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1. INTRODUCTION

A large number of events (processes)especially in economy, medicine, biology,
physics, chemistry etc. have an exponential character. Therefore, when constructing
the formula expressing such a process, the natural starting point is the exponential
function, which often reproduces the process more truly than other functions (e.g.
polynomials). The aim of this article is to show one kind of exponentialapproximation.

Problem. One has to find a real function
(1) W(xy, X2, .., x,) for (x4, x5,...,%,)€E,

so that it assumes given real values for prescribed fixed values of (xy, X5, ..., X,).
In this article we will limit ourselves only to the case that for the whole definition
domain the following inequality holds:

) WXy, X2, .. %,) > 0.

If the given values have an exponential distribution, so that a function which
follows this distribution has an exponential character, then it is of advantage to
choose as an approximation function a function of the form

(3) V(Xgs Xgy cvy X3 0yy dgyenn By) =
P1 p2 Pn . . o~
= H H H a(ljlls 11223 ceey lfln) (15 w0 2Xm) 3
120 j2=0  ju=0
" 3 n
[T xJ* and the order of the approximationis p = Y p,.
=1 A=1

J
where I1(x,, ..., x,) =
A

Note 1. The n-tuple (iy, i, ..., i,) is an arbitrary permutation of the numbers
1,2, ..., n which denotes the order of the products. In the simplest case we have the
Ist permutation, i.e. i, = A for 2 =1, 2, ..., n. The symbols a(i!, i%, ..., ii") denote
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n

only the constants belonging to the exponents H Xf{" = x{‘ . x’} e x{;" in the
i=1

relation (3). At the same time, j, in the expression i4* is no exponent, it only indicates
how many times i, occurs.

Now let us consider an n-dimensional ‘“‘table’ with equidistant arguments for the
function y. If the values in the table are exact, then one can determine the coef-
ficients a by means of exponential interpolation. However, if the values are charged
with errors, then it is necessary to use the exponential approximation.

We will show two methods: The former is based on the method of the least squares
while the latter is connected with the method occuring when deriving the King
formula used for determining the parameters of the Gompertz-Makeham law,

2. NOTATION AND SYMBOLS

For the sake of brevity it is advantageous to introduce some symbols (vectors):
i= (i,, In, .uuy iy
where i, is the index of the Ath sum (Ath product);
L=(l, 1, ...,1,)
where I, is the Ath cumulated group;
Y, = (Yl,m YZ,IZ, EEE) Yp,l,,)
where Y, ,, is the value of the Ath cumulated group;
5= (51,825 -0 Sy)
where s, is the number of terms (factors) in the Ath sum (product),
m; = ("71,1, LTI '"l.n)
where m, ; is the number of terms in the Ath group;
Y(xsd) = y(xp, Xy ooy X5 By, gy eeny i)
n(x;8) = n{xy, Xa ooy X5 iy, day ..oy By) = log y(x3 i) ;
a i) = a(il', if, ..., il
is the coefficient determined from the exact values;
cdl) = (i}, i, ..., i)
is the coefficient determined from the values charged with errors;
o«/i') = log ali’) ;
2W#¥) = log e i) ;
P = (p17 P2y ooy pn)

322 '



where p, is the order of the function for the Ath variable;
x = (X, Xz .00 X,)T
is the (column) vector of the variable x;
h=(hy, hy ..., h,)
where h, is the step of x;;

(L)
11

«(J)

is the polynomial coefficient;
n
o =[(X x)[
n=1
is the formal power of the sum (without the sign +);

) 2
e.g. for k = 2 we have x* = (x{, 2x;%,, X3, 2X,X3, 2X,X3, X3, ..., X3) ' 3

y = [9(1%,2%3°% .., n°%), »(1% 2%, 3°% ..., n%), ..., »(1°,2%3°% ..., (n — 1)°, n'")] ;

vr = [3(1%,29 3% ..., n%), »(1', 2%, 3% ..., n°), 9(1°,2%,3°, ..., n%,
P11, 2% 3%, .., n%),9(1°, 2%, 3%, .., n0), .., 9(1%, 29, 3%, .., n?)].
The scalar product is
(y% x%) = p(12,2°,3% .., n®) xT + 29(1", 2%, 3% .., n®) x,x, +
+9(1°,2%,3% ., 0% x5 + .+ p(1°, 29, 3%, .., n?)x}
or generally
(¥ x4 = i’)x(j) y(if)lﬁlxﬁ" , Wwhere il]l =k, k=0,1,2,....
I= = =

