(T). If for any u e X 

(1.3) lim \\rnTu - T„r„u||n = 0 , 
n~* oo 
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where [J - J|„ stands for the norm in Xn, then o(Tn) approximates o(T) in the sense 

of Definition 3. 

Let F be a Jordan curve in the resolvent set Q(T). If {Tn} is stable for all l e f , 
then F _ Q(T„) for n > N0. So the spectral projectors associated with F, i.e. E : X -> 
-> X and En : Xn -> Xn, are well defined and 

F = -L í (я - г)- 1 <u, E„ = -L f (x _ т.)-1 

2тгi J г 2тгi J г 

dЯ 

Theorem 3. If the assumptions of Theorem 2 are satisfied, then 

i) if dim EX = oo, ^hen dim F^X,, -> co as n -* oo, 

ii) if dim EX = n, then dim pnEnXn = n for n > n0. 

The preservation of algebraic multiplicities of isolated eigenvalues can be obtained 

under a certain stronger assumption on Tn. Namely, we have 

Theorem 4. Let the assumptions of Theorem 2 be satisfied. If dim EX < oo and 

(1.4) \\(T„rH - r„T)(X - T)~]|„J - 0 for XeT, 

then dim EX = dim pnEnXn. 

The eigensubspace EX of Tis approximated by EnXn in the following sense (cf. [5]): 

Theorem 5. If the assumptions of Theorem 2 are satisfied, then 

Vv G EX dist (o>v, p,aF,X„) -> 0 . 

If, moreover (1.4) is satisfied, then 

5(ooEX, pnEnXn) -> 0 , 

where S(Y, Z) is the gap between closed subspaces Y and Z of X (S(Y, Z) = 

= max (OXY, Z), O"(Z, Y)) where <5(Y, Z) - sup dist (y, Z)). 
y e y 

lb !I = i 

2. APPROXIMATION OF THE EIGENVALUE PROBLEM 
FOR TWO FORMS AND THE CONVERGENCE RESULTS 

The eigenvalue problem for a pair of sesquilinear forms a and b on a complex 

vector space Vis considered. It is assumed that a is symmetric and positive definite 

and, moreover, b is continuous with respect to a, i.e.: Vu, v e V|b(u, v)| = c alf2(u, u). 

, a1/2(v, v), c a positive constant. Assume also that Vis separable with respect to 

the norm a1/2. Let X be the closure of Vin the norm a1/2. The form b can be conti­

nuously extended to X. So, our eigenvalue problems takes the form 
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(2.1) find keC and 0 4= ueX such that 

b(u, v) = k a(u, v) Vv e V, 

which is equivalent to the eigenproblem for an operator Te J£(X) defined by a and b 
as follows: 

(2.2) Vu e X b(u, v) = a(Tu, v) Vv e V. 

We will consider the approximate methods for the problem (2.1), which are generat­
ed by sequences of sesquilinear forms an and bn defined on V x V. It is assumed that 
an (n = 0, 1, ...) are symmetric and positive definite and bn are bounded with respect 
to an. 

Let Xn be the closure of Vin the norm al
n
12, n = 0, 1, .... The norms in X and Xn 

will be denoted by || || and || ||,., respectively. The forms bn have continuous exten­
sions on Xn. The rc-th approximate eigenvalue problem takes the form 

(2.3) find ke C and 0 #= u e Xn such that bn(u, v) = k an(u, v) Vv e V. 

This problem is equivalent to the eigenproblem for an operator Tn e S£(Xn) which 
is defined by an and bn as follows: 

(2.4) Vu e Xn bn(u, v) = an(Tnu, v) Vv e V. 

It will be assumed that the following conditions are satisfied: 

C I a0 ^ an ^ a ; 

C 2 a is quasi-bounded with respect to a0, i.e. 

Vu e V 3MU < oo \a(u, v)| ^ MM||v||0 Vv e V. 

(a is quasi-bounded with respect to a0 iff there exists a symmetric operator L in X0 

such that Vu, v e Vu(u, v) = a0(Lu, v)). The forms an generate a certain approxima­
tion of the space X. We will show that it is a special kind of the external approxima­
tion of X. We are going to construct suitable maps rn and pn. 

