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DIFFERENTIAL EQUATION DESCRIBING MOLECULAR ROTATION
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Summary. Stability of an invariant measure of stochastic differential equation with respect
to bounded perturbations of its coefficients is investigated. The results as well as some earlier
author’s results on Liapunov type stability of the invariant measure are applied to a system
describing molecular rotation.
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McConell [1] studied nuclear magnetic relaxetion arising from spin-rotational
interactions of the molecules. He assumed the rotation of a molecule to be due to the
thermal motion in a steady state and the components (1), @,(t), ws(t) of its angular
velocity to obey the Euler-Langevin equations
(0.1) Loy — (I, — I3) w03 = —1;Bj0; + I,W,

Izd)z - (13 - II) w1w3 = —Iszwz + 12W2
I3 — (I3 — I,) 0w, = —I3Byow3 + I3W;,
where I, 1,,1; are the principal moments of inertia, B;, B, B; the frictional con-

stants and (W;, W,, W,) is a 3-dimensional Wiener process. We can write the system
(0.1) in a more usual differential form

(02) dory (1) = (-—Bl () + 2L 00 w3(t)) dt + dw(s)

1

dw,(t) = ("Bz o,(f) + I I—' Iy wl(t) w;(t)) dt + dw,(r)

2

das(t) = (—B3 os(f) + 1 1— T2 w,(1) wz(t)> dt + dw,(f).

3
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In this paper we investigate the system (0.2) from the viewpoint of stability (which
was suggested in MR 83m:82030). In Section 1, which is based on the previous results
[4], [5], we show the existence of an invariant measure (stationary solution) of the
system (0.2) and its global asymptotic Liapunov stability in the strong and the
weak topology. In Section 2 we show the stability of the invariant measure with
respect to bounded perturbations of coefficients of the system (0.2).

1. INVARIANT MEASURE AND ITS LIAPUNOV STABILITY

Consider an n-dimensional autonomous stochastic differential equation
(1.1) d¢, = b(¢,) dt + o(¢) dw,,

where w, is an l-dimensional Wiener process, b and ¢ are an n-dimensional vector
and an n x [ matrix, respectively, both b and o defined on R,. Assume that

(12) () = BO)| + [o(x) — o) S Kalx = o], Ky >0,
holds for all N > 0, |x| + |y] £ N. Set (a;,(x)) = o(x) 0™(x) and denote by

e (b(xr%) +1% a2

i,J ax,- axj

the infinitesimal operator corresponding to the equation (1.1). Assume that for some
ceR

(1.3) LW £ ¢ B(W)

holds on R,, where We C, satisfies

(1.4) Wr = inf W(x) > o for R— o

Ix|2R

and B e C,(R,) is a nonnegative and nondecreasing function satisfying

f""__éy_.”o
o 1+ B(u)

It is known (see e.g. [2], [3]) that the conditions (1.2), (1.3) guarantee the existence
and uniqueness (with probability 1) of a solution of (1.1) defined on R.. Denote
by 2 the set of probability measures defined on the o-algebra # of Borel sets of R,.
Set

S P> 2, S,v(A):J P(t,x, A)v(dx), Ae®, t=20,
R,

where P(1, x, A) is the transition probability function of the solution of (1.1). Let d
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stand for a metric on £ realizing the weak convergence of measures, and ||+ || for the
total variation of measures. Statements in this section concern the dynamics of S,
in the spaces (2, ||+||) and (2, d). We consider the case of nondegenerate diffusion, i.e.

(1.5) Y, ai(x) ey = m(x) |ef?

LJ

for all x € R, and x € U, where U is a region in R, and m > 0 is a continuous func-
tion on U.
A measure u* € 2 is called invariant if S,u* = u* for all ¢t > 0.

Theorem 1.1. Let (1.5) be fulfilled with U = R,. Then, for every ¢ > 0 and u e 2,
such 6 > 0 can be found that

d{Su, Sp) < ¢

holds for all t 2 0 and v e 2 such that d{p, v) < 6.