Using this notation we can transcribe the formula (3) into the form

(4) y(x; i) = ﬁ a(#)1es v 50

and further

(%) n(x; i) =j§olog a(if)lllj1 xi* = ioa(ij)}jlx? .

i=

If the values are charged with errors, we have

P
© ;i) = [ cla?)iees o %
i=0

and

(7) i(x; ) =j2010g ) [ x4 =j§0v(if)§1x{,.
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where c(ij) are the coefficients determined from the values charged with errors.

If we introduce, for the sake of brevity, the notation
k n
®) 0% 0) = I = 3 w208 [1 51

i=0

then for the pth order formula we can write
P
9) n(x; j) =Y. Ik where I'Y=1(j’).
k=0

One determines the partial derivatives of I't from the formula

arﬁ k on X n
= ¥ 2(j) y(#@) T xi2 T+, =k.
o) v, i, ..., i*)] jgo () 11 x5 P

E.g. for n =2, k = 3 we have

(10)

— 9 3 = i 1j2) 1t 2 g2+l
N 72 e ', %) x X
6[”(2; 1) y(if’ l;)] 120 (]) y( 1 ) ! 2 b

3. THE LEAST SQUARES METHOD

Theorem 1. In E, let the arguments x, = (Xg,1, Xg05 --s Xg) fOr q = 1,2, .., s
correspond to the error charged values y, (e.g., the results of a measurement).
If the values y, show an exponential behaviour, then the approximation function
¥(x) of the pth order according to (6) can be written in the form

P .
(1) i) = [T el .

Ji=0

Proof. Let us construct the function of the sum of squares of the derivatives

P
(12) o] = XL =il
A necessary condition for the minimum of the function ®[y] is the validity of the

relation

(13) @?&1:0 for t=1,2,...,T
12

where T denotes the number of all variables y of <P[y] After executingthe calculation
the relation (13) assumes the form

P n
(14) 23 [ rt—n(xd)] [Ix4*=0 for 7=1,2,..,T
i k=1 A=1
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where p, ; is an element of
FHe,t sfic, Mo, iMon
X G AU AL ) 8

The formula (14) is a system of T linear equation with T unknowns y, fort=1,2, ...
..., T. Solving this system we obtain the values y.,and taking antilogarithms we get
the parameters ¢ which, put into (3), determine the approximation function (11).

Note 2.1t is necessary to remark that one may use the above method only if the
“multidimensional table” contains the knots of the values whose coordinates occur
in the formulas of the method.

4. METHOD OF CUMULATED VALUES

This method, which is closely related to the King formula method, consists in
cumulating (by addition or multiplication) some successive values. From the table
obtained in this way it is possible to determine the parameters of the approximation
function. Here also the condition of knots existence must be satisfied. Now, if we
want to construct a p-order formula, we must divide the number of all arguments s
by p + 1.

In this manner we obtain the number of the cumulated values m, namely
(15) m = —%; where s = (s, 53,...,5,) and p = (P, P2sseor Du) -

p

So instead of all values of the table

pol xi
(16) vi=[le¢;? for i=12..s

=0
we have only the cumulated values

Im
Im P 'x:!
i=(I-1)m+1
(17) . Y,=._ H yi = Mck for 1=1,2,....
i=(I-1)m+1 k=0

The number of ¥, is essentially less than the number of y,.

