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Summary. This paper deals with the exact number of solutions of von Karman equations
for a rotationally symmetric buckling of a thin elastic plate. The plate of constant thickness is
in static equilibrium under a uniform compressive thrust applied along its edge in the plane
of the plate. The theory of M. G. Crandall, P. H. Rabinowitz [4], is used and the theory of M. S.
Berger [1], [3] and M. S. Berger and P. C. Fife [2] is adapted. This work is a part of [6].
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1. INTRODUCTION

We deal with the von Karman equations of the plate theory. We shall prove that
for the parameter values 1 > 1, the problem of rotationally symmetric buckling
of a circular plate has exactly n pairs of rotationally symmetric solutions lying
on smooth branches, and the nodal structure of solutions is preserved along the bi-
furcation branches. In this paper we treat only the case when the edge of the plate
is clamped. All considerations remain valid for the case of a simply supported plate
provided minor changes are made in formulations and considerations which follow.

The rotationally symmetric buckling of a circular plate was previously investigated
by many authors. The review of these results can be found in the paper by J. H.
Wolkowisky [9] Using the Schauder fixed point theorem he proved that for the
parameter values A > 1, there exist at least n pairs of nontrivial solutions (l, +u j),
j=1,2,...,n where u; has exactly j — 1 internal simple zero points. His paper,
however, does not tell anything about the exact number of solutions and the
continuity of the bifurcation branches he found.

2. FORMULATION OF THE BOUNDARY VALUE PROBLEM

We consider a thin elastic plate having a radius ¢, a thickness &, Young’s modulus
E, and the Poisson ratio u. The plate is subjected to a uniform edge thrust p applied
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in the midplane of the plate. The case p < 0 is a tension, the case p > 0 is a com-
pression of the plate. We denote by W(r) the normal displacement of the unstrained
midplane and by F(r) the Airy stress function. Then the rotationally symmetric
deformations of the plate are described by the von Kdrmén equations [8]

h dF dW

d
2.1 D—(AW)=-—— re(0,c),
( ) dr( ) r dr dr ( C)

(2.2) d (AF) = E(‘L—W)Z re(0,c)

5 ~2r

r
with the boundary conditions
(2.3) W..=0,
(2.4) Fl,-. =0,
daw
25 — =0,
(25) ar |
1dF
2.6 il = —p,
(26) rdr|.-.
27) an - o,
dr r=0
(2.8) dFl - _ .
dr r=0

The equations (2.1), (2.2) with the boundary conditions (2.3)—(2.8) form the problem
of the rotationally symmetric buckling of a circular plate clamped at the edge r = c.
If the condition (2.5) is replaced by the condition

(2.9) (dZW +£ djl’)

ar =0
dr?  r dr

r=c

then we consider the simply supported plate problem. Here

Eh

D = -———-——-—2——
1201 = 1)
is the flexural rigidity of the plate. We introduce the quantities
(2.10) r=xc,
1/2 |
u(x) = (EB)" dwlxe)
2D dx
v(x) = Zl. d__.__f(xc) s
D dx
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g(x) = v(x) + Ax,
u(x) = xw(x), g(x)=xf(x).
The equations (2.1), (2.2) can be reduced to the form

(2.11) (3w (x)) + Ax> w(x) = x> w(x) f(x) xe(0,1),
(2.12) (x*f'(x)) = =x*wx) xe(0,1)
where A€ R, with the following boundary conditions for the clamped plate case:
(2.13) limxw(x)=0, w(l)=0,
x—=0+
(2.14) limxf(x) =0, f(1) =0,
x>0+

the second condition in (2.13) being replaced by the condition
(2.15) w(l) + (n+ 1)w(1) =0,

the boundary conditions for the simply supported plate case. From now on we denote
the problem of solving the equations (2.11), (2.12) with the boundary conditions
(2.13), (2.14) as the (CP) problem, and we will make all considerations only for the
(CP) problem.