Theorem 1.2. Assume that (1.5) is fulfilled with
U = Ug, = {x€R, |x| < Ro} .

for some Ry > 0 and let there exist a function Ve Cy(R,), V 2 0, satisfying

(1.6) LV —aV+ B

Jor somea > 0, 8 > 0, and

(1.7) Vg, = inf V> b
R,.\URl o

for some 0 < Ry < R,. Then there exists a unique invariant measure y* € ? and

(1.8) [Sy — pu*| -0, t> o,
holds for all ve 2.

The proof of Theorem 1.1 can be found in [4] in a more general (nonautonomous)
case. Theorem 1.2 has been proved in [5] as a consequence of a more general result
based on a method developed by A. Lasota [7].

We shall show that the above theorems can be applied to the equation (0.2).

Corollary 1.3. Assume that the equation (1.1) has the form (0.2). Then the as-
sertions of Theorems 1.1 and 1.2 are valid.
Proof. Set »
W(x) = ${I,x? + I,x3 + Ix3 + 1).
Then
LW(x) = —1,B,x} — I,B;x5 — I3B3x; + 3(I, + I, + I;) < ¢ W(x)

348



for a suitable ¢ > 0 and all x € R; and hence (1.3) is fulfilled with B(x) = x. The
assumptions of Theorem 1.1 are clearly satisfied. Setting V = W we also see that
(1.6), (1.7) are fulfilled for some & > 0, f > 0 and R, > 0.

Remark 1.4. It is easily seen that the invariant measure u* is a Liapunov stable
stationary point of the system S, in the space (2, ||+||). Thus we have obtained the
global asymptotic stability of u* in the space (2, ||+||) as well as in (2, d).

2. STABILITY WITH RESPECT TO PERTURBATIONS

Consider the equation (1.1) whose coefficients satisfy (1.2) and (1.3) with (x) = x,
ie.
(2.1) LWS W

for some ¢ > 0 and We C, satisfying (1.4). For n = 0 we denote by ), the set of
couples [b, ] of coefficients of equations

(22) df, = b(l,) dt + &(C,) dw,

satisfying (1.2) and (2.1) (with the same ¢ and W) and such that
sup max |bix) — Byx)| = n

and T

sup max |a;(x) — @,(x)| £ 7,
x iJ

where (@;;) = 66". Denote by # < 2 and # < P the set of invariant measures
with respect to the equations (1.1) and (2.2), respectively.

Theorem 2.1. Let there exist a function u = 0, u € C,, such that
x; 0 }

Proof. Denote by L the infinitesimal operator corresponding to the equation (2.2).
For [b, 6] € o, we have

(23  T@ sup {Lu %) + n(

R-wo |x|=R

()l

2:_’

for somen = 0. Then M % 0 for all [b, G| e A,

Lu(x) < Lu{x) + nix’;;x (|bilx) = B(x)|, |ai(x) — @, (x)]) -

(3ol +2 Bloas o)

()[

211

349



By (2.3) we get
(2.4) Lu(x) £ =k, |x|> R,
for some k > 0, R, > 0. It can be shown by a standard argument ([8], [6]) that
(2.4) implies the existence of an invariant probability measure with respect to (2.2),
ie., M £ 0.

The next Theorem concerns the “continuous dependence” of that invariant
measures of the equation (1.1) on its coefficients.

Theorem 2.2. Let (2.3) be strengthened to

0%u

0x; 0x;

25)  lim sup {Lu(x)+n<z (%)

R-o |x|=R i

1
+._
5

iJj

ou
— (x
ax,.( )

-

Consider the metric of uniform convergence and the metric d on A, and 2, respec-
tively. Then the mapping

O: A, >exp?, [b,c]— A

is upper semicontinuous at the point [b, o|. In particular, if # = {fi} contains only
one point for all [b,G]e A, (i.e. every equation (2.2) has a unique invariant
measure), then the mapping

v, - (2,d), [bé]lmi
is continuous at p* (the invariant measure of (1.1)).