Theorem 2. In E, let the arguments x, = (qul, Xg,25 0 xq,,,) for q=1,2,...,s
correspond to the error charged values y, (e.g., the results of a measurement).
Further, let the values y, show an exponential behaviour. Then the approximation
Sunction K(x) of the pth order has the form

c(ij)ﬂ(xl, weey Xn) .

s

(18) K(x;i) =

Jj=0

Proof. The function y(x; i) of the pth order has p + 1 constants. We assume that
the quotient of this function is a function of the (p — 1)st order and so it will have p
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constants. One has to prove that the order of the quotient of the function is indeed
lower than that of the function.

We transform the primary table with s values into a table with p + 1 values by
introducing cumulated values the number of which is m = s/(p + l). Moreovcr,
introducing the notation

(19) o, =Y u for o6,= (0,05, 0n1)

we can write the exponent in the formula (17) in the form
Im k k
(20) Yo o=y <t> X( Yy Mo,
i=(1-Dm+1 =0

Hence the exponent of the quotient of two successive terms is given by the formula

I+ 1)m B Im i k-1 k et et .
(21) Yy xi— Yoo oxi=Y (xfm = X m) e, .
i=lm+1 i=(I-1)ym+1 t=0 t

As the right-hand side of the formula(21)shows, the degree of the polynomial in the
exponent is & — 1 and therefore the quotient of the primary function also diminishes
by 1. Consequently, if the order of the function y(x;i) is p, the quotient QF(x;7)
will have the order p — 1 and Q"f(x; i) the order p — g. Let the ¢th component of
the function y(x;i), i.e. y,, be of the p,th order, then Q”*j, will be constant and
Qp(,.»u - 1.

From y(x; i) by successive calculation we get Q¥(x;i) for g = 1,2, ..., p, which
together with the primary function forms a system of p 4+ 1 equations with p + 1
unknowns c(ij). Substituting the result into the formula (11) we determine the
approximation function of the (p + 1)st order, q.e.d.

5. THE POLYNOMIAL METHOD

The polynomial method is a classical one, which follows the least square method
for the primary values and yields a polynomial as an approximation function. This
method gives, even for a large number of values, results with a considerably smaller
accuracy and thereforé it is less suitable for determining an approximation function
for values showing exponential behaviour.

6. APPLICATIONS

We give an example of constructing an approximation function :for a function of
1 variable (in E,). If the values y; are not charged with errors, :we actually have an
exponential interpolation, which has the form

s—1

(22) vi=[lay, i=1,2..,5s.
j=0
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The parameters of the function are defined by means of rooted quotients (because
this will be the case of nonequal intervals) [1].

Note 3. In contradistinction to the main text, in this case the symbols x, x,, X,
do not mean different variables but only concrete numerical values of the variable x.

A. The values of y; not charged with errors

Example 1. One has to find a function y(x) satisfying y; = f(x;) for i = 1,2, 3,
4, 5, if the values are not charged with errors. The values x; and y; are given in

Table I.

Table 1
i y(x) = y; Q 0?
1 y(1-12) = 18860280  Q[1-12; 1:23] = 19-225719  Q2[1-12; 1-23; 1-35] = 3-833175
2 y(1-:23) = 26-108098 Q[1-23; 1-35] = 26-187925 Q2[1'23; 1-35; 1-48] = 4165739
3 »(1-35) = 38632015 Q[1-35; 1-48] = 37-413134 Q2[1'35; 1-48; 1-56] = 4-495876
4 (1-48) = 61864355  Q[1-48; 1-56] = 51299731
5 y(1-56) = 84-771466

i 03 o*

1 03[1-12; 1-23; 1-35; 1:48] = 1-260000
2 Q3[1-23; 1-35; 1-48; 1-56] = 1260000

Q*[1-12; 1-23; 1-35; 1-48; 1-56] = 1-000000

In view of the fact that we have 5 values, we assume a formula with 5 parameters a;
for j = 0, 1, 2, 3, 4. Therefore we write the given function in the form

_ x x2 x3 x4
y=4ag.ay.a, .a5 .4, .