3. CLASSICAL AND GENERALIZED SOLUTIONS
AND OPERATOR FORMULATION OF (CP) PROBLEM

Definition 3.1. The classical solution of the problem (CP) is a pair of functions
w(x), f(x) with the following properties:

) W) S(x) € (0, 1) 0 €0, 1]
b) w(x), f(x) satisfy (2.11), (2.12) pointwise for a real parameter A;
c) w(x) satisfies (2.13), f(x) satisfies (2.14).
Let W"2((0, 1), x?) be the real Sobolev space with the weight x>, the inner product
(u,0)1.2,3 = fo x> u'(x)v'(x)dx + [§ x> u(x) v(x) dx
and the corresponding norm
(3.1) ||uH1,2,3 = [(u, u);,2,5]"% .
We denote
M = {ue C*([0,1]), u(1) = 0},

and introduce a real Hilbert space V defined as the closure of the set M in. the norm
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(3.1). Then V consists of functions from W*2((0, 1), x*) which vanish at x = 1.
A more convenient norm and inner product for the space ¥ can be obtained in the
following way. The bilinear form

(3.2) (u,v) = f§ x> u'(x) v'(x) dx

can be used as the inner product on ¥, and throughout this paper the corresponding
norm will be denoted by |-|. The fact that |[-| is a norm on V follows from the
inequality

(3.3) lul = luli.25 = Kiu] -

The first inequality in (3.3) is obvious, the second is based on Hardy’s inequality [5].
Let ¢, y be smooth functions in V. Then from (2 11), (2.12), integrating by parts
over (0, 1), one obtains

(3.4) fox*w'(x) @' (x)dx — 2[5 x> w(x) o(x) dx + [§ x> w(x) f(x) @(x)dx = 0,
(3.5) fo X3 f(x) ' (x) dx = [§ x> wi(x) y(x) dx .

Definition 3.2. The generalized solution of the problem (CP) is a pair of functions
w, f in Vsatisfying (3.4) and (3.5) for all functions ¢,y in V.

Theorem 3.1. Any classical solution of the problem (CP) is a generalized solution.
Conversely, any generalized solution of the problem (CP) is a classical solution.

Proof. The first assertion is obvious. We prove the second assertion. Let w, f
from V be the generalized solution of the problem (CP). From (3.4) and (3.5) we
obtain

(3.6) Jo [x*w'(x) + 2[5 2 w(r)dt — [5 2 w(t) f(t)df] ¢'(x)dx = 0,
(3.7) fo [x3f'(x) + [5 2 w(r) de] y'(x)dx = 0.
We denote
pi(x) = x> w'(x) + 4§ 3 w(t)dr — [ 2 w(t) f(r) dt,
pa(x) = X3 f'(x) + [§ 3 wi(r) dt

and set
o(x) = o (pi(t) = er)dt, ¢ = [op,(r)dt,
Y(x) =[5 (pa(f) = c2) di, cp = o pat) dr .
Then (3.6) and (3.7) imply
x}wi(x) = —Af§ B w(r)de + [5 2 w(t)f(t)dt + ¢y,
B f(x) = =[5 2 wHt)dt + ¢,
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almost everywhere in [0, 1]. Then h(x) = x* w'(x) and g(x) = x* f(x) are conti-
nuous functions on [0, 1]. We assert: ¢; = 0, i = 1, 2. If this were not true, then

(3-8) h(0) = lim h(x) = lim x* w'(x) = ¢; + 0.

x=0+ x-0+
Without loss of generality we can suppose ¢, > 0. In virtue of (3.8) we have: for
every ¢ > 0 there exists 6 > 0 such that all x,0 < x < § satisfy

¢y — ¢
¥3

<wi(x) <S8

0<

x
As w e V, we have
00> [l = [P w(x) dx = 3 xP wA(x)dx > (e, — o) L dx,
a contradiction. The same holds for ¢,. We have ’
(39) x*w(x) = =452 w(t)de + [5 w() f(1)dt
(3.10) X f'(x) = —[§ > w(t) dt
The functions h(x) = x> w'(x)and g(x) = x> f'(x) are continuous on [0, 1], so
w(x) = [Tw()dt, f(x)=[i/(5)dr
are continuous functions on (0, 1]. We assert:

(3.11) limxw(x) =0, limxf(x)=0.
x=+0+

x=0*

In virtue of (3.10) the function f(x) is a nonincreasing continuous function on (0,1]
and we have f(x) = 0 in (0, 1]. Then (3.10) implies

(%) = —x—lg rﬁ wi()dt in (0,1].

- We can estimate

0 < f(x) =ff’(t) dt = — f%(fﬁ w?(s) ds) dr <

1t 0
1 t 1
gf 1(J-swz(s)ds>dt§f 1
x t 1] x t

. J:s Wi(s) ds) dt < — In x]w|?

