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BLOCK ORIENTED SIMULATION OF COMBINED SYSTEMS 

EVZEN KINDLER 

(Received September 14, 1982) 

Summary. A programming system BOSCOS is described, which permits the computer to 
transform descriptions of combined systems into corresponding simulation programmes. The 
combined systems are composed of continuous blocks and discrete processes. The blocks behave 
according to ordinary differential equations or assignment statements, or represent networks 
composed of such blocks; the structure of the networks can vary in time. Interactions between 
blocks and processes are possible. The system has been implemented as a knowledge base (a class 
of formal definitions) in an object oriented programming language SIMULA. 
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1. INTRODUCTION 

1.1. Essence of combined systems 

The influence of digital computers has caused that more and more complicated 
systems are exactly studied. One aspect of this trend concerns the so called combined 
discrete-continuous systems, simply called combined systems, which can be charac­
terized by the presence of the following attributes: 

1.1.1. a lot of parameters which develop continuously during the system time, 

1.1.2. plentitude of structural properties which develop discretely during the 
system time, 

1.1.3. mutual influence of the continuous parameter values on the structural 
properties and vice versa. 

In more detail, any combined system has some components (aspect, subsystems, 
elements, processes etc.) — called continuous components — which are comparable 
with the so called continuous systems, i.e. systems which can be described by ordinary 
differential equations where time derivatives occur [22]. Further, any combined 
system has some components (called discrete components) comparable with what 
is commonly called discrete event dynamic system, i.e. systems with discrete events 
in generally non-equidistant time steps, during which not only discontinuous changes 
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of some numerical and non-numerical parameters occur, but also relations among the 
elements change, new elements enter the system and other elements leave it, as in 
queuing systems [1]. During the discrete events, the discrete components affect 
the continuous ones by discrete changes of their parameters and - in case of the 
systems of combined type 3 (see 1.2.3) — the relations between the continuous com­
ponents as well. The continuous components affect the discrete ones by causing the 
so called state events: such discrete events arise when a continuously developing 
parameter assumes a certain value (eventually in a certain direction). The parameters 
of continuous components can be distributed, i.e. their development can be describ-
able only by means of partial differential equations, where also other than time 
derivatives occur, but the ordinary differential equations are commonly considered 
to be sufficient for the plentitude noted in 1.1.1 [30], [31]. 

1.2. Classification of combined systems 

There is a hieararchy of three basic types of combined systems (see [2], [3], [4]): 
1.2.1. Systems of combined type 1 (shortly 1-systems) are composed of one con­

tinuous component described by a fixed system of differential equations, and one 
or more discrete components, the number of which can vary in time. 

1.2.2. Systems of combined type 2 (shrotly 2-systems) are composed of continuous 
and discrete components which behave as transactions [3], [4], i.e. their number 
and mutual relations can change during the system time but no continuous interaction 
can be present between different continuous components: a continuous component 
can only cause a state event in a discrete component and that component can further 
modify a continuous component in a discrete way. 

1.2.3. Systems of combined type 3 (shortly 3-systems) whose continuous and 
discrete component behave as transactions similarly as in 1.2.2 but continuous trans­
actions can mutually interact in a continuous way and so form another continuous 
transaction, called macro. As its structure can be modified by discrete events, its 
behaviour would be describable by a system of differential equations of a time-
dependent form, including the number of equations; such systems have not been 
introduced into the language of mathematics. 

The hierarchy described is essentially bound with the software for the modelling 
of combined systems: the programming languages specialized for the 1-systems 
(the GASP family, SAINT, SIMNON, SIMCOM/F, SMOOTH, SLAM) admit the 
users to describe the continuous components by means of differential equations 
which are written similarly as in the non-computer mathematics; the corresponding 
problems concerning the implementation of the continuous component models 
belong to numerical mathematics (integration methods, integration step control, 
state event detection etc.). 

The programming languages oriented to the 2-systems (CADSJM, BLOCADSIM, 
PROSIM, SSL, NGPSS, GSL, CDCSIS - see [4], table 3, or [3], par. 6) offer the 
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users similar facilities but must be combined with the dynamic allocation of data 
structures; the corresponding problems concerning the implementation of the con­
tinuous components overpass the numerical mathematics in the direction of the 
theory of programming: they are related to the memory economizing and to the 
language security; namely, the greatest problem is to signalize an error in case a para­
meter belonging to a continuous component becomes a coefficient in a differential 
equation describing another continuous component. 