Remark 2.3. The assumption (2.5) cannot be weakened to (2.3) in Theorem 2.2.
However, it can be shown that (2.3) guarantees the “continuous dependence” of
invariant measures if the topology on 2 is suitably weakened (cf. [6]).

Before proving Theorem 2.2 we give a lemma. For fe C, set

T,f(x):J‘ P(t, %, dy) f(3), t> 0,

R,

and consider a sequence [b", "] € A, b™ 33 b, 6™ 33 0. Let L, P™(t, x, A), T," and
A#™ have the same meaning with respect to the equations

(2.6) dgy = b™(¢7) dt + o™(7) dw,
as L, P(1, x, A), T, and .# have with respect to (1.1).
Lemma 2.4. Let f: R, » R be a bounded Lipschitzian function. Then

" f(*) 3" T,f(*), m—-> o forall t=0.
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Proof. First assume b, ¢ to be globally Lipschitzian. Let

sup U:ix (|bi(x) = 7], |os(x) = oF(x)]) <&

for some ¢ > 0. It can be easily seen that

EJ - O < K, (ez + f E.J¢, — Cf? ds)

(]

for some K, > 0 (independent of m). Gronwall’s lemma yields

IT.f(x) = T f(%)] = K[EC, — CTP]2 S eKap /(™ = 1)

It follows that T;"f =3 T.f. In the case of non-Lipschitzian b, o we define (globally)
Lipschitzian approximations b°*, p™* g% g™* such that

b (x) = b(x), b™(x)=b"(x) for |x| <k, keN,
sup max |b7(x) — b7H(x)| < sup max |bi(x) — bYH(x)|

and similarly with ¢°*, ¢™*. Denoting by {™* and {°"* solutions of the corresponding
equations with the coefficients [b™*, c™*] and [b°*, ¢°*], respectively, we have

|T" f(x) — T, f(x)| £ |E.A(CT) = ELF(GY)] +
+ B f(ETY) = B ()] + [EL (L) = ELf(L)]

Hence it suffices to show that

(2.7) [E. A(CmF) — E f(CN)] + |EcA(L0*) — E.f(L)] =0, k- o0,

uniformly with respect to m and locally uniformly with respect to x. Trajectories of
the processes (™* and {™({®* and () coincide until the exist time ™*(z*) from the
ball |x| < k. Furthermore, by (2.1) we obtain

Pl < 1] < e W(x)
T T T inf w(y)

Iylzk

(cf. the proof of Theorem 3.4.1 in [7]) and hence (2.7) is valid.

Proof of Theorem 2.2. Take an arbitrary sequence p,, € .#™. We need to show
that y,, — u holds for some subsequence (u,,) and a measure u e .# (= stands for
the weak convergence). First we show that the set Z = U.#™ is relatively compact
in (2, d). By (2.5) we have "

M = sup sup L™ u(x) < oo .

meN x
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Put

Vg =sup sup Lu(x).
x| 2R (6,71
The condition (2.5) yields
(2.8) lim Vg = —c0.

R—+cc

For xeR,, t > 0, meN we obtain, by a standard application of Itd’s formula
and Fatou’s lemma:

t t
Eu((7) — u(x) < E,f L u(ly)ds < Exf (VrXpimizry + M) ds.
0

o

Hence (we can take V < 0)

‘. J”X”U,.@R] ds < u(x) + Mt — E.u((7)
0 —Vr
and thus
t m
(2.9) ! j P(s, x, Ry\Ug)ds < “0) — E(E) | M
tJo —tVy —Vr \
Since

t
Ry~ Uy) = f P(s, %, Ry~ Up) pnfd) = J lf P™(s, x, R, Up) ds uu(d)
R. Rt Jo

for any p, € M™, s > 0,t > 0, by (2.9) we get

+j u(x) - Ex“(C':") u,,,(dx) .

