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33(1988) APLIKACE MATEMATIKY No. 4, 296—321 

TRANSONIC FLOW CALCULATION VIA FINITE ELEMENTS 

PETR KLOUCEK, JOSEF MALEK 

(Received December 27, 1986) 

Summary. Using new results based on a convenient entropy condition, two types of algorithms 
for computing transonic flows are constructed. A sequence of solutions of the linearised problem 
with a posteriori control is constructed and its convergence to the physical solution of transonic 
flow in some special situations is proved. 

This paper contains also numerical results and their analysis for the case of flow past NACA 
230012 airfoil. Some numerical improvements of the general algorithms, based on our practical 
experience with this problem, are also included. 

Keywords: transonic potential flow, finite elements, entropy condition. 

AMS classification: 76-08, 86H05, 65N30. 

INTRODUCTION 

Numerical computation of steady-state transonic potential flows of an inviscid, 
isentropic, irrotational, ideal compressible fluid has belonged for a long time to the 
very difficult problems of numerical as well as applied mathematics. The problems 
of existence and uniqueness have been open until now. The difficulties consist in the 
fact that the equation for the potential of velocity is nonlinear and of mixed type. It 
is elliptic in the subsonic region and hyperbolic in the transonic one, and the boundary 
dividing these two domains is not known a priori. Generally, when passing across 
this boundary jumps of velocity, density and pressure may occur. Due to this fact 
one has to look for a weak solution of this boundary value problem. If we introduce 
the weak formulation similarly to the theory of elliptic equations the arising functional 
is not convex. 

Even in this situation there exist a number of numerical models and methods for 
their solution. Some of them are based on finite differences but we have chosen the 
method of finite elements which naturally corresponds to our approach. 

In our paper we broadly use the results contained in the paper "On the solvability 
of transonic potential flow problems" by M. Feistauer and J. Nečas. Many of the 
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numerical experiments we have performed show the fundamental nonuniqueness of 
the discretized problem. Most of the diagnosed methods tend to search for non-
physical solutions. For this reason we introduce the a posteriori check based on the 
verification of the entropy condition. We use the secant-modulus method as the 
based mean for the construction of the sequence of solutions that can (under some 
conditions) converge to the solution. When we have such a set of solutions of the 
linearised problems we choose, as the next step of an abstract algorithm, only those 
which satisfy the entropy condition. It was discovered by M. Feistauer and J. Necas 
[1] that this condition brings the missing compactness into the problem. As the next 
step we can use the minimization of the ALTERNATIVE functional that has the 
indicative property. 

We include into this paper the analysis of the results obtained by the algorithms 
constructed, using NACA 230012 airfoil. 

This paper does not contain results dealing with the convergence of finite elements 
because this topic is a subject of the authors' forthcoming papers. 

All methods described herein are rather heuristical because of a permanent lack 
of an existence and uniqueness results for this problem. The aim of the present paper 
seems to be to verify the existing theoretical results for constructions of numerical 
methods. 

1. MATHEMATICAL FORMULATION OF THE PROBLEM 

From now on we will consider an adiabatic, isentropic, irrotational, steady-state 
and compressible flow of a nonviscous fluid in a bounded, simply connected domain Q, 
which can be described by the Full Potential Equation 

(IT) -div(O . Vu) = 0 in Q, 

where u is the velocity potential, Vu is the vector of velocity and Q is the density 
given by the function 

/ y _ 1 \1 / (K-1 ) 

(1.2) Q = Q(M2)=eoU-^M2) 

Q0 is the density corresponding to zero velocity of the flow, a0 is the speed of sound, 
x is the adiabatic constant (x = 1-4 for air). We consider the following types of 
boundary conditions: 

(1.3) u = 0 on r , 

du 
Q— = g on r2 u F3 , 

on 

g\r3 = 0 and g\r2 < 0 . 
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3 

Now dQ = f) rtu $1; 9t is a subset of (N — 1) dimensional measure zero (N is the 

dimension of the Euclidean space containing Q). Using this notation we may call F2 

the entrance and Fr the exit of the region Q. As one can see, F3 represents the 
"walls" of Q. 

Instead of the set of conditions (1.3) one may consider the following one: 

(1.3') — = 3 on dQ, 

dn 

where g is the given normal component of the mass flow through the boundary, 

\dQ g dS = 0 (conservation of the mass) . 

At the first glance the system (1.1) —(1.3) or (l .3') seems to be very easy to dealwith. 
But in fact it represents a complicated theoretical problem closely connected with 
many numerical difficulties as mentioned (partially) in the introduction. The main 
reasons are the following: 
(1.4) The equation ( l . l ) is nonlinear and of mixed type: it is elliptic in ihe subsonic 

region and hyperbolic in the transonic one; when modelling the flow past e.g. 
airfoils shocks may^ occur, that means discontinuities (the so called shock 
waves) in the velocity, density and pressure. 

(1.5) Most of the methods based n mere minimization of the functional cor­
responding to the weak formulation of the problem given by ( l . l ) —(1.3) or 
(1.3') tend to select the solution with expansion shocks which is not admissible 
from the physical point of view. Therefore it is necessary to insert artificial 
viscosity into the process of calculation to eliminate this type of solutions. 

The situation across the shock is described by at least two conditions: 

(1.7) g(dujdn)\^ = Q(dujdn)\+ (Prandtl's condition) , 

where — and + denote the quantity in front of the schok and behind it, respectively; 

(1.8) |^M | | - > |^w | |+ (Entropy condition). 