(

and we have
(3.12) 0<xf(x) < —xlnx|w|>.
From (3.12) we obtain

lim x f(x) = 0.

x—=0+
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Similarly, (3.9) implies .
}’ X X

wi(x) = — = J 2 w(r) de + %j 1 w(t) f(r) dt
X" Jo x“Jo

and we have

=i ([ [ -ra)e

which yields an estimate
o = ol 1= )~ ol e

Thus, we obtain the first part of the assertion (3.11). Using the above estimates
and the relations (3.9), (3.10) we obtain that the functions w(x), f(x) are bounded.
Hence, differentiating (3.9) and (3.10) we obtain the desired result. Q.E.D.

We consider the Hilbert space ¥ with the norm ||. Let u and v in V be fixed.
For arbitrary ¢ € V we define the functionals '

c(u, ): V>R, c(u, )= [5x>u(x)e(x)dx;
b(u,v, *): V>R, b(u,v, )= [sx*u(x)v(x)dx.
The functionals b and c¢ are continuous linear functionals on V. Here we use the fact
that the space W!'*((0, 1), x®) is continuously imbedded in L,((0, 1), x'**), in
L,((0, 1), x*~*) and in L,((0, 1), x> ~*) for x € (0, 1), where L,((0, 1), x*) is the Lebes-

gue space L, with the weight x* The Riesz representation theorem implies that there
exists a unique Lu € V and a unique M(u, v) € V such that

(3.13) (Lu, ¢) = c(u, 9),
(3.14) (M(u, v), @) = b(u, v, 9) .

Using the fact that W*%((0, 1), x*) is compactly embedded in L,((0, 1), x'**) we
obtain the following theorem:

Theorem 3.2. The generalized solutions of the problem (CP) are identical with
the solutions of the operator equations of the form

(3.15) w—ALw + N(w) = 0,
(3.16) f=M(w,w)

defined on the Hilbert space V, M is a bounded bilinear symmetric compact operator
defined on V x V with range in V, L is a bounded linear selfadjoint compact operator
mapping V into itself, N a bounded compact nonlinear operator mapping V into
itself. Here

(3.17) ‘ N(w) = D(w, w, w)
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where
(3.18)  D(u,v,z) = H{M(u, M(v, z)) + M(v, M(z, u)) + M(z, M(u, v))]

is a bounded trilinear symmetric compact operator defined on V x V x V with
range in V.
Now we show some properties of the operators M and N.

Lemma 3.1, Let u, v, z €V, then the form (M(u, v), z) is symmetric in u, v, z.
Proof is obvious from (3.14) and the definition of the functional b.

Lemma 3.2. The equality
M(v,v) =0

in the Hilbert space V holds if and only if v = O in V.

Proofis straightforward.

Lemma 3.3. The nonlinear operator N defined by (3.17) has the following pro-
perties:
(i) N is a continuous cubic operator, satisfying for every v € R and ve V
N(ow) = o3 N(v),

() Twed IN@)| = [M]? [o]* -
1 we denote

(3.19) i(®) = HN(v), v) = 2| M(v, v)[*
then j is a functional defined on V. For 0 % v € V we have
(3.20) j(w) >0, jlw)=a*jlv), j0)=0

and the functional j is infinitely Fréchet differentiable on V, the operator N is the
gradient of j with respect to the inner product (3.2), i.e., for ve Vand foreveryheV
we have

(321) j'(v) (B) = (N(v), h)
where j'(v) () is the Fréchet derivative at the point v in the direction h.

Proof. The continuity of N follows from the continuity of M, the homogeneity
of the degree three is obvious. Using Lemmas 3.1 and 3.2 we obtain all assertions

of the lemma. Q.E.D.

We denote the left hand side of (3.15) by F,, i.e., F, is the mapping defined on V
with the range in V,

(3.22) FyiVov,
Fy(u)=u — ALu + N(u) . .
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Theorem 3.3. Let A € R be fixed. The mapping F, is a nonlinear Fredholm opera-
tor of index zero.

Proof. The mapping F, is infinitely Fréchet differentiable and we have

(3.23) Fi(u) (v,) = vy — ALv, + 3D(u, u,v,),

(3.29) Fy(u) (vy,v,) = 6D(u, vy, 0,),

(3:25) F(u) (v, v5, v3) = 6D(vy, 05, 03),

(3.26) FO(u) (vy,v5,...,0,) =0 for n=4

where F{(u) (v, ..., ,) is the n-th Fréchet derivative of F, at u in the directions

vy, ..., U,. It is easy to see that F)(u) (+) is a selfadjoint operator on ¥, it is a compact
perturbation of the identity. Hence F;(u) (+) is a linear Fredholm operator of index
zero, so F, is a nonlinear Fredholm operator of index zero. Q.E.D.