Let us first remark that the assumptions C 1 and C 2 imply that a is quasi-bounded 
with respect to an, n = 1, 2, .... In fact, a(u, v) = an(AnLu, v) Vv e V, where A„ 
is a bounded operator defined by a0(u, v) = an(Anii, v) Vv e V. Denote Ln = AnL. 
The operator Ln considered in Xn is bounded from below (an(Lnu, u) ^ an(u, u) 
Vu e V), so Ln is semi-bounded in Xn. Every semi-bounded symmetric operator 
with a dense domain has a semi-bounded selfadjoint extension with the same lower 
bound (cf. [3], XII. 5A). Let Ln be the selfadjoint extension of Ln on the space Xn. 
Ln is positive definite. Thus, there is a unique positive definite and selfadjoint square 
root L\i2 of Ln and the domain D(Ln) of Ln is dense in D(LlJ2) (cf. [4], V. § 3.11). 

Let tn:X-+ Xn be the unique bounded linear transformation such that 
tnv = v, Vv G V. We will show that D(l}n

12) = tnX. To this end we apply the 
second representation theorem ([4], VI, § 2.6). The assumptions xk e V, xk - — -> 0 
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in Xn and ||xfc - x11| ~p~T* ® in^ply- by C 2, that for any u e V, \a(u, xk)\ ^ ||L„M||n . 
. \xk\n -* 0. Thus the form a is closable in Xn. So, let a(n) be the closure of a in Kn. 
For u, o e l we have a{n)(tnii, tnv) = a(u, v), and the selfadjoint operator associated 
with a(n) in K,, is equal to L„ defined above. The second representation theorem for 
the densely defined, closed symmetric, and positive definite form ain) yields that 
D(L!/2) = tnX\no\Ju,veX 

(2.5) a(u, v) = a("}(tnu, tnv) = an(L\'\u, LlJ2tnv). 

Finally, let us remark that the mapping tn of X into Xn is injective. In fact, if xk e V 

and xk — ^ > x in K then tMxfc - fe > t,,x inXn and VM G V\a(u, x)| = lim \an(Lnu, xk)\ S 

g ||LnM||n. lim \\xk\\n = ||L„M||n . ||^x||„ • So, if |[tHx|| = 0 then Vu e V a(u, x) = 0y 
k-* CO 

i.e. x = 0. 

Let us define rn = LlJ2tn. 

Lemma 1. If C 1 and C 2 are satisfied, then rn e S£{X, Xj) and r _ 1 e S£(Xn, X) 

for n = 0, 1, ... . Moreover, \\r„\\<?{xtXn) = l l ^ l ^ x , , * , = 1. 

Proof. From (2.5) it follows that VueX \rnu\2 = an(L
lJ2tnu, Lj2tnu) = | |u| . 

Next, let us remark that Vw e D(Ln) an(Lnw, w) = a(n;(w, w) ^ a„(w, w). In [4] 
(V, § 3.11) it is proved that under that condition L~1/2 is a bounded operator on Kn. 
So, Vv e Xn r~x is well defined since t„ is injective, as has been shown above. More-
over, by (2.5) ^vsX^^vf - W^'L^vf = a^L'^v, L'^v) = an(v, v) 
which completes the proof of Lemma 1. 

So, we can put pn = r~1. We have pnrnx = x for any x e X. Thus we have 

Corollary 1. {Xn, rn, pn} is an external approximation of X, convergent in X 
in the sense of Definition 1. 

Lemma 2. If C 1 and C 2 are satisfied together with 

C 3 Vu e V sup |a„(u, v) — a(u, v)\ -» 0 , 
veV 

IMI - -
Il7et2 Vu G V||rnM — M||.. -* 0 . 

Proof. Let us apply the integral expression for Lj2 (cf. [4], V, § 3.11): 

1 
ÜJ>u = 

7Г 

A" 1 / 2(L„ + A)~ l Lnu dX for M G D(L„) c Kn. 

Similarly, we can express the identity operator on Xn: 

lu^^ fV1 / 2(/ +Aj-^dA. 
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Since (L„ + X) 1 Lnu = u - X(Ln + X) x u for u e D(Ln) and (I + A) - l u = 
= u — X(I + A)"1 u; we have 

L^2u - u = i f°°A1/2[(I + X)~l - (L„ + A)"1] u dA = 
ftjo 

1 f°° 
= - A1/2(L„ + X)~' (Ln - I) (I + X)~l u dX for u e D(Ln). 

