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SVAZEK 30 (1985) APLIKACE MATEMATIKY ČÍSLO 5 

ON EXPONENTIAL APPROXIMATION 

ANTON H u t A 

(Received November 10, 1983) 

1. INTRODUCTION 

A large number of events (processes) especially in economy, medicine, biology, 
physics, chemistry etc have an exponential character. Therefore, when constructing 
the formula expressing such a process, the natural starting point is the exponential 
function, which often reproduces the process more truly than other functions (e.g. 
polynomials). The aim of this article is to show one kind of exponential approximation. 

Problem. One has to find a real function 

(1) y(xux2,...,xn) for (xu x2, ..., x„) eEn 

so that it assumes given real values for prescribed fixed values of (xl9 x2, ..., xn). 
In this article we will limit ourselves only to the case that for the whole definition 
domain the following inequality holds: 

(2) y(xu x2,..., x„) > 0 . 

If the given values have an exponential distribution, so that a function which 
follows this distribution has an exponential character, then it is of advantage to 
choose as an approximation function a function of the form 

( 3 ) y(*l> x2> •••> Xnl hi l2-> •••-> ln) = 

Pi P2 Pn = n n---n«(ii'>ii2>---.^rx' xn). 
; . = 0 , 7 2 = 0 jn = 0 

n n 

where Tl(x1, ..., xn) = Y[ xiA a n ( * the order of the approximation is p = £ px. 
X=l A = l 

N o t e 1. The rc-tuple (iu i2,..., in) is an arbitrary permutation of the numbers 
1,2, ..., n which denotes the order of the products. In the simplest case we have the 
1st permutation, i.e. ix = X for X = 1, 2,..., n. The symbols a(i{\ iJ

2
2,..., iJ

n
n) denote 
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only the constants belonging to the exponents \\xj* = x{ . xJ
2

2 xJ
n

n in the 
X = 1 

relation (3). At the same t ime ,^ in the expression iJ
x
A is no exponent, it only indicates 

how many times ix occurs. 
Now let us consider an n-dimensional "table" with equidistant arguments for the 

function y. If the values in the table are exact, then one can determine the coef­
ficients a by means of exponential interpolation. However, if the values are charged 
with errors, then it is necessary to use the exponential approximation. 

We will show two methods: The former is based on the method of the least squares 
while the latter is connected with the method occuring when deriving the King 
form u I a used for determining the parameters of the Gompertz-Makeham law. 

2. NOTATION AND SYMBOLS 

For the sake of brevity it is advantageous to introduce some symbols (vectors): 

i = ( i x , i 2 , . . . , in) 

where ix is the index of the 1th sum (2th product); 

i = {h,h,...,iP) 

where lx is the Xth cumulated group; 

* l ~ (^1, .V *2,z2> •••' *JP,/P) 

where Yxu is the value of the Ath cumulated group; 

s = (sl9 s2, ..., sn) 

where sx is the number of terms (factors) in the Ath sum (product), 

w, = (mlfl, mia, ..., mln) 

where ml x is the number of terms in the Ath group; 

y(x; i) = y(xl9 x2,..., xn; ix, i2,..., in) ; 

n(x; i) = n(xu x2, ..., xn; il9 i2, ..., in) = log y(x; i); 

aiJ) = a(i{\iJ
2\...,i

Jr) 

is the coefficient determined from the exact values; 

<iJ) = c(i{\iJ
2\...9in») 

is the coefficient determined from the values charged with errors; 

oc[iJ) = log a(iJ) ; 

y(iJ) = log Cyi
J) ; 

P = (PuP2,...,Pn) 
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where pA is the order of the function for the /1th variable; 

x = (x1? x2, ..., xn) 

is the (column) vector of the variable x; 

h = (h1,h2,...,hn) 

where hk is the step of xA; 

*(j) = 
A = 1 

A = 1 

is the polynomial coefficient; 

**=[(!>„)]' 

is the formal power of the sum (wi thou t the sign + ) ; 

e.g. for k = 2 we have x2 = (x2, 2x tx2 , x2 , 2xiX3, 2x2x3, x3, ..., x2)T ; 

y = [ y ( l \ 2°, 3° , . . . , «°), y(l°, 2 \ 3° , . . . , n°), ..., y(l°, 2°, 3° , . . . , (n - l)°, n ' ) ] ; 

y2 = [y(l2, 2°, 3°, ..., n°), y ( l \ 2 \ 3°, ..., n°), y(l°, 22, 3° , . . . , n°) , 

y ( l \ 2°, 3 \ ..., n°), y(l°, 2 \ 3 \ ..., n°), ..., y(l°, 2°, 3°, ..., n2)] . 