The number of the programming languages oriented to the 3-systems is not too 
great (NEDIS [5], a nameless one [6] and COSY [7], which has not yet been 
implemented); in addition to some obstacles concerning implementation, there is 
a great problem of the expressing means, which would enable the user to describe 
the time dependent structures of the continuous components; commonly the means 
are based on the analog computing technique language [5], where the continuous 
systems are considered as networks of simple elements: in order to arrange that 
language for complex systems, facilities for iterating such a network constructions 
to define more and more complex "macros" must be available. One therefore starts 
with the "elementary" blocks (integrators, adders, multipliers etc), defines more 
complex ones (e.g. compartments, pools), then defines still more complex ones 
(e.g. a plate of a destination colon, then a destination colon), up to the whole system 
or continuous component. The creation and destruction of blocks in the structures 
(networks) is descibed similarly as the creation and destruction of a transaction in 
the discrete event simulation languages [1], [4], [5], [8] — [12]. 

1.3. The role of the modern programming languages 

The problem of the best and most effective implementation of the programming 
systems for simulation of combined systems (the so called combined simulation 
systems) has not been solved. The reasons are in the numerical mathematics, theory 
of programming and in the applications: numerical mathematics is stimulated by the 
combined simulation languages and therefore offers new methods of numerical 
integration and state event detection (and one can expect that new methods will be 
offered in the future as well); moreover, it is not yet known what is the most suitable 
algorithm for transforming partial differential equations into arrays of ordinary 
differential equations, though such an algorithm will be very actual in the nearer 
future, due to the increasing importance of the systems with distributed parameters 
and discoverings in the theory of ordinary differential equations [7]; theory of 
programming owes a lot to the combined simulation languages, beginning with such 
"trivial" problems as standard outputs and ending with problems which have no 
analogy, as e.g. automatic modelling of elements which can switch between their 
inputs and outputs, similarly as electronic circuits or elements; in the applications, 
no statistics has been constructed informing on such relations as e.g. between linearity 
of courses of continuous parameters and complexity if arithmetic expressions oc-
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curing in the differential equations: such relations would make it possible to prefab­
ricate the most effective configurations of various numerical methods. 

In such a state of the art, any combined simulation system must be implemented 
in such a way to be relatively simply modifiable and extensible, i.e., it must be im­
plemented as a set of modules which correspond to the notions of programming, 
description of (combined) systems and numerical mathematics. In other words, the 
implementation would be ideal, if it were a formalized theory, which legibly reflects 
the notions of system description, programming and numerical methods. Modern 
universal programming languages, namely SIMULA [9] — [12], reprezent a good 
tool for this pourpose, admitting to form stepwise richer and richer notions, reflecting 
both the mathematical languages as well as the natural ones. In the next part, 
a description of a combined simulation system oriented to the 3-systems (and, 
naturally to the other combined systems as well), based upon SIMULA, is presented. 
Compared with the other combined simulation systems based upon SIMULA 
(e.g. CADSIM [13], COMBINEDSIMULATION [14], SIMKOM/S [15] or 
DISCO [16]), the presented combined simulation system considers the classes of 
elements forming the combined systems (i.e. those used by the users) in a similar 
way as the classes of elements forming the numerical methods (i.e. those used by the 
implementors); such a technique is not only more effective, but it brings new dis­
coveries in the theory of combined systems. 

2. DESCRIPTION OF BOSCOS 

BOSCOS (an acronym of Block Oriented Simulation of COmbined Systems) has 
been developed at Charles University in Prague. It is prepared to be applied, but at 
the present time it is being enriched by some facilities intended to further improve 
its function. It has been oriented to the 3-systems. 

2.L The hierarchy of basic BOSCOS concepts 

The basic concepts form the following list, ordered according to the increasing 
content and decreasing extent; the relation between notions is not only suitable 
from the system theoretical view, reflecting the basic semantical links between the 
notions, observed already by the ancient Greeks, but also from the viewpoints of 
implementation, for they directly correspond to SIMULA classes and subclasses. 