Theorem 3.4. Let u, v € V be arbitrary, then
(M(u, u), M(v,0)) = 0
and the equality holds only if u = 0 or v = 0in V.

Proof. Let u, v € V, then there exist unique g, h € ¥ such that
g =M(u,u), h=Mv).
Arguing similarly as in the proof of Theorem 3.1 we obtain
x*g'(x) = =[5 2 u?(t)de, x>H(x)= —[53v*r)dt
which means
g'(x)£0 and Rh'(x)<0 for xe(0,1),
and the equality holds only if u = O or v = 0in V. Hence

(M(u, u), M(v,v)) = (g, h) = [o x> g'(x) K'(x)dx = 0.
Q.E.D.
Theorem 3.5. Let u,v € V be arbitrary, then

(V') (). ) 2 0
and the equality holds only if u = 0orv=0in V.
Proof. We obtain

(N'(u) (v), v) = 3(D(u, u, v), v) = 2(M(u, M(u, v)),v) +
+ (M(o, M(u, w)), v) = 2[M(u, 0)[* + (M(u, u), M(v, v))

and the assertion follows immediately from Theorem 3.4. Q.E.D.
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4. THE LINEARIZED PROBLEM FOR PROBLEM (CP)

We reformulate our problem (CP). We define a mapping
(4.1) . F:VxR-V,
F(u,2) = u — ALu + N(u) = F,(u).
Lemma 4.1. The nontrivial solutions of the problem (CP) appear in pairs, that

is, if ue Vis a nontrivial solution then —u € V is a nontrivial solution for some
A€ R. The trivial solution u = 0 is a solution for each A € R.

Proof. From the properties of the operators L, N it is easy to see that the assertions
of the lemma hold. Q.E.D.

We shall study the behaviour of the partial Fréchet derivative of the mapping F
at the point (0, 1) for A € R. We have

(4.2) F1(0,2) (v) = v — ALv + 3D(0,0,v) = v — ALv
so we must analyze the problem
(4.3) v — ALv = 0 in the space V.

By virtue of Theorem 3.2, L is a linear selfadjoint continuous positive operator,
therefore the classical theory of linear compact selfadjoint operators yields

Lemma 4.2. The problem (4.3) has nontrivial solutions for a countable infinite
number of real numbers

0<lSl<..<2

IIA
IIA

n L]

whose only limit point is at infinity. Every eigenvalue A, has finite multiplicity

and the orthogonal system of eigenfunctions is complete in the Hilbert space V.
Lemma 4.3. Any eigenvalue of the eigenvalue problem (4.3) is simple.

Ay

Proof. By Theorem 3.1, any generalized solution of the problem (4.3) is a classical
solution of the problem

(4.4) (x*v'(x)) + Ax*o(x) =0 in (0,1),
limxov(x) =0, v(1)=0.

The problem (4.4) is equivalent to the eigenvalue problem
(4.5) w(x) + 1/x w'(x) + (A = 1/x)w(x) =0 xe(0,1),

w(0) = w(1) =0
with the solutions
wy(x) = ¢,J1(A:x)
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where ¢, is a constant and the eigenvalue 4, is the root of the equation

Ji(2) =0
where J, is the Bessel function of the first order. It means, that any eigenvalue

of the problem (4.3) is simple. Then v,(x) = (c,/x) J,({/4,x) are eigenfunctions
of the problem (4.4). Q.E.D.

5. EXISTENCE OF SOLUTIONS AND THE LOCAL BIFURCATION THEORY
OF PROBLEM (CP)

We define the functional
(5.1) AV R,
A(u) = Jul]> = A(Lu, u) + 2j(u)
where the functional j is defined by (3.19).

Theorem 5.1. The equation u — ALu + N(u) = 0 has at least one solution in the
Hilbert space V, i.e., there exists at least one element uy € V such that

A(uo) = A(u)

for any u e V. If the parameter value A > A,, the equation has at least ¢ne non-
trivial solution in the space V. 1, is the first eigenvalue of the linearized problem

(4.3).