The scalar product is 

(y2, x2) = y ( l \ 2°, 3°, ..., n°) x2 + 2y( l \ 2 \ 3°, ..., n°) x,x 2 + 

+ y ( l ° , 2 \ 3 ° , . . . , n ° ) x 2 + ... + y ( l ° , 2° , 3° , . . . ,n2)x„2 

or generally 

(yk,xk) = Zx{j)y(iJ)f[xi\ where £ ; A = / c , fc = 0, 1, 2 , . . . . 
j = 0 A = l A = l 

Using this notation we can transcribe the formula (3) into the form 

(4) y(x;i) = f\a(iJ)n^->^ 
j=o 

and further 

(5) r,(x; i) = £ log a(iJ) f\ x f = £ a(iJ) f ] x{- . 
j = 0 A = l j = 0 A = l 

If the values are charged with errors, we have 

(6) X*;i) = n< iT*' Xn) 

3 = 0 

and 
p 

(7) řj(x; І) = X log c(iJ) П 4 Л = E ľ(/J) П *A i ) n ^ 
j = 0 A = l j=0 A = l 
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where c(iJ) are the coefficients determined from the values charged with errors. 

If we introduce, for the sake of brevity, the notation 

(8) (/,**) =-1! - I </) tf^ ft *J* 
j=0 A = l 

then for the jpth order formula we can write 

(9) r1{x;j) = £r„ where T„° = y{f). 
fc = 0 

One determines the partial derivatives of F* from the formula 

(io) ?£• = y x{j) y(p) fr x£ + «, y ^ = k. 

E.g. for n = 2, k = 3 we have 
3i-3 3 

/i + 2 ; 2 + i 
ć[x(2; 1) yOІ, ii)] jto 

тv,=Iк(f)Kiľ>iІ2)4'+V2

: 

3. THE LEAST SQUARES METHOD 

Theorem 1. In En let the arguments xq = (xqU xq2, ..., xqn) for q = 1, 2, ..., s 
correspond to the error charged values yq (e.g., the results of a measurement). 
If the values yq show an exponential behaviour, then the approximation function 
y(x) of the pth order according to (6) can be written in the form 

p 

(11) y{x;i) = ll<iJ)n(x' Xi)-
j=o 

Proof. Let us construct the function of the sum of squares of the derivatives 

(12) *bll = Uirt-r(x;i)Y. 
i fc=l 

A necessary condition for the minimum of the function $\y\ is the validity of the 
relation 

(13) d m = = 0 f o r T = 1 , 2 , . . . , T 
dyx 

where T denotes the number of all variables y of #[y]. After executing the calculation 
the relation (13) assumes the form 

(14) 2nin->K*;*)]lW-A = 0 ^ T = 1 , 2 , . . . , T 
i fc=l A = l 
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where D.r A is an element of 

v (jHx,l iHx,2 / M r , A :Ht,n\ 
7 t \ M ? l2 9 • • • , h. » • • • > ' « ) • 

The formula (14) is a system of T linear equation with T unknowns yr for T = 1, 2, . . . 
..., T. Solving this system we obtain the values yT,and taking antilogarithms we get 
the parameters c which, put into (3), determine the approximation function (11). 

N o t e 2. It is necessary to remark that one may use the above method only if the 
"multidimensional table" contains the knots of the values whose coordinates occur 
in the formulas of the method. 

4. METHOD OF CUMULATED VALUES 

This method, which is closely related to the King formula method, consists in 
cumulating (by addition or multiplication) some successive values. From the table 
obtained in this way it is possible to determine the parameters of the approximation 
function. Here also the condition of knots existence must be satisfied. Now, if we 
want to construct a p-order formula, we must divide the number of all arguments s 
by p + 1. 