* J o 

The last term is obtained from the resolvent equation 

(/ + A)"1 - (L„ + A)"1 = (L„ + AY! (L„ - /)(/ + A)"1 . 

From the above it follows that 

\\LlJ2u - u\\n ^ l- f ° V " ( l + A)-2dA||L„» - «||„, 
" J o 

since (/ + A)"1 u = (1 + X)~l u and ||(L„ + A)- ' | | ^ [d is t (-A, <T(L„)]-' ^ 
^ (1 + A) - 1 . Thus, for any u e V 

| | ^ » / 2 W ~ W | | K -= C\\LnU ~ W | l " = C S U P \an(LnU ~ ", v)\ 
veV 

IMI-i 

= sup |a(w, v) — u„(u, v)| -> 0 veV 
IMI = 1 

according to the assumption C 3. 

Theorem 6. If C 1, C 2 and C 3 are satisfied together with 

C 4 sup |b„(u, tf) ~ b(u, v)\ -> 0 us n -> oo ; 
H.ueK 

IMI = i M I = l 

C 5 if sequences {un} and {vn} of elements of Vsatisfy an(un, w) -> u(u, w) 

urui ^.(v,,, w) -> u(v, w) Vw G Vuud the norms \\un\\n, \\vn\\n 

are uniformly bounded then bn(un, vn) -> b(u, v), 
then the family {Tn} defined by (2.4) is stable. 

Proof. We have to show that 3n (Sn = \\T — rn
lTnrn\\) converges to zero as 

n -> oo. Let us take u and v from the space V. Then 

a^Tjrju, v) = a(t;lL'n
l'2TnL

lJ2u, v) = a < > , L;"2T„L'„'2«) = 

= a,1(L„.,L;'/2T„L1„/2M). 

Since L'„/2 is selfadjaont in Z„, by the definition of T„ 

a„(Lnv, L-n
l'2TnL'J2u) = a„(T„L„'2u, L!j2») = b„(LlJ2u, VJ2v) . 
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Thus 

5„ = sup a({T- r„-'Tnr„) u, v) = sup \b(u, v) - bn(l}J2u, L'J2v)\ ^ 
u,veV u,veV 

IMI = IMI = 1 IMI = IMI = 1 

g sup |b(u, v) - b„(u, v)| + sup |b„(u, v) - bn(L
lJ2u, LlJ2v)\ . 

u,veV u,veV 
ll«ll = IMI = l ll«ll = l|f|| = l 

The first term tends to zero according to the assumption C 4. Suppose that the 
second term does not converge to zero. Thus, there exist e < 0 and sequences {un} 
and {vn} from the unit sphere in Vn X such that 

(2.6) \bn(u„, vn) - bn(L\'2un, LlJ2vn)\ ^ e . 

From these sequences we can choose subsequences {u„fc} and {vnk} weakly conver­
gent in X. Let their weak limits be denoted by u and v, respectively. Thus Vu e V 

\ank(
unk> w) - a(u, w)\ S sup \a„k(z, v) - a(z, v)\ + a(unk, w) - a(u, w)\ , 

ze V 
11-11 = 1 

and the left-hand side converges to zero by the assumption C 3. So, C 5 implies that 

bnk(
unk, vj -> b(u,v) . 

We have to show that the sequence {bnk(L
lJ2unk, LlJ2vnk)} has the same limit. Let us 

notice that an(VJ2un, w) = an(un, w) + a„(u„, LlJ2w - w) for any w e V since LlJ2 

is selfadjoint in Xn. Thus, by Lemma 2, 

lim ank(L
lJ2unk, w) = lim ank (u„k, w) = a(u, w). 

k~* cc k~* oc 

Applying now C 5 to the sequences {Llk
2u,Ifc} and {LVfc

2
f̂c} we get |bMfc(u„k, v„k) -

- bnh(L!J*unk, Lj2vnk)\ -> 0 contrary to (2.6). Thus 3n --> 0. It is easy to show that 
if Sn -f 0, then Q(T) n crr(Tn) = 0 for n > n0. Thus {Tn} is stable according to 
Remark 1. 