R, \Ug) <
ol Ur) — Vit

— VR

The second term on the right-hand side equals zero and thus

Ilm(R,, N UR) é

R

which by (2.8) implies the weak compactness of Z. It follows that there exist a sub-
sequence (i,,) < (i4,) and a measure pu € 2 such that p, — u. It remains to show
that

(2.10) J‘T,fd,u=J‘ fdu, t>0,

for any bounded Lipschitzian function f, which implies pe.#. To show (2.10)
we write :

J‘ T;mifdluml —J‘ T‘fd”‘ éf IT'MIf - thl d#m« + ZSUp Ifl 'u""(R"\K) +
R, R, K
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+

j T.f A, —J‘ thdy’ (K = R, compact).
R, Rn

By Lemma 2.4 we get

(2.11) fn'”‘fdum - fr,fdy.

On the other hand, we have
'[T{"'f Qb = jf Qh, ff du

which together with (2.11) implies (2.10).
Example 2.5. For R > 0 set
My = sup (b(x), Cx) +  Tr(4(x) C)

|x|=R

where A(x) = o(x) 6™(x) and C = (c¢;;) is a symmetric positive definite matrix.
Assume that
(2.12) lim (Mg + eR) = — o0

R-

holds for some ¢ > 0. Then the assertions of Theorems 2.1 and 2.2 are valid with

n = ¢/K, where K = n*2 max |c;;| + 1. To prove it we can use the function u(x) =
=1 c¢;x;x;. We have

iJ

lim sup {Lu(x) + IE((; lJZcijxj‘ + %g lcijl)} =

R- o |x]|=R
< lim sup (Lu(x) + eR) = lim (Mg + ¢R) = —o0.
R- o |x|=R R— o

Hence (2.5) is fulfilled.
We shall apply the above results to the system (0.2).

Corollary 2.6. Assume the equation (1.1) to have the form (0.2). Then the assertions
of Theorems 2.1 and 2.2 are valid with any n = 0.

Proof. We can use Example 2.5 with ¢;; = 6;;1;, i,j = 1,2,3. We have
(b(x), Cx) + $ Tr A(x) C =
= —B,1,x} — B,I,x} — BI,x3 + 3(I, + I, + I3) £ —ofx|?
for an o« > 0 and all || sufficiently large. Hence (2.12) is fulfilled with any & > 0.

Remark 2.7. By Corollary 2.6 the invariant measure of the system (0.2) is stable
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with respect to bounded perturbations of the coefficients, i.e., after addition of any
bounded perturbation the new equation also possesses an invariant measure which
differs little from the original one if the perturbation is sufficiently small.
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Souhrn

STABILITA INVARIANTNI MIRY STOCHASTICKE DIFERENCIALN{ ROVNICE
POPISUJICI MOLEKULARNI ROTACI

BOHDAN MASLOWSKI
Je vy$etfovana stabilita invariantni miry stochastické diferencialni rovnice vzhledem k omeze-
nym perturbacim jejich kocficientd. Zijskané vysledky a ndkteré drivéjSi autcrovy vysledky
o stabilitd ljapuncvského typu invariantni miry jsou aplikovany na systém popisujici molckularni
rotaci.

Pesome

VCTOMUYUBOCTh MHBAPUAHTHOM MEPEI CTOXACTUYECKOI'O
ANO®PEPEHIMAJIBHOI'O YPABHEHUA
OIMUCBIBAIOIIEI'O MOJIEKVYJISIPHOE BPAIIEHUE

BOHDAN MASLOWSKI

Hccnenyercs: yCTOWYABOCTh MHBAPUAHTHON MEpPHI CTOXacTHYECKOro AupdepeHuuansHoro ypas-
HEHHS JIPY OTPAHMYEHHBIX BO3MYIIEHISIX €ro Ko3(hdunenToB. B KayecTBe OPAMEHEHHUS ITUX M HEKO-
TOPBIX IPEXHHUX PS3YIBTATOB aBTOPA, KACAIOLIMXCA YCTONYMBOCTH JISITyHOBCKOTI'O THIIA, PACCMATPH~
BACTCs CHCTEMA ONMCHIBAIOINAS MOJIEKYJIIPHOE BpAICHHE.
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