In this manner we obtain the number of the cumulated values m, namely 

(15) m = where s = (st, s2, ..., sn) and p = (px, p2,,.., pn) . 
P + 1 

So instead of all values of the table 

(16) J; = ! ] < • / f o r ' = 1>2,.. . , Ji 
j=o 

we have only the cumulated values 
lm 
y xk 

a?) Y,= fi * - i U " ( ' " for / = 1'2'--
i = ( J - l ) m + l k = 0 

The number of Yt is essentially less than the number of yr 

Theorem 2. In En let the arguments xq = (xq,i, xq2,..., xqn) for q = 1, 2 , . . . , s 
correspond to the error charged values yq (e.g., the results of a measurement). 
Further, let the values yq show an exponential behaviour. Then the approximation 
function K(x) of the pth order has the form 

(18) K(x;i) = fl<iJ)n(Xu''''Xn)-
j = 0 

Proof. The function y(x; i) of the pth order has p + 1 constants. We assume that 
the quotient of this function is a function of the (p — l)st order and so it will have p 
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constants. One has to prove that the order of the quotient of the function is indeed 
lower than that of the function. 

We transform the primary table with s values into a table with p + 1 values by 
introducing cumulated values the number of which is m = sj(p + 1). Moreover, 
introducing the notation 

m 

(19) ^ ^ Z " 1 f o r °t = ( f fl , . i»*2..2 .---.<Vj 
H = l 

we can write the exponent in the formula (17) in the form 

(20) z *? = £(fWr-V*v 
i = ( / - i ) m + l t = 0\l J 

Hence the exponent of the quotient of two successive terms is given by the formula 

(1+ l)m lm fc-1 / J L \ 

(20 Z x\ - z A = Z (,)(*£' - *?.-i)-)*V 
i = lm+l i = ( ! - ' l )m+l t=o\lJ 

As the right-hand side of the formula(2l) shows, the degree of the polynomial in the 
exponent is k — 1 and therefore the quotient of the primary function also diminishes 
by 1. Consequently, if the order of the function y(x;i) is p, the quotient Qy(x;i) 
will have the order p — 1 and QQy(x; i) the order p — Q. Let the cpth component of 
the function y(x; i), i.e. yv, be of the p^th order, then Qp<pp(p will be constant and 
QP<P+ 1 _ ] 

From y(x; i) by successive calculation we get Q9y(x; i) for g = 1, 2, ..., p, which 
together with the primary function forms a system of p + 1 equations with p + 1 
unknowns c(iJ"). Substituting the result into the formula (11) we determine the 
approximation function of the (p + l)st order, q.e.d. 

5. THE POLYNOMIAL METHOD 

The polynomial method is a classical one, which follows the least square method 
for the primary values and yields a polynomial as an approximation function. This 
method gives, even for a large number of values, results with a considerably smaller 
accuracy and therefore it is less suitable for determining an approximation function 
for values showing exponential behaviour. 

6. APPLICATIONS 

We give an example of constructing an approximation function f̂or a function of 
1 variable (in E^. If the values yt are not charged with errors, we actually have an 
exponential interpolation, which has the form 

(22) yt = n * ? \ *="l,2,...,s. 
j = Q 
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The parameters of the function are defined by means of rooted quotients (because 
this will be the case of nonequal intervals) [1], 

N o t e 3. In contradistinction to the main text, in this case the symbols xl9 x2, x 3 

do not mean different variables but only concrete numerical values of the variable x. 

A. The values of y{ not charged with errors 

E x a m p l e 1. One has to find a function y(x) satisfying yt = /(xj) for i = 1, 2, 3, 

4, 5, if the values are not charged with errors. The values xt and y{ are given in 

Table I. 

Table I 

І У(XІ) = Уi ß ß2 

1 
2 
3 
4 
5 

y(M2) = 
y(l-23) = 
y(V35) = 
y(l-48) = 
y(l'56) = 

18-860280 
26-108098 
38-632015 
61-864355 
84-771466 

ß[l-12; 1-23] = 
ß[l-23; 1-35] = 
ß[l-35; V48] = 
ß[l-48; 1-56] = 

19-225719 
26-187925 
37-413134 
51-299731 

ß 2 [ M 2 ; 
ß2[V23; 
ß 2 [Ь35; 

1-23; 1-35] = 
1-35; 1-48] = 
1-48; 1-56] = 

3-833175 
4-165739 
4-495876 

i ß3 ß4 

1 
2 

ß 3 [ M 2 ; 
ß3[l-23; 

1-23; 1-35; 1 
1-35; 1-48; 1 

•48] = 1-260000 
•56] = 1-260000 

ß4[l-12; 1-23; 1-35 ; 1-48; 1-56] = = 1-000000 

In view of the fact that we have 5 values, we assume a formula with 5 parameters aj 

for j = 0, 1, 2, 3, 4. Therefore we write the given function in the form 

y = a0 . a\ . af. af . a*? . 