The condition (1.8) is satisfied by any physical solution. It expresses the fact that the 
density across the shock must increase. Or, in other words, that rarefaction shocks 
are impossible. The physical condition of bounding the velocity is represented here by 

(1.9) |Vw| S u0 < (2a2
0\(x - 1))1/2 a.e. in Q , 

where w0 is a fixed constant. We also require • 

(1.10) \g\ < max t Q(I2) . 
[0,const] 

The condition (1.8) shows that the model given by ( l . l ) —(1.3) does not strictly 
describe the situation because it does not express the macroscopic effect of the vis-
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cosity of the fluid. The a posteriori application of (1.8) is unsatisfactory because we 
a priori neglect the physical situation. On the other hand there are at least two good 
reasons to do it. 

Firstly it is very well known that (1.1) — (1.3) describes the subsonic situation well 
and its solution is very "cheap". So one can look for a suitable modification of it to 
achieve good results for the transonic case as well. 

Secondly, it is very difficult to avoid nonphysical solutions. The only safe way 
is to take into account the all fundamental aspects of the model. This leads us naturally 
to a complex task of solving system of four equations: 

1. Continuity equation. 
2. Navier-Stokes equations. 
3. Energy equilibrium equation. 
4. State equation. 
This is a system for six unknowns. These are the pressure, density, temperature 

and three unknowns for the velocity. This system is undoubtedly very difficult 
because of its nonlinearity. It is also clear that every simplification can cause the 
same type of trouble as with the model (VI) —(1.3) and the condition (V8). The model 
(VI) —(1.3) covers e.g. symmetric flows past airfoils subsonic at infinity, and flows 
in a nozzle with subsonic entrance. For more details and extensions see R. Glowinski 
[5]. 

The paper is organized as follows: 
In Chapter 2 we introduce the notation and weak formulation of the problem 

(VI) — (V3). Chapter 3 describes the basic scheme of our approach to its solution; 
we introduce the secant-modulus method and the indicative functional (called the 
alternative). This chapter contains the basic relations and properties of the functional 
$ and the bilinear form B introduced in Chapter 2. Chapter 4 consists of algorithms 
used for the construction of sequences of functions in the space V (definition later) 
giving us the change to obtain the solution. In Chapter 5 we present the proofs of 
convergence of the methods from Chapter 4 under some special circumstances. 
Chapter 6 contains the analysis of numerical results and the discussion of the selected 
parameters and variables. Chapter 7 contains graphs of the results obtained by the 
methods of Chapter 4. 

2. NOTATION AND WEAK FORMULATION OF THE PROBLEM 

We use standard notation that is explained in detail e.g. in R. Glowinski [5l. 
The Sobolev spaces Wm,p(Q) are equipped with the norm || • ||m,p,Q defined as the sum 
of the LP norms of the generalised derivatives up to order m: II • II n = V II n , c . || 
where k is the multiindex lfcl = m 

N Q\k\ 

\k\ = y > ; and Dk = 
i = l ð*'*! ...дkNxN 
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LP(Q) is the space of measurable functions so that 

Ja |i>(x)|pdx < +00 for 1 g p < +oo . 

The space C0(Q) = {v e C(Q); v\dQ = 0} is equipped with the U° norm that is defined 
as follows: ||u|| = inf sup \u(x)\. As usual 

measM = 0 xeQ\M 

3(Q) = {ve C°°(0); supp v a Q) and @+(Q) = {v e @(Q); v ^ 0} , 

W0'
P(Q) stands for the closure of 3f{Q) in the norm of the space Wm,p(Q). 

In particular || • ||f,2,o = ^ ( V * ) 2 dx. We assume that every function from C0(Q), 
@(Q) and Wm,p(Q) is extended by zero to the whole RN. Integration is performed in 
the N-dimensional space, N = 2, equipped with the Lebesgue measure, or in the 
(N — 1) dimensional space on the boundary of the domain. We consider only real 
functions of the real variable. 

The weak formulation of the problem (1.1) —(1.3) reads as follows 

(2.1) ueV: j a (|Vu|2) Vw Vh dx = J>2 gh dx for every h e V, 

where V = {v e W1,2(Q); v = 0 on FJ with the norm || • || 1,2,0- The entropy condition 
(1.8) can be written in the form 

(2.2) - $Q Vu Vv dx S K \Q v dx , v e @+(Q), 

where K is a suitable constant. 
The variational inequality (2.2) is the weak form of Aw :g K. This proposition is 

discussed in J. Mandel and J. Necas [2]. Let us denote 

SE = {ueV; u satisfying (2.2) and (1.9)} . 

It is known cf. Feistauer, Mandel, Necas [3] that the set SE is a compact subset 
of W1,2(Q). Therefore our goal is to find the solution of (2.1) in SE. 

3. CONSTRUCTION OF MINIMIZING SEQUENCES 

Let 

(3.1) *(II) = 1/2 Jfl J0
v"'2 Q(t) dt dx - j r 2 gu dS . 

The function Q was introduced in (1.2). It is necessary for our purposes to prolong this 
function to the interval [0; + 00[ in such a way that it has the following properties: 

(3.2) Q(S) = Q0 11 T s\ , for 0 S s < A and 

A G l _ ^ o _ ;_2a|_f" . A i s c i0se to 2ag/(x - 1) . 
\x + 1 x - 1 [ 
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(3.3) O(s) is continuous in [ 0 ; + o o [ , 

Qf(s) is continuous in [0; + oo[ . 