Now, let us notice that, in our special case, the condition (1.1) of Theorem 1 
implies the condition (1.3). Moreover, (1.1) implies the condition (1.4). Thus accord­
ing to Corollary 1 and Theorem 6, all the assumptions of Theorems 2 — 5 are satis­
fied. Therefore, the final result concerning the convergence of the methods considered 
can be formulated in the form of the following theorem: 

Theorem 7. Let the conditions C 1 —C 5 be satisfied. Then 

i) (r(T„) approximates cr(T) in the sense of Definition 3; 

ii) if T is a Jordan curve in Q(T) and E and En are the spectral projectors associated 

•with T and T and Tn, respectively, then 

if dim EX = oo, then dim EnXn -> oo, 
if dim EX = n, then dim EnXn = n for sufficiently large n; 

iii) S(EX, PnEnXn) -> 0. 
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The theorem on convergence of eigenelements presented in [2] (cf. Th. 1.2) is 
proved under the additional assumptions on b and bn. Namely, it is assumed that b 
and bn are symmetric forms on V completely continuous with respect to a and an, 
respectively (n = 0, 1, . . . ) . 

3. APPLICATION TO ARONSZAJNS METHOD 

Aronszajn's method is a special case of the approximation (2.3) considered in 
Section 2. Aronszajn's method is defined for the selfadjoint problem, i.e. b is also 
symmetric (cf. [ l ] , [2], [7]). Since our theorem admits nonselfadjoint case we will 
assume that b is nonsymmetric, but bn = b, n = 0, 1 , . . . . 

The initial approximate eigenproblem is chosen so as to be easily solvable and 
a0 -^ a. To construct the intermediate forms an one defines a' = a — a0 and a se­
quence {cpj} in V whose elements are linearly independent modulo the null space 
N of a' in V Let nn be the projection, orthogonal with respect to a', of Vonto span 
(cpu ...,(/?„). Define 

<*n(u) - a0(u) + a'(nnu) n = 1, 2, ... 

Then a0 ^ aA ^ . . . ^ a . So an is a finite dimensional perturbation of a. In [2] 
Brown proved the following theorem (cf. Prop. 2.1 and Th. 5.1) . 

Theorem 8. If 

i) a is quasi-bounded with respect to a0 (thus there exists a symmetric operator 

L, D(L) = V, such that a(u, v) = a0(Lu, v) Vw, v e V), 

ii) b is completely continuous with respect to a0, 

iii) V : = N + span (cpj) is dense in X, 

iv) L(V') is dense in X0, 

then the condition C 5 is satisfied. 

It is easy to see that the assumption C 3 is also satisfied. In fact, since a(u, v) — 
— an(u, v) = a'(u — I7nu, v), for u e N we have a(u, v) — an(u, v) = 0 Vv e V. 
Moreover, for u e span (q>j) \TInu — u\\x -> 0. Thus, since \\v\\x ^ ||v||0, we have 

sup a'(u ~ TInu, v) ^ sup a(u — I7„u, v) + sup a0(u — IJnu, v) = 
veV veV veV 

l l » l l x = 1 l l » l l x * l \\»\\o=l 

= ||u - nnu\\x + \\u - nnu\\Xo ^ 2\\u - nnu\\x ~> o . 
So, Theorem 7 yields. 

Corollary 2. If the assumptions (i —iv) Of Theorem 8 are satisfied, then the eigen­
elements of the intermediate problems 

find XeC and 0 + u eXn such that 

b(u, v) - A an(u, v) Vv e V 
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approximate suitable eigenelements of (2.1) in the sense of the points i) —iii) Of 

Theorem 7. 

Similar results for Aronszajrfs method are obtained in [2] in another way. 
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S o u h r n 

KONVERGENCE APROXIMAČNÍ METODY 

PRO PROBLÉM VLASTNÍCH HODNOT DVOU FOREM 

TERESA REGIŇSKA 

Článek je věnován aproximaci problému vlastních hodnot dvou forem v Hilber-
tově prostoru X. Zkoumají se aproximační metody generované posloupnostmi 
forem an a bn definovaných na hustém podprostoru X. Důkaz konvergence těchto 
metod je založen na teorii vnější aproximace problému vlastních hodnot. Obecné 
výsledky jsou aplikovány na Aronszajnovu metodu. 
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