2.1.1. cycle seflects the elements, which iterate some action until they leave the 
system; 

2.L2. cycle 1 reflects the elements which enter some list (queue) and at the end 
of the action mentioned in 2.LI resume their action to the next element in the list; 

2.L3. block reflects the cycle 1 which sends a numerical signal to other elements; 
2.L4. dynamic reflects the simple elements which behave according to ordinary 

differential equations; with other elements taking part in the implementation, 
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dynamic blocks are joined by means of real functions function, VE, VG and VH; 
they are declared as virtual, i.e. their meaning is defined only for special classes of 
the dynamic blocks; 

2.1.5. continuous reflects the dynamic blocks for which the user himself defines 
the behaviour by means of a virtual procedure equations; in this procedure, the mathe­
matical form of the equations is rewritten similarly as in CADSIM [13], i.e. state [i] 
means the value of the i-th continuous attribute of the block and rate [i] means its 
first derivative. If creating any continuous block, two parameters must be introduced: 
order of the equation, i.e. the greatest i, and output, i.e. the value of i for which 
state [i] represents the output signal of the block 

The hierarchy described present abstracts tools which are not intended for the 
users of BOSCOS, with the exception of continuous and block; the last one reflects 
a general function generator, giving signal — f(t); e.g. the sine wave generator 
can be introduced as a subclass of block in the following way: 

block class wave (amplitude, omega, phi); 

real aplitude, omega, phi; 

signal : = amplitude x sin(omega x t + phi); 

2.2. Basic user oriented concepts 

Similarly as a block, the users can apply the following concepts of a simple block 
with inputs: 

2.2.1. simple 1 reflects the simple block with one input carrying the output signal 
from another block; 

2.2.2. simple 2 reflects a block having a second input beside the input mentioned 
in 2.2.1; e.g. a multiplier is introduced in the following way: 

simple 2 class multiplier; 

signal := input. signal x second input. signal; 
For simple 1 and simple 2 the contents of the virtual procedure set to has been 
separately defined so that one can write e.g. B . set to (A) or C . set to (A, B), stating 
that A becomes respectively input of B or C and B becomes second input of C. 
After calling set to, its last parameter becomes last (i.e. it can be considered under 
the name last). 

2.2.3. integrator reflects all dynamic blocks with the equation rate [1] : = state [1], 
where rate [1] is the value of its input signal and its output is 1. In order to offer 
suitable basic concepts to the users, integrator is introduced as a special concept 
(subclass of dynamic) behaving similarly as simple 1 (including set to) and not 
demanding to declare its equations, output and order. Concerning its implementation, 
see sec. 3.1. 
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2.3. Concepts of macro 

2.3.1. composite reflects blocks with complicated internal structure; they contain 
an output block, the signal of which behaves as the signal of the whole composite 
block. The internal structure of the classes of "simiias" composite blocks is deter­
mined by procedure form which is a virtual one for composite. 

2.3.2. macro is a composite block which takes place in the form procedure of 
some "greater" composite block. 

2.3.3. element is a composite block which does not take place in thefOrm procedure 
of any block; its interactions with the other components of the system are only 
through discrete events. It has its integration method and its integration step called 
tstep (because of SIMULA word step, it cannot be called simply step). 

2.3.3. macro 1 and macro 2 are special macros, which are joined with other blocks, 
from which input signals come; macro 1 has one input, comming as signal from 
the block denoted input; in addition, macro 2 has its second input, comming as 
signal from into the block denoted second input. 