(3.4) There exist two constants O1? O2 such that 

0 < Oi = Q(S) ^ Q2 < + oo for s e [0; + oo[ . 

(3.5) Q'(S) = 0 for s e [ 0 ; + o o [ . 

The graph of density can be found (with suitable extensions that evidently exist) 
in Chapter 7. A suitable extension may be constructed by prolonging the density 
by a constant 

K-Ä))-e.g. £oo = Q . 

However we will discuss the difficulties with the selection of later. Because of the 
notation of the weak formulation (2.1) we denote by w = w(u) the solution of the 
linear problem: 

(3.6) w(u) e V: fa Q(\VU\2) WW{U) Vh dx = Jr2 gh dS , Vft e V. 

Let us denote the left-hand side of (3.6) by B(u; W, h). This is a bilinear form sym­
metrical in w and h. 

3.7. The properties of $ and B 

From the definition of the density we can immediately obtain the following proper­
ties for the bilinear form B: 

(3.8) \B(u;u, h)\ = const. ||u|| . \\h\\ , 

(3.9) B(u; h9 h) = const. \\h\\2 . 

It can be easily seen that d<P(u9 h) (Gateaux differential at the point u) exists and 

(3.10) d<f>(u, fr) = B(u;u, h) - J r2 g/i dS , V h e V . 

When we take (3.5) into account and denote 

C(u) = <P(u) + Jr2 gu dS , 

we can prove (see M. Feistauer and J. Necas [ l ] ) that for every u and h from V we 
have 

(3.11) 1/2 B(u; h9 h) - 1/2 B(u; u, u) - C(h) + C(u) = 0 . 

If the condition 

(3.12) O(s) + 2s Q'(S) = > 0 for s e [0; + oo[ and some 
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holds then dC(-, •) satisfies 

(3.13) dC(u + h, h) - dC(u, h) ^ const. ||h||2 , u, h e V. 

The condition (3.12) is equivalent to the restriction for the argument s of the density Q: 

2a2
0 ' 

(3.14) s € [ 0 ; A * ] , where A* e 0; 
x + 1 

This means that the condition (3.13) is satisfied only in the subset of V, which consists 
of the velocity potentials which correspond to the strictly subsonic flow. 

3.15. Secant-modulus method 

The linearisation (3.6) of the problem (2.1) is only one of the possibilities (cf. R. 
Glowinski [5]). The very natural form of the above linearisation leads us to the 
method that we sometimes call "the secant-modulus method" and that can be 
described as follows: 

(3.16) Let U0EV be arbitrary , 

(3.17) un + x E V: B(un; un+1, h) = j>2 gh dS , V/i e V. 

(3.18) If \\un - MB + i | | l f 2 < epsilon then STOP 

else 

un:=un + 1; GOTO (3.17). 

If we have (3.13) we can prove the following theorem. 

3.19. Theorem. Let us have the functional <P defined in (3.1), the bilinear form B 
defined in (3.6) with the properties (3.8) through (3.10), and the density (1.2) with 
an extension of the type (3.2) —(3.5). Let the condition (3.13) hold. 

Then the sequence { U J J L Q obtained by (3.16) — (3.18) converges to u (strongly) 
in Vand u is the only critical point of <P in this space. 

Proof. Can be found e.g. in J. Necas and I. Hlavacek [7], 

3.20. Remark , (i) Once again we repeat that it is necessary to satisfy the condi­
tion (3.13) and this implies the subsonic flow only. 

(ii) Application of this method in the case of the transonic flow was unsuccessful. 
We have obtained the same experiences as G. Poirier [6] when he calculated the 
transonic flow without any type of penalisation' or other a posteriori means. Any u0 

from (3.16) — (3.18) takes us to a nonphysical solution. From this one can presume 
that <P has at least two local minima and one of them is very attractive for such itera­
tive processes. The absolute minimum of # can't stand for the physical solution. 
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Because w(u) is the solution of (2A) if w(u) = w, let us define the so called 
ALTERNATIVE functional W by 

(3.21) W(u) = <P(u) - 4>(w(u)). 

Of course if W(u*) = 0 then u* is the solution of (2.1). However, the following 
lemma also holds: 

3.22. Lemma 

W(u) ^ const. ||u - w(u)||2 . 

Proof. Cf. M. Feistauer and J. Necas [ l ] . 

3.23. Consequence 

W(u) ^ 0 for every u e V. 

3.24. Remark . In the case of the transonic flow the condition (3.13) is not longer 
valid and therefore neither the functional <P nor W are convex. In this case we can 
apply following conceptual algorithm: 

(3.25) Construct a subset A of local minima of W . 

(3.26) Does there exist in the subset A a point u satisfying the entropy condition 
(2.2)? 
YES: u is the physical solution. STOP. 
NO: Construct a new subset B of local minima of W such that A c B 

and let A now stand for B. GOTO (3.26). 

We tried to use this method to compute the flow (even successfully) but it has 
disadvantages which have three main reasons: 

(i) W is not convex, 
(ii) it is very difficult to construct the set B of the above definition, 

(iii) this method has enormous demands for the computer time. 
Later the functional W will be of great advantage for us. 

