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THE NUMERICAL SOLUTION OF BOUNDARY-VALUE
PROBLEMS FOR DIFFERENTIAL EQUATIONS
WITH STATE DEPENDENT DEVIATING ARGUMENTS

V. L. BAKKE, Z. JACKIEWICZ

(Received January 20, 1987)

Summary. A numerical method for the solution of a second order boundary value problem
for differential equation with state dependent deviating argument is studied. Second-order
convergence is established and a theorem about the asymptotic expansion of global discretization
error is given. This theorem makes it possible to improve the accuracy of the numerical solution
by using Richardson extrapolation which results in a convergent method of order three. This
is in contrast to boundary value problems for ordinary differential equations where the use
of Richardson extrapolation results in a method of order four.

Keywords: Boundary value problem, deviating argument, Richardson extrapolation, con-
vergence of higher order.
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1. INTRODUCTION

In this paper we consider the second order boundary-value problem with state-
dependent deviating argument

(1) x"(1) = f(t, x(1), x(e(1, x(1)) , 1€ [a, b],

o(t), t=a
%(i) = {11/8, 1z

Here, f:[a, b] x R* - R, ©: [a, b] x R — R are continuous and ¢ and ¥ are given
initial functions. We do not require that 7 is a delay; it can as well be of advanced
type. Additional assumptions relative to problem (1) will be given in the next section.
Such equations have applications in control theory (further details and references
may be found in [7]).

The existence and uniqueness of solutions to (1) was investigated by Grimm and
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Schmitt in [5] and [6]. Similar problems were also treated by Chocholaty and Slahor
3]

[ It is the purpose of this paper to present a simple difference method for the numeric-
al solution of (1). It will be assumed throughout that a unique solution x to (1) exists.
Let & > 0 be a given step size and define the grid t; = a + jh, j = 0,1,...,n + 1,
(n +1)h = b — a. We also define t_; = a — hand t,,, = b + h. The numerical
method is obtained by approximating the second derivative by the difference operator
of the second order, and approximating the solution at non-grid points by piecewise
cubic interpolation. Denoting the approximate solution by x, the resulting method
is given by

(2 x(tizg) = 2x4(8) + x,(tisr) = W £t x3(1), x,(x(1:, (1)),

Xt + rh) = Ry(r) 3=_§ Pi(r) xy(ti-1+) »
i=1,2,...,n,re(0,1], where =
Py(r)= =30 =32 + 2r), P(r)=3r"=2r" —r +2),
P AR -2, P =30 ),

are Lagrange fundamental polynomials of cubic interpolation. It is assumed that
x,(t) = ¢(t) for t < a and x,(t) = Y(t) for t = b.

In section 2 we show that method (2) is well defined and that the solution to (2)
can be obtained by the method of successive approximations. In section 3 we prove
a convergence theorem and give a bound on the global error containing local dis-
cretization and local interpolation error. In section 4 we prove the existence of one
term in the asymptotic expansion of the global discretization error. This fact can
be used to improve the accuracy of numerical solution by Richardson extrapolation.
Finally, in section 5, the results of this paper are illustrated by some numerical
examples.

The numerical solution of problem (1) with 7 independent of x was investigated
before by de Nevers and Schmitt [4] using the shooting method and by Chocholaty
and Slahor [3] using an iterative technique.

2. EXISTENCE AND UNIQUENESS

It is assumed throughout the paper that:

H 1: There exists a constant B such that |f(1, x, y)| < B for t€[a, b], x, y € R.

H 2: The function f is Lipschitz-continuous with respect to the second and third
argument with constants L; and L,, respectively.

H 3: The function 7 is Lipschitz-continuous with respect to the second argument
with constant P.

H 4: The functions ¢ and y are Lipschitz-continuous with constants L, and L,,
respectively.