As an example, we present two equivalently behaving declarations of the concept 
of block realizing the equation y' = y2 — sin(3t): 

continuous class C; begin procedure equations; 

rate [1] := state [1] f 2 — sin (3 x t); end; 

macro class D; begin procedure form; begin 
output: — new integrator; output. set to (new adder); 
last. set to (new wave (3, 1, 0), new multiplier); 
last. set to (output, output) end; 
end: 

3. IMPLEMENTATION OF BOSCOS 

3.1. Integration methods 

BOSCOS has the following methods for the numerical integration [17]: rectangu­
lar (Euler), Simpson, Newton-Cotes, Runge-Kutta 4th,order with fixed step, 
Runge-Kutta 4th order with controlled step (Runge-Kutta-Simpson), Runge-Kutta-
-Merson, Runge-Kutta-England, 3/8-Runge-Kutta and Shampine-Euler for stiff 
systems [18]. Each of them is a SIMULA class, i.e. an abstract notion. If one 
wishes to use one or more of the methods, one creates an instance existing as an 
individual entity of the simulated system. Such an instance can be used by any 
element as its method (see 2.3.3). The parameters of any method with a controlled 
step are the minimum and maximum value of the step. SIMULA automatically 
permits an element to change its method during a discrete event. 

174 





halving (step halving method), regula falsi (regula falsi method) and Hermite. 
(method of inverse Hermite's polynomials), but also other ones are admissible, 
as e.g. Newton's method. The corresponding arithmetics uses virtual functions of 
dynamic blocks, mentioned in 2.1.4. Every flag has some parameters determining 
the maximal error for the state event detection, maximal number of iterations during 
one state event detection, etc. 

Every element (see 2.3.3) has a virtual procedure post step which is performed 
always after finishing an integration step, i.e. when the following two conditions 
are satisfied: 

the element is just developing continuously, 
i.e. its integration step has not been performed inside the iteration for a state event 
detection; 

in this development the integration step just performed has been taken as finished, 
i.e. the accuracy test has not been negative. 

Procedure post step can be let empty in case the development of the element should 
not be disturbed by any state event (e.g. in case of continuous simulation), but for 
the state event detection it is used to determine whether during the performed in­
tegration step a state event has not occurred: in the affirmative case, a flag is activated 
to perform its work. In [19] it is shown that in every such case post step can call 
one flag existing during the system's whole existence as the only element of class 
flag, or every state event can have its own flag; both the possibilities have their ad­
vantages and disadvantages. Naturally, post step can be used for quite different 
purposes, like outputs of results. 

3.3. Composite blocks 

Let A be a composite block and B a block created in the form of A. We say B 
is a node of A. An entity is called storage if it is a dynamic block or if it is a composite 
block with a node which is a storage. Every composite element has a list backbone 
and in case it is a storage it has another list stomach. Procedure sort, which is auto­
matically applied to every composite block X, forms its backbone and sorts into it 
its nodes which are not storages; in case X is a storage, sort creates the stomach of X 
and puts the nodes of X which are storages into this stomach. In the last positions 
of the lists mentioned, special elements are placed, which return the computation 
either to the integration method (see 3.1) in case the list in question belongs to an 
element (see 2.3.3) or to the next element of the corresponding list of the composite 
block for which X is a node. These special elements belong to certain subclasses of 
class cycle (see 2.1.1). 

In case an integration method requires to compute the right hand sides of the 
corresponding differential equations, it resumes the control of the computation to 
the first element of the backbone of the element concerned (in the sense of 2.3.3). 
The action joined with the class macro begins by resuming the control to the first 
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element of its backbone. The special elements at the end of the backbone, mentioned 
above, cause that the whole hierarchy of the backbones of the same element is step­
wise activated and after the computation of the right hand side the computing process 
returns to the integration method. In case an integration method requires to compute 
something which concerns only storages (namely, to store their signals to some of 
their auxiliary attributes) it resumes the control of the computing process to the 
stomach of the element in question and the hierarchical process is performed simi­
larly. Let us mention that every composite storage which is a node of X is placed 
in the backbone of X and therefore the procedure sort applied to X automatically 
creates a special card and places it into the stomach of X in place of the storage 
itself; the card is an element of a subclass of cycle 1 (see 2.1.2). 

Procedure set to (see 2.2) is declared for various classes of macros so that it calls 
form and sort. The same procedures are also included at the beginning of the action 
of every element. Procedure sort should be called also in case the structure of a com­
posite block is essentially modified during its existence in the system. Calling sort 
during the computation (and not during the compilation) makes BOSCOS a com­
bined simulation system oriented to the 3-systems (and naturally also to the 1-
and 2-systems). 