4. APPLICATION OF THE SECANT-MODULUS METHOD 

4.1. Definition. For fi e ]0, 1] we define the function 

QP: [0, +oo[ ->i? by: 

(4.2) gfi(s) = eo ( 1 - — r s) for s ^ , 

(4.3) Qfi(s) = QP(X) for s > A. 
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We denote by Qp: [0; + oo[ —> R a suitable regular ization of the function §p so that 

QP e C\[0; + oo [) for every p e ]0; 1] . 

4.4. Remark . It is clear that the following assertions again hold: 
(i) for every p e ]0; 1] there exist QU Q2 such that 

0 < Qi ^ Qp(s) ^ Q2 < + °° f ° r every s e [0; + co[ , 

Qp(s) ̂  0 in [0; + oo[ for every p e ]0; 1] , 

(ii) for p = 0 we can define Qfi = 1; 
(iii) ^ , C^, B^ are defined as <£, C, B, but with the density D^. 

4.5. Lemma. For P e ]0, 1] the form B(u;w,h) and the functional &p satisfy 
the conditions (3.8) —(3.11) and 

(i) <Pp(u): V~> R has the Gateaux differential d ^ ( u , ') for every u e V, 
(ii) the form Bp(u; w, /z) is bilinear and symmetric in w and /z, 

(iii) 0^ is coercive for every u e V. 

Proof. The functional ®p(u) is continuous and differentiable on every line in V 
for every P e ]0; 1]. It has the Gateaux differential. The fact that Bp is bounded and 
V-elliptic (see condition (1.9) with Bp) is an immediate consequence of (i) from Remark 
(4.4). 

The verification of (3.12) proceeds in the same way as in the case of the density Q 
if we consider (ii) of (4.4). 

Let us verify the coercivity of <Pfi. 

«*(«) = 1/2 fnJIVu '2 <?,(*) d t d x _ $r2gUdS k l /2 e i | |« | | J> 2 - const. ||«||1>2 

for every p e ]0; l ] . This is a consequence of the theorem of traces, the equivalence 
of the norms of Vand W1 '2, and of the boundedness of g. Q.E.D. 

Remark . Similarly we can verify the coercivity of Wfi. 

4.6. Remark . The introduction of P into the definition of the density Q has 
extended the possibility for the application of (3.16) — (3.18) and Theorem (3A9). 

Let us look for such p e ]0, l [ that &fi satisfies condition (3.13). We have 

d¥(u + h9 h) - d&(u9 h) = 

= In (Qfi(\Vu + V/z|2) (Vu + V/z) - ^( |Vu |2) Vu) Vh dx = 

= Jn Jo 9'(t) & dx , where g(t) = QP(\VU + t Vh\2) Vh , for u and h e V. 

Hence we have 

g'(t) = 2Q'P(\VU + t Vh\2) ((Vu + t Vh) Vh) + Qp(\Vu + t Vh\2) (Vh)2 . 

Let us denote v : = V/z and w : = Vw + t Vh. 
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To satisfy the condition (3.13) we have to look for such c > 0 that 

2O/j(|w|2) (wv)2 + 0/?(|w|2) v2 ^ cv2 for every w, v e RN . 

(4.7) Qp(\w\2) v2 + 2O^(|w|2) (wv)2 = (2Oj(|w|2) w2 + O^(|w|2)) v2 -

- IQ'M2) I (™i»J ~ wj»t) = (2^(|w|2) w2 + O,(|w|2)) v2 . 

The above condition can be satisfied if and only if 

(4.8) Qp(s) + 2s Qp(s) g: c > 0 for every s e [0, + oo[ . 

This inequality is equivalent to finding such /? that 

(4.9) ! - ( ( * - l)/2ag) s - (£/a2) 5 > 0 . 

From this inequality we see that /? < 1/M - (x — l)/2, where M = s/ajj, since 
M e ] 0 , V ( 6 / ( X - 1))[ we have 

(4.10) i 8 e ] 0 - ( 2 - x ) / 3 [ . 

4.H. Remark . The estimate (4.10) gives us an opportunity to apply the algorithm 
(3.16) —(3.18) in the following manner: 

(4.12) Let fi e ]0, (2 - x)J3[ , u0 e V and n > 3/(1 + x), 

n e N be arbitrary . 

(4.13) w e V: B(u; w, h) = j r 2 gh dS for every ft e V. 

(4A4) Is ||w - M || i,2 > epsilon ? 

YES: u := w and GOTO (4.13) ; 

NO: GOTO (4.15). 

(4.15) Let j ? := /J + 1/n . 

Is j8 ^ 1 ? 

YES: STOP, 

NO: u := w and GOTO (4.13). 

4A6. Remark . Theorem (3.19) implies the convergences in the above algorithm 
only partially, namely, at the points (4.13) and (4.14). Nonetheless, as soon as ft > 
> (2 — x)j3 there exists a solution of (4.13), but theoretically it is not clear whether 
u -> u* for /? -> 1 and u* satisfies the condition (2.2). 

The idea of this method is to construct a "good u 0 " for the method of secant-
modulus to obtain physical solution in some special cases. 

The graphs of the solutions computed are found in Chapter 7. 
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we can write 

- Ja Vu„ Vh dx - t j ^ V(w(u„) - un) Wh > K\Qh dx for every h e @ + (Q) . 

Let US even assume that un satisfies the condition (2.2) with K given above. Then 

- t In V(w(wM) - un) V/z dx > 0 . 
If t > 0 then 

- J« Vw(u„) V/z dx > - j ^ Vu„ V/z dx . 