We can require H 1 without loss of generality since we assumed the existence of
a unique solution to problem (1).
It will be convenient for our purposes to use the following convention. With any
vector
Y, = [Yi}’ Y:: (R Y;]T

we will associate the function y, such that y,(1) = ¢(t), t < a, y,(1) = ¢(t), t = b,
and for te [tj, tiv1], = 0,1,...,n, y, is a cubic polynomial interpolating to ¥y
att, i =j— 1,j,j + 1,j + 2. Similarly, if such a function y, is given we define

Y= [a(t0)s valt2)s - wal(t)]T -

In the sequel we denote by lower case letters with subscript & the functions an by
uppercase letters with subscript h the vectors related by the described convention.
We also define

h? f(te, ya(ts). val(e(ts, y(11)))) = @(a)
h? f(1,, }’1:(12)> J’h(f(tz, J’h(tz))))

12 f(ta y(tn), 3(x(ta 2i(12)))) — W(b)

Where Y, and y, are related by the convention described above. Now the method (2)
can be written in vector form

F(Y,):=

(3) Aan = F(Xh)
where A4, is the n x n tridiagonal matrix given by

-2 10...0 O
1-21...0 O

A, =
0 00..1-2]
For any V = [0y, 0,,...,0,]" put |V], = max {|e)]: 1 < i < n', and for 4eR"

denote by ”A”oo the corresponding matrix norm. We will need the following two
lemmas.

Lemma 1. [ 47", < (i%‘_)z.

Proof. This follows easily from the explicit representation of the inverse matrix
ATt

(4) A7 =1, = l(_"+_1;j) , i<
n+1

Tii

j<i



Lemma 2. Assume H 1 and H 4. Let X, be given and define Y, as the solution of

() AY, = F(X,).
Then

Q|t — s{, ift, saregrid points from |a, b
(6) |y4(t) = »ils)| = {I_BJAQP _‘ s|, otherwise, L]

where
0 = s f 1y, - )+ 20140

Proof. Observe first that in view of H 4 the Lemma is true for¢t,s < aandt,s = b.
Denote the ith row of 4! by (4, ');. Then

‘yh(ti+ 1) — yh(ti)l = K(A;l)iﬂ - (An_l)iF(Xh)l
fori=1,2,...,n — 1. From (4) we have

I

(Ay Dier — (47 ! (=1, =2,.., —i,n—i,n—i—1,..,1).
n+1
Hence,

th(tH ) — yh(ti)l

H

—-‘ 5 (=) Gt 5l 50 5 ) +

+ Z im0 = ) £t xa(t), (e85 (1)) + (@) — w(b)] =

D R

+
- 2(:2f 1)(1-2 tig(n—i)(n+1—0)+ },‘i—al“”(“)_ o(b) <

[ T (n+1)n+ Wl(p(az — i/(b)l] <
<h [B(b —a) , lo(a) - b)\] <ho,

b—a

where we have used nh
system (5) is given by

—2)’h(t1) + yh(tz) = h? f(t,, xh(tl), xh(r(tl, xh(tl)))) — yh(to) ,

and it follows that

n(b — a)[(n + 1) < b — a. The first equation in the

IJ’h(tl) ~ Yh(to)‘ b ‘Yh(tz) - yh(tl)l + B =

éh[B(b_a)+“”a) b)l+hB:|<hQ.

2 b—-a




By a similar argument we may also show that

[a(ts) = ya(tas )| S B

Assume now that ¢, se[t;, t;,,4], i = 0,1, ..., n, and at least one point is not a grid
point. Wehavet = ¢, + rh,s = t;, + 7h,and .

x(t; + rh) — x(t; + ¥h) = R(r) — R(F) = (r — F) R}(¢)
for some & between t and s. It follows after straightforward calculations that
xu(t; + rh) — x(t; + Fh) = (r — F) [(3E% + & — &) (xa(ti12) — xu(tirn)) +
(=8 = &+ §) Gaultinn) = xu(t) + (3% + 1) (1) — xlti-0))] -
Consequently, since
max {|[§6 + & — 4| + | =& = C+ 3 + 1 + 3 cef0, 1]} = B2
we obtain
|x(t; + rh) — x(t; + Fh)| < 12|r — F| Qh = 20|t — 5|,

which proves the Lemma for ¢, s € [ 1, t;, { |. The repeated use of the triangle inequality
proves the Lemma for any t,s€[a, b]. u]

Now we show that (3) has a unique solution and that this solution can be computed
by the method of successive approximations. Denote by D the constant

sup{il Pir)|:rel0,1]} .

and consider the condition
. 2
H s: @%[Llﬁ-Lz(l; QP + D)] < 1.