By calculating all rooted quotients in Table I one can see that the fourth rooted 
quotient has the value 1 and then the above mentioned function reduces to 

y = a0 . a\ . a\ . a\ . 

The rooted quotients of this function (defined in [1]) for i = 1 are 

Q\xu x2] = ax . a2 '+*2 . a*« , +-«--+-- 2 , Q\xy, x2, x3] = a2 . a?
+»+*>, 

Q3[xu x2, x3, x4] = a3 . 
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These expressions together with 

y x = a0 . aXl . ax
2
x . aXi 

give the left-hand sides of the system of equations for the calculation of the values aj 
for j = 0, 1, 2, 3. By solving this system we obtain with an accuracy of 10~3 the 
values 

a3 = 1-26000, a2 = 1-63000, ax = 2-34000 and a0 = 2-85000 . 

The desired expression has the form 

y = 2-85 .2-34* . l -63*\ l -26*\ 

The polynomial approximation function calculated from the values yt for i = 
= 1, 2, 3, 4, 5 has the form 

y(x) = 660-420895.X4 - 3059-626853*3 + 5451-728535x2 -

_ 4358-644910x + 1321-264676 . 

For the value x not included in Table I the values y(x) differ from those of y(x). 
In order to compare both formulas we introduce the values of the both functions for 
some arguments not included in Table I: 

y(M8) = 22-43270 y(M8) = 22-39501 

y(l-29) = 31-60087 y(V29) = 31-62346 

y(l-4l) = 47-71448 y(1>41) = 47-68768 

y(l-52) = 72-23926 y(V52) = 72-26846 

B. The values of y% charged with errors 

Let us assume that the approximation function of the pth order for the given 
function values has the form 

(23) y = f\cf cxJ 

.7 = 0 

The system of equations for the parameters is 

(24) ft rW i + "= IK1' for r = 0,l,2,...,p, 
i = l j=0 i = l 

where the values zt are charged with errors. 

E x a m p l e 2. In the second column of Table II the values of z(x) corresponding 
to the arguments x are given. The values of z(x) are charged with errors (we can 
assume them e.g. to be results of a measurement). If we either know or can justifiably 
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suppose that the values of z(x) show an exponential behaviour, one has to find a func­
tion which agrees with the given values as well as possible. We show the solution 
by each of the three methods. 

Table II 

1 2 3 4 5 6 7 8 

X z(x) У(x) 1ад P(x) y(л-( - z(x) K(x) - z(x) P(x) - z(x) 

1-4 3-316 3-306 3-298 4-455 -0-010 -0-018 + 1-139 
1-5 3-531 3-539 3-533 4-215 + 0-008 + 0-002 + 0-684 
1-6 3-802 3-798 3-793 4-085 -0-004 -0-009 + 0-283 
1-7 4-058 4-086 4-084 4-064 + 0-028 + 0-026 + 0-006 
1-8 4-413 4-408 4-408 4-154 -0-005 -0-005 -0-259 
1-9 4-759 4-768 4-769 4-353 + 0-009 + 0-010 -0-406 
2-0 5-178 5-171 5-173 4-662 -0-007 -0-005 -0-516 
2-1 5-615 5-623 5-626 5-081 + 0-008 + 0-011 -0-534 
2-2 6-142 6-130 6-134 5-610 -0-012 -0-008 -0-532 
2-3 6-686 6-700 6-704 6-249 + 0-014 + 0-018 -0-437 
2-4 7-356 7-343 7-347 6-998 -0-013 -0-009 -0-358 
2-5 8-081 8-069 8-071 7-856 -0-012 -0-010 -0-225 
2-6 8-872 8-889 8-888 8-825 + 0-017 + 0-016 -0-047 
2-7 9-791 9-819 9-814 9-903 + 0-028 + 0-023 + 0-112 
2-8 10-903 10-874 10-863 11-092 -0-029 -0-040 + 0-189 
2-9 12-001 12-074 12-055 12-390 + 0-073 + 0-054 + 0-389 
3-0 13-480 13-442 13-411 13-798 -0-038 -0-069 + 0-318 
3-1 14-957 15-004 14-958 15-316 + 0-047 + 0-001 + 0-359 