If we define the function 

con(u) = —\QVu V/z dxj\Q h dx for h e @ + (Q) and h > 0 , 

then under the above assumptions we have 

(5.10) con(w(u)) > con(u) for every h e S)+(Q). 

This inequality indicates a bad starting point for the process. 
The case t < 0 cannot appear under such assumptions. Because <P is coercive 

and $(u) ^ <P(w(u)) it means that Aun contains at least two points, namely u and 
some point un + ^ ( u , , ) — un). But we have Au„ = {u}. 

(iii) A priori we do not know the values of the function con(u). Therefore it is 
a matter of some experience to build up the set AECu„ during processing (5.1) —(5.7). 
The inequality (5.10) can be also used to indicate the a "good" choice of the constant 
K from (2.2). 

If we consider the process un + 1 = w(un) and un tend to u that does not satisfy (2.2) 
then con(un) /* k > K for some /z, where K is a "suitable" constant use for the process. 
In other words, as soon as the function con(u) begins to rise for some h this indicates 
that our sequence tends to a nonphysical solution. A bad choice of K can be indicated 
by the following two facts: 
(a) for every n e N, AECun = Aun (K too large), 
(b) there exists n0 e N such that Aun =t= 0 and AECun = 0 and we have the existence 

of a solution of (2.1) 
(K too small) 

(iv) In (5.6) we suppose the existence of a single un + 1 at which lF attains its mini­
mum. This step can be modified in other cases by choosing those points at which 
the function con(

9) attains its minimal value, where coh(*) is the maximum of con(*) 
over @£(Q). If this test does not decide either we can choose the point closer to un 

with the maximal value of the parameter t. This point is unique. For the sake of 
readability we use in (5.6) the simpler form of this test. 

(v) It is clear that the process (5.1) —(5.7) is deeply influenced by u0. 
(vi) The set AECu,, can consist of the following points: 
1) local minima of <P in V, 
2) saddle points of $> in V, 
3) minima in the directions considered (secant-modulus), 
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4) points of the form u + T(w(u) - u) and u - T(w(u) - u) in the case of T 
improperly chosen. 

Let us consider only 1) —3). 
If the process (5A)-(5.7) is successful (it means W(u) = 0) u will be of the category 

1) or 2). The step (5.6) is fundamental only in the case 3) that appears most often 
during computation. This step corresponds to the direction of the "low descent" 
because this step prefers those of the points at which the difference of <P(u) — <P(w(u)) 
is as small as possible. We include this step in (5.1) —(5.2) when we have in mind 
that a nonphysical solution can correspond to the absolute minimum of <P and that 
there exists large r such that $ is convex in the ball B(u, r) (u stands here for the 
absolute minimum). The step (5.6) can lead us outside of B(u, r). 

5.11. Lemma. Let us have the functional <P defined in (3.1), the bilinear form B 
from (3.7) and the sequence of points {urt}^L0 given by (5A) —(5.7). We suppose 
that there exists such n0 e N that for every n > n0 and for every it e AECun 

(5.12) <%,)><*>(«). 

Then 
for every n > n0 there exists sn > 0 and ftn < 0 such that for every u e Bv(un; sn) 
(Bv(% •) is a ball in the space V) we have 

(5.13) <P(u + Xn(w(u) - u)) - $(u) ^ pn < 0 , 

where Xn e R is defined by (5.3) —(5.7). 

Proof. Let us write 

<P(u + Xn(w(u) - u)) - $(u) = 

= <P(un) - 0(u) + $(un + XUn(w(un) - un)) - <P(un) + 

+ <£(u + Xu(w(u) - u)) - <P(un + XUn(w(un) - un)). 

Because of the continuity of <P and the mapping u -> w(u) (cf. Lemma 3.21, property 
6 in [ l ] ) it suffices to estimate the term <P(un + XUn(w(un) — un)) — <P(un). 

Because of (5.3) and (5A2) this term is less or equal to zero. It is equal to zero only 
in the case of saddle points or local minima of <P. But this is impossible because of 
(5A2). Q.E.D. 

5.14. Theorem. Let us have the sequence {uJ^Lo determined by the algorithm 
(5.1) —(5.7), the functional 0 given by (3.1), and let us assume that 0 is strictly 
convex in V. 

Then there exists a subsequence {w„jr=o °f {"„}.?= o ^at converges strongly 
to u in V, and u is the unique minimum of <P in the space V. 

Proof. In virtue of the process (5.1)-(5.7) and the Lax-Milgram theorem we see 
that it is possible to extract from the sequence {u„}^=0 a subsequence {u„jr=o> that 
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weakly converges to some u in V. If we now apply Theorem 5.8 we have strong 
convergence of the subsequence {u„k}%L0. 

Let US assume that there exists h e Vsuch that 

(5.15) d<2>(u, h0) + 0 , 

where u is the limit of the sequence {u„k}™=0. 
Every point veV for which there exists h0 e V such that (5.15) holds can be 

characterized by the existence of pv < 0 such that 

<P(v + Xv(w(v) - v)) - <P(v) g fiv < 0 . 

However there also exists ev > 0 such that for every u e Bv(v, ev) we have 

<P(u + h(w(u) - u)) - <2>(u) <: pv < 0 , 

because in the opposite case we could find in an arbitrary ball Bv(v, e) a point # 
with the property 

<2>(u + Xa(w(u) - u)) - <P(u) > 0 . 