This condition is similar to one of the conditions given in [6]. We have the follow-
ing theorem.

Theorem 1. Assume that the conditions H1—H 5 hold. Then the system (3) has
a unique solution X,. Moreover, this solution can be computed by the method
of successive approximations defined by

AXEN = F(XY),
k=0,1,...,with arbitrary starting vector X;.

Proof. It follows from Lemma 2 that each x¥ corresponding to X¥ satisfies a Lip-
schitz condition of the form (6). Observe that for k = 1,

et = i = 14, o [FOK) = FE)]
and



[FX8) = PO = max W ei0) = 670 + L)
where
a; = [xi(e(t, xi(1))) = %™ (21, %3 7H(1))] -
Using Lemma 2 and the fact that
0+ 7H) = P01
m = k — 1, k, we obtain
o < Xt Xi(1) — (e, i H(1))] +
+ a(e(t X7 1(1) = a7 (el X (1) £
< B0t %i(1) = (57 )] + 6 - 57 e <
<(320P + D) X} - X7, -
Thus, it follows that
[FCx3) — FOG™ D] = WLy + Lo(5 0P + D)) X} - X', ,

and using Lemma 1, we obtain the inequality
b — a)? _
i - il s O @+ o + 0) I - XY

As a consequence of H 5 the sequence {X}) 2., converges. It is also clear that the
limit X, of this sequence is a solution of (3), and that x, corresponding to X, satisfies
a Lipschitz condition of the form (6) with the same constant Q.

To prove uniqueness, suppose there is another solution ¥, of (3). Then

[F(X3) — F(Y)] = hzllzgn@llxh(‘j) = )] + LaB;) »
where
B; = |xi(e(ty, xi())) = yale(ty, yi(t))] +

+ |xule(ty yil(t))) = valelty yi(t))]

and if ©(t;, yu(t;)) ¢ [a, b], then
B; = POP|xi(t;) — yi(t))] -
Otherwise, (1}, y,(1;)) € (t,, t,+1], for some v = 0, 1, ..., n. Putting r = (2(t;, y,(t,))—
- tv)/h and using the cubic interpolation formula we obtain
By £ 30PIxy(t) — nilt))] +”i=0|Pu(’”)[ a(ti=144) = Dilti= 1) -

In either case, we have
B; = (52QP + D)X, - Y[,



j=1,2,...,n,and it follows that
X4 = Yillw < |47 o h3(Ly + Ly(A20P + D)) |X, — Y|, <

- QL;JJZ (L + Lo(52QP + D) X, — Y],

In view of H 5, the conclusion follows. O

3. CONVERGENCE ANALYSIS

In this section we show that the method (3) is convergent, and that the convergence
is of second order. A bound on the global error is also derived.
Define the local discretization error at the point ¢; by the relation

R n(t) = x(t;—y) — 2x(t;) + x(t;4,) — h? f(t;, x(1,), x(<(1;, x(1.)))) 5

i =1,2,...,n, where x is the solution of (1). It is easy to check that y(t;) = O(h?)
as h — 0 uniformly in 7;. Let us denote by &(t) the error of the piecewise cubic inter-
polation for x(1), i.e.,

G+ ) = a1+ ) = SR x(1os)
i=0,1,...,n,re(0,1]. Define T
e(t; h) = x(t) — x,(1),
E, = [e(ty; h), e(ty; h), ..., e(t,; )T,

0, = [n(ty), n(t2), ..o n(1,)]"
and

Q, = max {|¢(1)|: te[a, b]} .

We have the following convergence result.

Theorem 2. Assume that the conditions H1—H 5 are satisfied. Then

le(t; 1) < WD|0,]., + (WDL, + 1) Q,,
where
W= (b—a)/(8—(b—a)(L, + L,(5°QP + D))).