By calculating all rooted quotients in Table I one can see that the fourth rooted
quotient has the value 1 and then the above mentioned function reduces to

y=ay.al.al . a¥.
The rooted quotients of this function (defined in [1]) for i = 1 are

x1+x2

Q[xh xz] =4d;.0a; ‘J?ZHIHHZZ

s Qz[xls X5, x3] =a,. a;n+x:+x3 R
Q3[xy, X5, X3, X4] = a3.
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These expressions together with

— X x2 x13
Y1 = aq.ai'.a3" . a}

give the left-hand sides of the system of equations for the calculation of the values a;
for j = 0, 1, 2, 3. By solving this system we obtain with an accuracy of 1073 the
values

ay = 1-26000, a, = 1-63000, a, = 2-:34000 and a, = 2-85000 .
The desired expression has the form
y = 2-85.2:34% . 1-63*" . 1-26*.

The polynomial approximation function calculated from the values y; for i =
= 1,2, 3, 4,5 has the form
7(x) = 660-420895x* — 3059-626853x> + 5451-728535x% —
— 4358-:644910x + 1321-264676 .
For the value x not included in Table 1 the values j(x) differ from those of y(x).

In order to compare both formulas we introduce the values of the both functions for
some arguments not included in Table I:

y(1:18) = 2243270 j(1-18) = 22:39501
»(1:29) = 3160087  j(1:29) = 31-62346
J{1-41) = 4771448 F(1-41) = 47-68768
y(1:52) = 7223926 F(1-52) = 7226846

B. The values of y; charged with errors

Let us assume that the approximation function of the pth order for the given
function values has the form

P .
(23) y=1II¢""
ji=0

The system of equations for the parameters is

s P ) n
(24) T Il = [1z" for r=01,2,...,p,
i=1 j=0 i=1 )

where the values z; are charged with errors.

Example 2. In the second column of Table II the values of z(x) corresponding
to the arguments x are given. The values of z(x) are charged with errors (we can
assume them e.g. to be results of a measurement). If we either know or can justifiably
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suppose that the values of z(x) show an exponential behaviour, one has to find a func-
tion which agrees with the given values as well as possible. We show the solution
by each of the three methods.

Table II

x z(x) »(x) K(x) P(x) ) —z(x) K(x) — z(x)  P(x)— z(x)

1-4 3:316 3-306 3-298 4-455 —0-010 —0-018 +1-139
1-5 3-531 3-539 3-533 4-215 -+0-008 ~+0-002 +0-684
1-6 3-802 3-798 3-793 4-085 —0-004 —0-009 +0-283
1-7 4-058 4-086 4-084 4-064 +0-028 +0-026 ~+0-006
1-8 4413 4-408 4-408 4-154 —0-005 —0-005 —0-259
1-9 4:759 4768 4769 4-353 +0-009 -+0-010 —0-406
2:0 5-178 5:171 5:173 4662 —0-007 —0-005 —0-516
2:1 5-615 5-623 5-626 5-081 -+0-008 -+0-011 —0-534
2:2 6-142 6-130 6-134 5610 —0-012 —0-008 —0-532
2:3 6-686 6:700 6-704 6-249 +0-014 +0-018 —0-437
2:4 7-356 7-343 7-347 6998 —0-013 —0-009 —0-358
2:5 8-:081 8:069 8:071 7-856 —0-012 —0-010 —0-225
2:6 8:872 8:889 8:888 8-825 +0-017 +0-016 —0-047
2:7 9:791 9-819 9-814 9-903 +0-028 +0-023 +0-112
2-8 10-903 10-874 10-863 11-092 —0-029 —0-040 +0-189
29 12-:001 12:074 12-055 12390 +0-073 +0-054 +0-389
3-0 13-480 13-442 13-411 13-798 —0-038 —0-069 +0-318
31 14-957 15-004 14-958 15:316 -+0-047 -+0-001 +0-359

-+0-102 —0:012 +0-165

a. The least squares method

Here we use the formula (24). If we denote x; = 113 + 0-1.ifori=1,2,...,18,

we have
18

[Tz(x;) = 6170598.10'* for r =0,

i=1

18

ITz(x) = 1-410650 . 10*> for r=1,
i=1
18

ITz(x.)"" = 2167399 . 1087 for r=2.