However, this would imply 

d$(u\ h) = 0 for every heV. 

Such a point can be only one. 
So we can (for an arbitrary e > 0) find n0 e N such that uHm e Bv(u, e) for every 

m = n-
This and the inequality 

<P(w(u)) ^ $(u) for every u e V, 

implies 

Hence we clearly see that the sequence {&(unk)}™=0 is not a Cauchy sequence. This 
is impossible because $>(unk) -> ^(u) . So u must be the unique minimum of $> in V. 

Q.E.D. 

5.15. Consequence. The sequence {«*„}*=-0 defined by the algorithm (5.1) —(5.7) 

contains a subsequence minimizing the alternative functional \jj. 

5.16. Remark . The problem 

minimize <P(u) — j r 2 gu dS over SE 

has always a solution, but it is the solution of the transonic flow problem (2A) if 
for every v e V there exists e > 0 such that for every t e [0, e], 

u + tv e SE 

(cf. [3]). 
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Therefore we had to suppose the subsonic situation in Theorem 5A5 to be able 
to prove the convergence because in the transonic case we can not generally assume 
the existence of a point u e SE such that 

d<P(u, h) = 0 for every h e V. 

The assumptions which would enable us to prove Theorem 5.15 in transonic case 
could be rather restrictive. This means that we should suppose that the method 
(5.1) —(5.7) behaves like a "gradient-type" method. However we construct it like 
a "search — select type" method to minimize the alternative functional over a "small" 
set. 

6. NUMERICAL REALIZATION 

To finish the description of the minimization of the functional <P in the directions 
given by the secant-modulus method it is necessary to solve the step (5.3). 

This is the contents of the following paragraph. 

6.1. Definition. We say that a set Mf>a is an admissible set of a continuous func­
tion f: [A , B] -> R if and only if 
(i) Mft<x is nonempty; 

(ii) Mf(X = {JC, y e Mf \x — y\ ^ d > 0}, where 
Mf = \x e [A, B]; f(x) = locminf(t)}. 

te[A,B] 

We say that a function f: [A , B] -» R is admissible if there exists its admissible set. 
The construction of an admissible set can be done as follows: let us have d > 0 

and 0 < eps < d, numbers A, B and an admissible function. Then we can define 

(6.2) C:= A + djl 
D:= A + d 
Is D - B > 0? 

YES: STOP 
NO: i s / ( C ) < M I N ( / ( A ) , / ( D ) ) ? 

YES: GOTO (6.3), 
NO: GOTO (6.4). 

(6.3) Use "Line search" type algorithm (6.5) to find the minimum of/ in [A , A + d~\. 
Take it into the list. Let A := D. GOTO (6.2). 

(6.4) I s / ( A ) < / ( B ) ? 
YES: I s . / (A - eps) >,f(A)l 

YES: D:= C, 
GOTO (6.3), 

NO: A:= D, 
GOTO (6.2). 

310 



N O : I s f ( D + eps) > f(D)l 

YES: A:= C, 

GOTO (6.3), 

N O : A:= D, 
GOTO (6.2). 

6.5. Defimtioii. (Line search). Letf: [A, B] ~> R and [A, B] c K. 

(6.6) a := A 

Ь : = 5 
i : = 1 

(6.7) c = (a + Ь)/2 

(6.8) Is f'(c) > 0? 

YES: Ь : = c; 
GOTO (6.9), 

NO: a : = c ; 
GOTO (6.9). 

(6.9) Is |a - b| = eps > 0? 

YES: i:= i + 1 and GOTO (6.7) 

N O : STOP. 

6.10. Theorem. Let f: [A, B] -> R be a strictly convex and continuous function. 

Let us suppose that f'(x) exists for every xe]A, B[. Then the sequence {aj£Li 
given by (6.6) —(6.9) converges to the minimum off in [A , B]. 

Proof. We clearly see that there exists only one point a0 such thatf(a0) = minf(t). 
[A,B] 

For the sequence {ai}f=l we have \at — af + 1 | = (B — A)j2\ i = 1, 2, 3, . . . . 
As this is a Cauchy sequence, there exists a such that lim aik = a, where {aik}^=1 

fc->oo 

is a subsequence of {ai}fL1. 
Let us prove that a = a0. We have to discuss two cases: 
(i) a0 is a boundary point, e.g. a0 = A. From the convexity off it is clear that 

f'(t) > 0 in ]A , B[. This fact and (6.6) ~ (6.9) give a = A and b = a{. So we can 
write ai -» A = a0. 

(ii) a0 is an inner point. Then f'(a0) = 0 and we have 

f'(t) > 0 for t G ]a0, B[ , 

f'(t) < 0 for t e ] A , a 0 [ . 

Let us suppose that there exists i0 e N such that aio = a0. Ft means that al > aio 

for every / > i0. Let at =t= a0 for every / e IV and suppose e.g. ax > a0. It is clear 
that there exists an index nxe N such that ani + 1 < a0 < ani. By the next step we 
obtain the existence of an index n2 e N such that ani < ano < a„2 + i . Repeating this 
process we obtain the sequence {ank} satisfying 
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1) ank -» â for k -> + 0 0 , 

2) aП2l < a0 for / -= 1,2,3,..., 
an2l -> ã for / -> + 0 0 , 

з) ãП2l+Л > ^O for / = 1,2,3,..., 
an2l+í -> ä for / -> + oo . 