In particular, the method (3) is convergent and the order of convergence is two.

Proof. Let X = [x(t,), x(1,), ..., x(¢,)]". Since

E, = A, '(F(X) — F(X,) + h?,),
it follows that
1o < (45 | [F(X) = FX) o + B2 47 " | 0] -



We have
[F(X) — F(X))[|. < h* max (Li|x(1;) — x(1))] + La5))

Where 0<jsn
5j = Ix(f(tj’ x(tj))) - xh(T(tj, xh(tj)))l <

< Px(e(ty, x(1)))) = xi(x(t, x(2)))] +

+ xu(e(ty, x(1)))) = xi(x(t, xi(1)))] -
As in the proof of Theorem 1 if

t(ty, x(1) ¢ [a, b] . then 6; < FPOPx(1;) — xi(1))] -
Otherwise, t(t;, x(t;)) € (t,, t,+,], for some v = 0, 1, ..., n. Putting r = (¢(¢;, x(t;)) —
— t,)/h, using the cubic interpolation formula, and adding and subtracting the term
3
Y. P,(r) x(t,-1+,) we obtain ;
u=0 3
8; = [x(x(ty, x(1)))) — ZoPu(r) X(ty- 14| +
=

#1352 3(0n00) = 3P0 50 100)] +

+ 520P|x(1)) = x,(1)] £ @, + (52QP + D) |E,], .
Thus,
I5d. s C2 2 @+ neeor + o) [l + EL (), + 02,

and in view of the condition H 5 we obtain
“Eh”w = W(HOh”w + LZQh) .

To get a bound on e(t; ) observe that

e(t; + rh; h)| < |x(t; + rh) —gopj(,-) x(tioyay)| +
+ l,-ipj(r) X(ti-14)) _,-ipj(r) xitiz14))] £ DBl + 2,

and the theorem follows. O

Remark. Observe that in the error estimate given in Theorem 2 [0, ], = O(h?)
and @, = O(h*) as h — 0. Therefore, we could use piecewise linear interpolation
to approximate the solution between the grid points and still maintain the second-
order convergence. The corresponding method with piecewisa linear interpolation
is convergent under the weaker condition that

(b= 9" (L + Lop+1) <1




and the error estimate is
le(t: ] < W10 + O7L + 1) 2,
where @, is the error of linear interpolation and
W= (b - a8 — (b — a)* (L + Lo(QP + 1))

(compare [1]). The advantage of using piecewise cubic interpolation instead of piece-
wise linear lies in the fact that the resulting method possesses one term in the asymp-
totic expansion of the global discretization error which will allow us tu upgrade
the accuracy of the numerical solution by Richardson extrapolation. This point is
discussed in the next section.

4. ASYMPTOTIC BEHAVIOR OF THE GLOBAL DISCRETIZATION ERROR

In this section we prove the existence of one term in the asymptotic expansion
of the global discretization error. We have the following.

Theorem 3. Assume that fe C?, 1€ C?, and that H1—H 5 hold. Then
x(1) = x,() = h? e(t) + O(h?), h—0,

where the function e is the solution of the boundary-value problem
g (1) = L (6 5(0). x(e0,x(0) ) +
+ L (10 50 x(0) [f—‘- (1, x(0) ' (s(t, x(0)) (1) +
y Ox
+m@4mﬂ+ﬁﬂwm

e(t)=0, t<a,
e(t)y=0, t=b.

IIA

Here, 0f [0x and 0f/0y stand for the derivative of f with respect to the second and
third argument respectively, and 0t/0x stands for the derivative of T with respect
to the second argument.

Proof. It is easy to check that the local discretization error # of tke method (3)
has the form

2
(8) n(t;) = ‘?5 x®(t) + O(h*), h—-0.