In the composite blocks, implicit elements can be used making it possible to form 
algebraic (implicit) loops (see e.g. [20]); the implicit elements behave as elements 
of a subclass of class simple 1 (see 2.2.1) and use Wegstein's algorithm, which is 
considered as robust [21], [22]. 

4. CONCLUSIONS 

BOSCOS has no standard outputs, because of the absence of experience: the 
existing combined simulation systems are facilitated only by standard outputs com­
monly known from continuous system simulation. At present time, the principles 
mentioned in 3.1 are studied for being adapted for multistep integration methods 
and for combining implicit integration principles with traditional explicit algorithms, 
similarly as mentioned in [18]. These tasks could mean an important contribution 
to the systematic algorithmization of numerical methods: the expressing of structural 
algorithmical properties of the numerical integration methods is far from being so 
exact as their analytical treatment concerning their accuracy and stability, and 
SIMULA seems to be an important tool in this development. 

All concepts mentioned in Parts 2 and 3 have been declared as attributes of class 
BOSCOS. This class has been designed as a subclass of SIMULA standard class 
SIMULATION, i.e. the definition of BOSCOS has been introduced by the following 
declaration: 

SIMULATION class BOSCOS; begin (classes of Parts 2.3> end : 

This fact enables the users to use in BOSCOS any tool introduced in SIMULATION; 
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thus one can make use of the list processing tools and of discrete event scheduling 

on a simulated time axis. Therefore we have not described those facilities in the 

present paper. Moreover, in BOSCOS one can make use of any subclass of SIMULA­

TION: one can arrange it simply so that instead of the "prefix" SIMULATION 

one writes another prefix before the mentioned text class BOSCOS. The author has 

made a good experience especially with using prefixes GPSS and TRANSPORT. 

The first one [23], [24] introduces all common facilities concerning the queuing 

systems, the second one [25], [26], [27] introduces all tools concerning the material 

flow systems [28], [29]. 
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Souhrn 

BLOKOVĚ ORIENTOVANÁ SIMULACE KOMBINOVANÝCH SYSTÉMŮ 

EVŽEN KINDLER 

V článku je popsán programovací systém BOSCOS, který umožňuje strojový překlad popisů 
kombinovaných systémů do odpovídajících simulačních programů. Kombinované systémy se sklá­
dají z bloků a diskrétních procesů. Bloky se chovají dle obyčejných diferenciálních rovnic nebo 
dosazovacích příkazů, nebo představují sítě složené z takových bloků. Jsou možné interakce 
mezi bloky a procesy. Systém byl implementován pomocí báze znalostí (třídy formálních definic) 
v objektově orientovaném programovacím jazyku SIMULA. 

Pe3K>Me 

CTPyKTyPHO OPHEHTHPOBAHHOE HMHTALIHOHHOE MO/1EJ1HPOBAHME 
HEnPEPLIBHO-AHCKPETHbIX CHCTEM 

EVŽEN KINDLER 

B cTaTte onncaHa CMcreMa nporpaMMHpoBaHHH BOCKOC, KOTOpan opneHTHpOBaHa Ha MauiHH-
HLIH nepeBOji HenpepbiBHO-AHCKpeTHbix CHCTCM H HX onHcaHHH B cooTBeTCTBVKmnie HMHTanHOHHbie 
n p O r p a M M L I . HenpepBIBHO-JJHCKpeTHBie CHCTeMbl KOHCTpVHpyKDTCfl H3 6H0K0B H AHCKpeTHbIX 

nponeccoB. /jHHaMHKa 6JIOKOB onncaHa oóbiKHOBeuHbrMH /jHcbepeHHHajibHbíMH ypaBHeHHMMH HJIH 
onepaTopaMH nô cTaHOBKH, HJIH npH noMornn ceTH nofloÓHbix 6JIOKOB. Cym;eCTByK>T HHTepaKHHH 
MOKay ÓJiOKaMH H npoueccaMH. CncTeMa 6buia peajiH30BaHa Ha íi3biKe CMMYJIA. 

Authoťs address: RNDr. PhDr. Evžen Kindler, CSc, Katedra aplikované matematiky na 
M F F KU, Malostranské nám. 25, 118 00 Praha 1. 
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