The condition 2) implies a ^ a0 while the conditiin 3) yields a ^ a0 

Consequently, a0 = a. Q.E.D. 

6.11. Remark, (i) The assumption about the existence of/ ' is not absolutely 
necessary. 

(ii) We can use also other schemes instead of (6.6) —(6.9). See e.g. E. Polak [4]. 
We have solved the variational equation (2.1) using the finite element method. 

We have used linear elements defined on a polygonal domain Qh divided into triangles. 
The triangulation of the domain with NACA 230012 airfoil which was used to test 
our methods can be found in Chapter 7. We do not write here the equations constructed 
with the use of the finite elements because this is quite standard. 

6.12. Remark. While the discretization of (2.1) is simple the proof of convergence 
un -> u*, where w* is the solution of (2.1) satisfying the condition (2.2), is rather 
nontrivial and needs some special conditions to be satisfied, e.g.: 

max {\l?h(v) - v(x)|; x e Jh) -> 0 , 

where for every v e C°°(Q), Jh is the set of nodes of the triangulation of the polygonal 
domain Qh, and 

Lx
h(v) J0 u

x
h = - ^ Vph(v) Vux

h dx , 

where uh is the base function at the point x and ph is the operator of Lagrangiean 
interpolation. Details can be found in J. Mandel and J. Necas [2]. 

We have tested three algorithms mentioned above: 
(i) (3.25)-(3.27), 
(ii) (4.12)-(4.15), 

(iii) (5.1)-(5.7). 
These are the main reasons to do it: 
1) By (i) we have tested the suitability of the functional W. 
2) By (ii) we have tested the ability to prepare a "suitable" u0 for other algorithms 

(e.g. (iii)). 
3) We have chosen the algorithm defined by (iii) for the reasons mentioned before 

Theorem 5.8. Because we consider it to be fundamental (with respect to the present 
theory) we will comment only on its numerical realization. When doing this we men­
tion the aspects of the other two algorithms. 

6.13. Numerical analysis of the algorithm (5.1)—(5.7) 

By many numerical experiments we have verified the following input parameters 
to be the most important: 
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(i) the starting point u0, 

(ii) the value of X from (3.2), which we choose near the point 2a 0/(^ — 1), 

(iii) the constant K from the definition of the entropy condition (2.2), 

(iv) the length of [— T, T] as mentioned in Remark 5.9(i). 

Now we discuss these parameters. 

Since we do not know the constant K a priori the starting point u has the key role. 

To define this point we use (4.11) — (4A5) with the constants /? e [(2 — x)/3, 

(2 — x)/3 + eps]; eps > 0, near the value (2 — K)J3. Given a partition of [0, l ] 

we choose the maximal value of /? so that up satisfies the condition (2.2) with some K. 

The graphs of such initial solutions are given in Section 7. 

It is clear from the realization of (5.1) —(5.7) that if we choose the initial solution 

so that it does not satisfy the condition (2.2) a priori it is impossible to obtain 

a physical solution. When such a situation occurs in the course of the process we 

may use the following modification: 

Let co(un) = Mn > K and CD(U0) > K, where co(*) = max &>„(•) and 

d$(u 0 , v) = 0 for every v e V. Let us define 

hє@h

 + (П) 
h>0 

r(un) = max [(coh(u0) - coh(un)) J 0 h dx/J f l (Vh)2 dx] . 
he@n + (Q),h>0 

On the line un + t(w(un) — un) forteR we find such two points u„, un satisfying 

K - unf = \un - un\\ = r(un). 

Then we can choose 

co(un + 1) = min {co(un); co(un)} . 

6.14. R e m a r k , (i) the number r(un) can stand for | |u 0 — u„|2. As we do not know 

the number coh(u0) a priori we have to approximate its value by experiments. This 

can be done if we consider the process un + 1 = w(un) and u0 = const, in Q. 

The initial solution u0 can be constructed by other methods as well. The construc­

tion of a piecewise linear function in Q with a "correctly" prescribed jump of velocity 

is one of the possibilities. However our experience show that this is undoubtedly 

the most complicated way, because the prescription of the jump (we mean "where" 

and "value") is very difficult. 

The value of the parameter is much more important than one can think at the 

first glance. 

We have found two reasons: 

1) this value influences the enumeration of *F, 

2) this value influences the number of iterations necessary to find the solution of 

the linear system Ax = b (from the discretization of the equation (5.1) by the finite 

element methods). 

The following table shows the dependence between the value of X and the value 

of W: 
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я W 

2-0 -112-97 

3-5 -3-66 

4-9 31-59 

maximum speed of the flow 577 ms 1 

The relation between the accuracy eps of the solution of Ax = b and the value of X 
is given in the following table: 

Entropy Entrance eps 1 10 _ 1 10~2 10~3 10~4 

constant velocity X P 

4-0 M = 0-5 2-0 34 51 70 88 105 
4-0 M = 0-5 3-5 35 60 77 94 111 
4-0 M = 0-5 4-9 60 97 105 121 153 
4-0 M = 0-5 4-95 100 141 158 174 198 

10-0 M = 0-55 4-8 97 >200 

For every m ~ P: we have ||um — wm+1|| ^ eps; (um)"n=i stands for the solution 
of the above linear system. 