For any t € [a, b] define

et) = x(t)

Subtracting (3) from

x(ti1) = 2x(8) + x(tir) = B2 f(ts, x(t), x(x(t:, x(1)) + h* n(ts)

and using (8) we obtain
enti=1) — 2e,(t)) + etiny) = [f(t x(t) x(t(t;, x(1,))))
= St x,(t:), xu(z(t:, %,(1:))))] + X“’(t) +O(h*),

i=1,2,...,n To estimate the expression in brackets observe that
x,(1;) = x(t;) — h? e(t;),
w(ts, xi(1:) = ot x(1:) — h? e,(1))) = o(t;, x(1;)) — h* ey(t;) ‘Z‘E (ti, x(1;)) + O(h*),
X

xi(w(ts, x4(1:))) = x(2(t3, x,(1))) = h* e(x(t;, (1)) =
= (st x(0)) = 1 1) 5 (11, (1) + O(1*) -

= 2 (st X(1)) = 1 (t) 2% (11 (1)) + O(1*) =
= (et 3(00) — 1 u(t) 2% (o 5(00) ¥ et X(0)) = B2 el X() =
= 17 (6) 2% (1 5(19) ot (1))] + O() =
= (st () = WTen(t) 2% (o1 (1) ¥ (0 x(0) + el x(0)] + O(F)

where the last equality follows from the fact that

ey(1) = O(%), h-0.
Consequently,

0 (0. 5ol 5(00) = 000, 3ol 3(0) =
= (et L (0 (1), xo(t 5(0)) + L) 5 (1 5(0) (ol 5(1) +

+ ey(e(t, x(1)] ?yf (1 x(12), x(c(ty ()} + O(A%),

10



and

) elticy) — 2e,(t;) + en(tisy) = hze,,(ti)%(t,-, x(t;), x((t;, x(1,)))) +
+ [eh(ti) % (tb x(ti)) x'(T(ti, x(ti))) + eh(r(th x(ti)))] x

y %(t,., x(ty), x(x(ty, x(1) + 25x (1)} + O(h3) .
We also have
(10) ety + rh) =j§0pj(r) eftirs)) + O(R?)

and we can regard (9) and (10) as a perturbed version of the method (3) applied
to the boundary-value problem (7) with perturbation of order O(h) in (9) and of
order O(h?) in (10). The nonperturbed methods reads

éh(ti—l) —2(1) + 5h(’i+1) = h? Eh(ti)g'(t’ x(t), x(‘c(t, x(t)))) +
0x

; [a(n);f—jcoi, (1) ¥ (et x(1))) +

(et x(0) | L (1 x(0), x(xt x(1)) + 15598
dy

3
&(ti + rh) = Y P{r) &(ti-1+)
j=0
and it follows from the convergence theorem that

e(t) — &,(t) = O(h?)
as h — 0 uniformly in t. Using similar arguments as in the proof of Theorem 2
we also have

&(1) — e,(t) = O(h) .
Consequently, .
e(t) — e,(t) = O(h),
or

x(1) — x,(t) = h*e(r) + O(h?),
h — 0, whichis our claim. 0
Theorem 3 provides a theoretical basis for the use of Richardson extrapolation

to improve the accuracy of the numerical solution. Using standard arguments it
follows that

%) 1= (4 x(t) — x24(1))

11



is an approximation of order three to the solution x of (1). This is in contrast to the
numerical solution of two-point boundary value problems for differential equations
with deviating argument which does not depend on the state

(11) x"(t) = f(t, x(z(1))) , te[a,b]
x(1) =o¢(t), t<a
x(t) =y(1), t=b,

where the similar procedure leads to the method of order four. This is a consequence
of the fact that in the case of (11) the asymptotic expression of the global discretization
error reads

x(t) — x,(1) = h* e(r) + O(h%),

where e is the solution of the boundary-value problem
iy Of o . 1@
¢'(1) = == (6 x(1), x(x(1))) e(1) + —F;OA(t),X(f(t))) e(e(1) + 72x9(1)
e(t)=0, t<a

e(t)y=0, 1=b.

The proof of this fact is similar to the proof of Theorem 3, compare also the corre-
sponding result for two-point boundary-value problems for ordinary differential
equations in [8]. Thus the dependence of 7 in (1) on the solution x is responsible
for the loss of one order of accuracy.