+ 0-102 -0-012 + 0-165 

a. The least squares method 

Here we use the formula (24). If we denote xt = 1-3 + 0-1 . i for i = 1, 2, ..., 18, 
we have 

18 

[ ] z(xt) = 6-170598 . 1014 for r = 0 , 
i = i 

18 

Y[ z(xt)
Xi = 1-410650 . 1035 for r = 1 , 

; = i 
18 

Y\ z(xi)xt2 = 2-167399 . 1087 for r = 2 . 
i = i 

By solving this system we obtain 

y(x) = 1-67534 . 1-35341* . 1-13925*2. 
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b. Method of cumulated values 

In the case of the modified King's formula we start from the formula (17). Here 
p = 2 and m = 6. Therefore 

Y^Ylco-cV.c*/, Y2 = Y[c0.cV.c*/, Y3 = Y[c0.cV.cf. 
i=l i = l i= 1 3 

The quotients are given by the expressions 

Q[l ,2 ] - | , e[2.3]-|a, Q?[l,2,3] = | j M j . 

The calculation can proceed according to the following scheme: 

Yt = ] l z ( ^ ) = 3793-9013 
i= 1 

Q[l, 2] = 18-707200 

Y2 = [ ] z(x.) = 70973-271 Q2[l, 2, 3] = 1-7260080 . 

Q[2, 3] = 32-288777 
18 

Y3 = Y\z(xl) = 2291640-1 

From the formulas for Q2[l, 2, 3], Q[l, 2] and Yt we successively obtain a2 = 
= 1-13467, ax = 1-37828, a0 = 1*64293 and so the approximation function has the 
form K(x) = 1-64293 . 1-37828* . M3467*2. 

c. The polynomial method 

Let the 2nd order polynomial approximation function have the form P(x) = c0 + 
+ cxx + c2x

2. The classical least squares met hod used for the primary values leads 
to a system of equations for c0, ct and c2. The right-hand sides of these equations 
are the sums 

£ z(xt) = 132-941 , X x,.z(x;) = 330-4417 , £ A z(xd = 854-64595 . 
1 8 

I 
І = l 

By solving this system we get the parameters c0 = 19*35604, ct = —18*33557, c2 = 
= 5-49430 and the approximation function will have the form P(x) = 19-35604 — 
- 18-33557* + 5*49430x2. 

The columns 3, 4 and 5 of Table II contain the values of the approximation func­
tions y(x), K(x) and P(x) while the columns 6, 7 and 8 give the deviations of the values 
of these functions from the corresponding values of the function z(x). In the last 
rows of the 6th, 7th and 8th columns, the sums of the deviations are given. To the 
purpose of comparing the accuracy of the particular approximation functions we 
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give the sums of squares of the deviations: 

£ [><x£) - z(x,)Y = 0-013 , X [K(xt) - z(x,)]2 = 0-012 , 
í = 1 í = 1 

X [P(x.) - <x,)]2 = 3-713. 
i = 1 

As follows from these values, the polynomial function ušed for the approximation 
of functions with an exponential character is significantly worse than the functions 
based on the exponential function. Finally, it is necessary to remark that the technique 
of calculation of the function K(x) is much simpler than that of the function y(x) 
with roughly the samé accuracy, as the sum of squares of the deviations shows. 
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S ú h r n 

O EXPONENCIÁLNEJ APROXIMÁCII 

ANTON HUŤA 

Problém. Třeba nájsť reálnu funkciu (1) premenných xt pre / = 1, 2,. . . , n v Em 

aby pre vopred dané pevné hodnoty (xí9 xl9 ..., xn) nadobudla určité reálné hodnoty, 
pre ktoré platí (2). 

Ak funkcia sledujúca rozdelenie týchto hodnot má exponenciálny charakter, 
potom za aproximujúcu funkciu je vhodné zvolit' funkciu tvaru (3), ktorá uvedené 
rozdelenie lepšie vystihuje ako iné aproximujúce funkcie (napr. založené na poly-
nómoch). V práci sú uvedené tri metody: 1. Metoda najmenších štvorcov prispósobe-
ná pre exponenciálny priebeh funkcie. 2 .Metoda kumulatívnych hodnot tzv. Kingova 
formula. 3. Metoda polynomická spomenutá len okrajové za účelom porovnania 
s predchádzajúcimi. 

V aplikácii je poukázané na numerický výpočet aproximujúcej funkcie podlá uve­
dených metod ako aj ich nepřesnosti. 
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