The constant K from the entropy condition (2.2) was found by numei ical experi­
ments. We have found that if 

K < 2-8 the algorithm eliminates all the minima in the directions given by the 
secant-modulus method, 

K > 10 the algorithm gives all of them. 

The optimal value we have used was K = 4. 

It is not problem to find the length of the interval [— T, T]. The problem is to 
find the smallest suitable T. Again using experiments we have found that Te [20, 30] 
seems to be optimal. 

6.14. Method (4.11)—(4.15) 

The corresponding graphs can be found in the next chapter. This graphs show the 
solutions for some characteristic values of />. 

The solution for /? = 0-19 is similar to the solution of the Laplace equation. For jS 
that tends to 1, ufi -> w* but this solution does not satisfy the entropy condition (2.2). 
When testing this method we chose the entrance velocity 200 ms" 1. The maximal 
velocity of the flow was 758 ms - 1 . Even a lower entrance velocity and an other step 
for P did not give better results. The sense of this method was mentioned when 
discussing u0. 

6.15. Implementation remarks 

We have tested both algorithms on the domain whose triangulation is mentioned 
in Chapter 7. It is a channel with NACA 230012 airfoil. We have tested entrance 
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velocities ranging from M = 0-2 to M 
the following results: 

0*7. Due to this airfoil we have computed 

Entrance velocity 

SM = 0-43 
>M = 0-43 and = M = 0-56 
> M = 0-56 

Character of the flow 

subsonic flow 

transonic flow 

channel blocked 

In the case of the entrance velocity ranging from M = 0-43 t o M = 0-56 we usually 
obtained physical solutions when we found correct constants and variables needed 
by both processes. 
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7. APPENDIX (The charts) 

750.0 

500.0 

250.0 

0.0 

Graph of the solution Vu^ to the equation, 
dtf^u, h) = 0 for every h e V and P = 0-19, 

1.0 

g = 150 ms 1, the 15th itération. 

2.0 
_ П 
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750.0 

500.0 

250.0 

0.0 1.0 2.0 n . 

Graph of the solution Vû  to the equation. 
Bp2(ufii; w(ufil),h)= $8QghdS for every he V, 0t = 16, jJ2 = 81, g= 150ms"1, max. of 
velocity: 672 ms"1. 

750.0 

500.0 

2500 

20 n 
Graph of the solution V w(u3) to the equation. 
B(u3; w(u3), h) = IdQgh dS for every he V, 3rd iteration of the secant-modulus u0

 : 

g= 150 ms"1, max. velocity: 740 ms"1. 
"0.96' 

316 



750.0 

500.0 

250.0-

00 1.0 2.0 П-

Graph of the solution Vw(u10) to the equation. 
B(u10; w(u10(, h) = $dQgh dS for every he V, for strictly subsonic flow 10th iteration of the 
secant-modulus g = 100 ms~~ , max. velocity: 254 m r 1 . 

1000.0 

0.0 1.0 2.0 n 
Blocking of the channel. Graph of the solution Vw(u-) to the equation. 
B(uj-; w(ut), h) = §dQ gh dS for every he V, 1st, 5th, 10th, 15th iteration of the secant-modulus 
g= 2 5 5 m s " 1 , max. velocity: 1513ms" 1 . 
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IVÌ 

500.0 

250.0 

0.0 10 2.0 П 

Graph of the velocity Vu. Method (5.1)—(5.7). 3rd interation 
g--= 160 m s " 1 , X = 4-5, K = 4, T= 20 max. velocity: 410 ms ' 

IV 

500.04 

2500 

0.0 1.0 2.0 П . 

Graph of the velocity Vu. Method (5.1)—(5.7). 
4th iteration g = 160 m s " 1 , A = 4-5, K= 4, T=- 20 max. velocity: 409 m s " 1 . 
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ľ/l 

500.0-

250.0-

00 1.0 20 n 
Graph of the velocity Vu. Method (5.1)—(5.7). 
5th itération g = 160 ms X = 4-5, K= 4, T = 20 max. velocity: 407 ms" 

Graph of the density o. 
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Graph of the density o.g. 
Triangulation of the domain with NACA 230012 airfoil. 
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S o u h r n 

VÝPOČET TRANSONICKÉHO PROUDĚNÍ UŽITÍM METODY 
KONEČNÝCH PRVKŮ 

PETR KLOUČEK, JOSEF MÁLEK 

V této práci je podána řada nových algoritmů, které lze užít k řešení transonického proudění. 
Práce obsahuje základní schéma přístupu, použije-li se metoda konečných prvků: implementaci 
podmínky entropie. Protože v definicích algoritmů je řada konstant, které je nutné experimentál­
ně určit, obsahuje práce rozbor numerických výsledků v závislosti na různých hodnotách těchto 
konstant. 
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Р е з ю м е 

ВЫЧИСЛЕНИЕ ОКОЛОЗВУКОВОГО ТЕЧЕНИЯ МЕТОДОМ 
КОНЕЧНЫХ ЭЛЕМЕНТОВ 

РЕТК. К^о^сЕК, 1О8ЕЕ МАЕЕК 

В статье изложены новые алгоритмы для решения околозвукового потенциального течения 
и приведены иллюстрирующие численные результаты. 

Ашкогз' аййгезз: Ог. Ре1г К1ои6ек, Т)г. ^о$е/М(^^ек> Ма1етатлску йзт^ ОК, 8око1оу$ка 83, 
ШООРгапа 8. 
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