5. NUMERICAL EXAMPLES

The results derived above are illustrated by the following examples.
Example 1([3,4])
x"(t) = —(1/16) sin (x(1)) — (¢t + Yx(t = 1) + ¢, 0512,
x(1)
x(f) = —1)2 t =2,
Example 2 ([6]).
x"(1)
x(f) =0, t
x(1) =1, t

t—1J2, . t <0,

Il

x(1) = Ax(Msin(x(r))), 0<t<T

I\

v
hﬂ

This example is solved for A = 1, M = Jand T = 2.

12



Example 3.
x"(t) = —x(t) x*(1*) — sin (t) cos® (*), 0 <
x(t) = 0 t <0
x(t) = sin (1) t

The theoretical solution is x(f) = sin (f).

In
IA
2
[ S}

I
2
o

Example 4.
x"(t) = x(In (1)) + x(t) —t, 1<t <2
x(t) =exp(t), t =1
x(t) =exp (), t =2

The theoretical solution is x(t) = exp (1).

Example 5.
x"(t) = -2(x(21)), 0<t<1)2
x(t) = 1, t <0
x(1) = cos?(1), t 2 1)2

The theoretical solution is x(t) = cos?(f)

Example 6.
x"(f) = =2 x(t) = x(1) In(x(21)), 0t =<1
x(t) = 1, t<0
=1

x(t) = exp(—1?), t

The theoretical solution is x(t) = exp (—1?).

The system (3) was solved by the method of successive approximations described
above, with xj chosen to be the straight line joining (a, ¢(a)) and (b, (b)) over the
interval [a, b], and with xj(t) = (1), t < a, x;(t) = (1), t = b. The iterations
were terminated after the norm of the difference between two successive approxima-
tions was less than h2.

The results are displayed in tables 1 —6 below. In all cases h = (b — a)/n, where
2" = n. The values of x, are those calculated by the algorithm using cubic inter-
polation, and y, is used to denote the values obtained by Richardson extrapolation.

Example 1 was solved be DeNevers and Schmitt [4] by the shooting technique
and by Chocholaty and Slahor [3] using an iterative method. The accuracy of our
results displayed in Table 1 compares favorably with that of DeNevers and Schmitt
for the same stepsize h. Both Tables 1 and 2 show E,(T}) := |x,(T;) — X,,(T)| and
Ry(T)) := |y(T) — y2u(T})|, i=1,2,3, where T;=a + i(b — a)/4. Since the

13



solutions are known for examples 3~ 6, the actual errors, e,,(T) = |x(Ty) — x(T?)],
and r(T}) := |x(T;) — yu(T;)| are displayed.

All computations were performed in double precision on the Amdahl 370/V6-1I
Computer at the University of Arkansas.
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Table 1. Example 1.

N E(T)) R (Ty) E(T,) Ri(T,) E\(T3) Ry(T3)
2 *559E-1 ‘146E-2 -120E-0 +298E-2 *T79E-1 261E-2
3 ‘151E-1 -323E-3 *323E-1 *646E-3 *215E-1 933E-3
4 *353E-2 -385E-3 *7158E-2 *772E-3 *466E-2 -100E-2
5 ‘117E-2 *181E-3 *247E-2 *363E-4 -192E-2 *479E-4
6 279E-3 -385E-5 *591E-3 “177E-5 443E-3 ‘101E-4
7 ‘668E-4 -777E-6 *142E-3 *561E-5 *103E-3 -203E-5
8 ‘161E-4 -155E-6 -343E-4 *310E-6 243E-4 -403E-6
9 +392E-5 *310E-7 -835E-5 *610E-7 *5T7E-5 -800E-7

10 ‘956E-6 *290E-7 -204E-5 *582E-7 138E-5 *751E-7

11 -217E-6 *467E-6 289E-6
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Table 2. Example 2.