i=1

By solving this system we obtain

¥(xX) = 1-67534 . 1-35341% . 1-13925% .
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b. Method of cumulated values

In the case of the modified King's formula we start from the formula (17). Here
p = 2 and m = 6. Therefore

18
2

6 12

X x ;2 _ X X _ x; X2

Y, =[lco.cii.c5", Yo=]lco.ci .53, Ya=]]co.cl.c5".
i=1 i=7 i=13

The quotients are given by the expressions

o[1,2] = 22, Q[2,3]=%, 07[1,2,3] =

2 2[2,3]
Y,

o[1,2]"

The calculation can proceed according to the following scheme:

Y, = [T 2(x.) = 37939013
o o[ 1. 2] = 18-707200

Y, = [] 2(x;) = 70973271 07[1, 2, 3] = 17260080 .
w Q[2, 3] = 32-288777

Y; = ll—iz(x,-) = 22916401

From the formulas for Q?[1,2,3], Q[1,2] and Y, we successively obtain a, =
= 113467, a, = 1-37828, a, = 1-64293 and so the approximation function has the
form K(x) = 1-64293 . 1-37828~. 1-13467%",

c. The polynomial method

Let the 2nd order polynomial approximation function have the form P(x) = ¢, +
+ ¢,x + ¢,x2. The classical least squares method used for the primary values lead s
to a system of equations for c¢,, ¢; and c¢,. The right-hand sides of these equations
are the sums

18

18 18
Y 2(x) = 132941, Y x;z(x;) = 3304417, Y x7 z(x,) = 854-64595 .
i=1 i=1 i=1

By solving this system we get the parameters ¢, = 19-35604, c¢; = —18:33557, ¢, =
= 5-49430 and the approximation function will have the form P(x) = 19-35604 —
— 18-33557x + 5-49430x2. )

The columns 3, 4 and 5 of Table II contain the values of the approximation func-
tions y(x), K(x) and P(x) while the columns 6, 7 and 8 give the deviations of the values
of these functions from the corresponding values of the function z(x). In the last
rows of the 6th, 7th and 8th columns, the sums of the deviations are given. To the
purpose of comparing the accuracy of the particular approximation functions we
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give the sums of squares of the deviations:

i§1[y(xi) - z(xi)]z = 0013, ilgsl[j((xi) _ Z(xi)]z — 0012,

2 [P(x) = z(x)]? = 3713
i=1
As follows from these values, the polynomial function used for the approximation
of functions with an exponential character is significantly worse than the functions
based on the exponential function. Finally, it is necessary to remark that the technique
of calculation of the function K(x) is much simpler than that of the function y{x)
with roughly the same accuracy, as the sum of squares of the deviations shows.
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Sahrn
O EXPONENCIALNEJ APROXIMACII

ANTON HUTA

Problém. Treba ndjst redlnu funkciu (1) premennych x; pre i =1,2,...,n Vv E,,
aby pre vopred dané pevné hodnoty (x,, x5, ..., x,) nadobudla uréité redlne hodnoty,
pre ktoré plati (2).

Ak funkcia sledujica rozdelenie tychto hodndét méd exponencidlny charakter,
potom za aproximujicu funkciu je vhodné zvolit funkciu tvaru (3), ktord uvedené
rozdelenie lepSie vystihuje ako iné aproximujuce funkcie (napr. zaloZené na poly-
némoch). V praci st uvedené tri metddy: 1. Metdda najmensich Stvorcov prispdsobe-
nd pre exponencidlny priebeh funkcie. 2 .Metdda kumulativnych hodndt tzv. Kingova
formula. 3. Metdda polynomickd spomenutd len okrajove za ucelom porovnania
s predchddzajicimi.

V aplikdcii je poukdzané na numericky vypocet aproximujuicej funkcie podla uve-
denych metod ako aj ich nepresnosti.

Author’s address: Prof. RNDr. Anton Hufa, Ustav technickej kybernetiky SAV, Duabravska 9,
842 37 Bratislava.
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