N Eh( T1) Rh( T1) Eh( Tz) Rh( Tz) Eh(TB) Rh( T3)
2 *348E-1 ‘443E-2 *513E-1 *752E-2 *382E-1 *674E-2
3 *538E-2 +383E-2 *7T19E-2 *527E-2 *449E-2 *343E-2
4 *152E-2 -114E-2 -216E-2 *155E-2 ‘145E-2 ‘101E-2
5 ‘476E-3 +354E-3 *625E-3 *476E-3 *393E-3 *308E-3
6 -146E-3 -106E-3 -201E-3 ‘144E-3 ‘132E-3 ‘930E-4
7 *432E-4 -271E-4 -577E-4 *366E-4 *366E-4 *236E-4
8 ‘953E-5 ‘144E-5 *129E-4 -195E-5 *855E-5 ‘126 E-5
9 *130E-5 ‘915E-6 *178E-5 *124E-5 *119E-5 *798E-6

10 -361E-6 -279E-6 -481E-6 -376E-6 -301E-6 -243E-6

11 ‘118E-6 -161E-6 -107E-6

Table 3. Example 3.

N en(Ty) ri(Ty) ey(T3) r(T3) en(T3) ri(T3)
2 *485E-2 “T12E-2 ‘971E-2 -135E-1 *980E-2 -119E-1
3 *649E-2 ‘423E-3 *125E-1 ‘885E-3 ‘114E-1 ‘136E-2
4 *130E-2 -310E-3 *248E-2 *583E-3 *183E-2 *432E-3
5 ‘934E-4 -176E-4 184E-3 -339E-4 -141E-3 -368E-4
6 *365E-4 *226E-5 *714E-4 ‘428E-5 -628E-4 -374E-5
7 -108E-4 *647E-6 ‘210E-4 -122E-5 -184E-4 -107E-5
8 -319E-5 -178E-6 *618E-5 *336E-6 *543E-5 -288E-6
9 ‘931E-6 ‘S51E-7 *180E-5 *105E-6 -157E-5 ‘924E-7

10 -274E-6 -153E-7 *528E-6 *289E-7 ‘462E-6 *253E-7

11 -800E-7 *439E-8 *154E-6 -832E-8 *435E-6 *727E-8

12 -529E-8 -447E-7 *391E-7

Table 4. Example 4.

N e (T)) r(Ty) e (Ty) ri(T,) e (T3) ri(T3)
2 *135E-2 *430E-3 -196E-2 *609E-3 *170E-2 ‘430E-3
3 *138E-4 212E-3 *337E-4 *298E-3 -102E-3 -211E-3
4 *161E-3 ‘441E-4 -232E-3 *624E-4 -184E-3 -441E-4
5 *734E-4 *207E-4 -104E-3 *293E-4 *790E-4 -207E-4
6 -281E-5 -210E-5 -421E-5 *296E-5 *422E-5 -210E-5
7 :227E-5 *453E-6 -327E-5 ‘640E-6 *263E-5 ‘453E-6
8 ‘908E-6 -212E-6 -130E-5 *300E-6 *996E-6 -212E-6
9 *679E-7 *458E-7 ‘997E-7 *649E-7 -899E-7 ‘458E-7

10 *174E-7 *215E-7 *237E-7 *304E-7 -119E-7 ‘215E-7

11 ‘117E-7 -218E-8 *169E-7 -308E-8 ‘131E-7 -218E-8

12 *456E-8 :273E-8 ‘491E-8
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Table 5. Example 5.

N e (Ty) r(Ty) e (T,) r(Ty) e,(T3) ri(T3)
2 -217E-3 *731E-5 *279E-3 *581E-5 *199E-3 *295E-5
3 -488E-4 *694E-5 *655E-4 *571E-5 ‘475E-4 +286E-5
4 *699E-5 *220E-5 *121E-4 *179E-5 *975E-5 ‘893E-6
5 +340E-5 *696E-7 *436E-5 *567E-7 *311E-5 +284E-7
6 *797E-6 *691E-7 -104E-5 *567E-7 ~T55E-6 <283E-7
7 *147E-6 *221E-7 *219E-6 *181E-7 -168E-6 ‘907E-8
8 *534E-7 *688E-9 *684E-7 *565E-9 *487E-7 *282E-9
9 *128E-7 *688E-9 *167E-7 *565E-9 *120E-7 +282E-9

10 *269E-8 *220E-9 -375E-8 -181E-9 -277E-9 ‘940E-10

11 *839E-9 -685E-11 *107E-8 *563E-11 *762E-9 -281E-11

12 *205E-9 -264E-9 -188E-9

Table 6. Example 6.

N e, (T)) r(Ty) e, (T5) r(T,) e, (T3) r(T5)
2 *593E-3 *230E-2 -134E-2 *227E-2 -151E-2 *112E-1
3 -187E-3 -306E-3 -203E-2 *286E-3 *121E-2 *139E-3
4 -238E-3 ‘455E-4 -294E-3 -444E-4 *199E-3 :220E-4
5 *256E-4 *699E-5 ‘405E-4 *691E-3 *332E-4 *343E-5
6 *115E-5 -862E-5 -488E-5 *855E-5 *572E-5 *425E-5
7 *675E-5 -108E-5 *763E-5 *107E-5 -462E-5 *534E-6
8 -875E-6 -168E-6 -110E-5 -167E-6 *753E-6 *832E-7
9 ‘942E-7 *263E-7 -150E-6 *261E-7 *126E-6 *130E-7

10 *339E-8 *326E-7 -179E-7 *323E-7 *218E-7 ‘161E-7

11 *253E-7 -409E-8 +287E-7 -406E-8 *175E-7 -202E-8

12 *325E-8 -133E-8 +286E-8

Souhrn

NUMERICKE RESENf OKRAJOVYCH ULOH PRO DIFERENCIALNI ROVNICE
SE STAVOVE ZAVISLYMI ODKLONENYMI ARGUMENTY

V. L. BAKKE, Z. JACKIEWICZ

V ¢lanku se studuje numerickd metoda feSeni okrajové ulohy pro diferencidlni rovnici 2. ¥adu
su stavové zdvislym odklonénym argumentem. Je dokdzana konvergence 2. fddu a podana véta
o asymptotickém rozvoji globdlni diskretizaéni chyby. Tato véta umoZiiuje zlepSit piesnost
numerického feSeni pouzitim Richardsonovy extrapolace, ktera vede ke konvergencni metodé
3. radu. Situace se li§i od okrajovych problémii pro oby&ejné diferencialni rovnice, kde uZiti
Richardsonovy extrapolace vede k metodé 4. fadu.
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Pesrome

YUYNCJIEHHOE PEHIEHUE KPAEBBIX 3AIAY IJIsI U P®PEPEHIIAJIBHBIX
YPABHEHUI C 3ABUCSAIVMU OT COCTOSAHUA
OTKJ/IOHAIOWMMUCA API'YMEHTAMM

V. L. BAKKE, Z. JACKIEWICZ

B craThe M3y4aeTCs YMCICHHBI{ METOX DEIleHMst KpaeBOoif 3amauu anst AuddepeHuuansHoTo
YPaBHEHUS BTOPOTO IOPsAKA C 3aBHCSLIMM OT COCTOSIHMS OTKIOHSIOUMMCS apTyMEHTOM.

JIoKa3aHpl CXOAMMOCTH BTOPOrO IMOPsAKa U TeopeMa 00 aCHMMIITOTHYECKOM DAa3JIONKECHHH IJI0-
GanbHOM OWMOKK IHCKpeTH3alMu. DTa Teopema IIO3BOJISAET IOBBLICHTH TOYHOCTH YHMCIEHHOTO
peLIeHHst IPY HOMOLIM IKCTpanosiunu Pruyapacona, Beayliei Kk CXOQSEeMyCst METONy TPeThero
nopsaka. CHTyauusi OTIM4AeTCss OT KPaeBwiX 3agau it OOLIKHOBEHHBLIX ubdepeHiyaIbHbIX
y(daBHEHHI{, I/l MCIOJIL30BAHAE IKCTPANONISALMA Pryapacona NPUBOAUT K METORY 4-ro MOpsIKa.

Authors’ address: Prof. V. L. Bakke, Prof. Z. Jackiewicz, Department of Mathematical Sciences,
University of Arkansas, Fayetteville, AR 72701.
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