Proof. We shall show that A4 is sequentially weakly lower semicontinuous and
coercive. We easily see that A is weakly lower semicontinuous. A is also coercive.
If it were not true, there would exist a sequence {u,} with the following properties:
lim |lu,| = oo and the sequence {A4(u,)} is bounded,ie. A(u,) <K

n—o

where K is a positive constant. Hence

(5.2) [ua]®> = A(Luy, w,) + 2j(u,) < K,

n=1,2,.... We can suppose u, = 0 for all n. We set

u"
w, = .
D

From (5.2) we obtain

(53) 1= ALw,, w,) + 2| j(w,) <

K
Jual®

We can choose from {w,} a weakly convergent subsequence, which we denote again
by {w,} for simplicity, such that

w, = w weaklyin V.
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If n in (5.3) tends to infinity, then for the limit element w we have
jw)=0 in V.
Sow = 0 by Lemma 3.2. As j(w,);= 0, (5.3) implies

(5.4) = HLw,, w,) =

] ll

Then letting n tend to infinity we obtain a contradiction, which means the functional
A is coercive. To prove the second assertion we express the second variation of the
functional 4 at the point 0 in the direction v,, where v, is the n-th eigenvalue of the
problem (4.3). We have

5 406 = 5 (w)mo = 2 ([l — L)} =

= 2<1 - %) [o.]? <0 for A>2,. Q.ED.

Theorem 5.2. Let f(x, 1) be a C* mapping, p Z 0, of a neighbourhood of the point
(0, A) from X x R to Y (X, Y are Banach spaces) and let (0, Z,) = 0. We suppose:

(i) £14(0, 45) = O (f/, is the partial Fréchet derivative with respect to 2);
(ii) Ker £)5(0, Ao) is the one-dimensional subspace generated by x,;
(iii) R f\(0, Zo) = Yy has codimension 1 (Rf\(0, Xo) is the range of f(0, Z,)):
(iV) fﬂu(O, Ao) € Yy and fﬂa(O, o) Xo ¢ Yy
Then the point (0, A,) is a bifurcation point of the mapping f. Moreover, the set
of solutions of the equationf(x, A) = 0in a small neighbourhood of the bifurcation

point consists of two C?~? curves I'y and I, which intersect anly at the point (0, ),
and we can parametrize the former by

Iy(x(2),2) |A—=2|=e,
" while the curve I', can be parametrized by a variable s, |s| < ¢, as
Iy (sxo + x5(s), A(s)), where x,(0) = x5(0) =0,
H0) =4y, x,€Y;.

Supplement. If the mapping f fulfils the condition f(0,1) = 0 for all 1e R,
the curve I'; coincides with the axis A.

Proof can be found in [7].
Setting f = F defined by (4.1) in Theorem 5.2 we obtain

Theorem 5.3. Let A, be an eigenvalue of the problem (4.3). Then for any n =
= 1,2, ..., the point (0, 4,) is a bifurcation point of the problem (CP) and the set
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of its solutions in a small neighbourhood of the point (0, 1,) consists of two analytic
curves I'y and I', which intersect only at the point (0, 4,). The curve I'y coincides
with the A-axis, it is the trivial solution, while the curve I'; can be parametrized
by a real variable |s| < &:

Iy (sv, + v3,(s), A(s)),
where v, is the n-th eigenvalue of the problem (4.3) and v,,(0) = v5,(0) = 0, 4(0) =
= A, and v,,e R(I — 2,L).

Proof. We can easily verify that all assumptions of Theorem 5.2 are fulfilled by
f=F.

Now we study the behaviour of the curves I'y, I', in a neighbourhood of the bi-
furcation point (0, 4,). The curve I'; coincides with the i-axis, as it is the trivial

solution
ry:(0,2) |2=2,)=<e.

We know from Lemma 4.1 that the trivial solution exists for every A € R. The curve
I', is an analytical curve parametrized by |s| < &:

Iy (u(s), As)) = (sv, + v2,(5), A(s)) .

Ms) = 2, = pls) .

(1 = 2,0 u(5) = u(s) Luls) — N(u(s)
using the facts that v, € Ker (I — 4,L), v, € R(I — ,L) we obtain by easy computa-
tion
(59) W0) = K(©) =0, #(0) >0,
Lemma 5.1. There exists > O such that

(i) if Ae (A, — 8, A,) there exists only the trivial solution of the problem (CP);

(i) if A€(A, A, + ) there are exactly three solutions of the problem (CP),
one trivial, two nontrivial u, —u lying on the curve I', which differ only by the sign.

We set

From the equation

Proof follows immediately from (5.5).

6. THE EXACT NUMBER OF GLOBAL SOLUTIONS

Definition 6.1. Let F: X — Y be a mapping from the Banach space X into the
Banach space Y. If K < Y is compact implies F"*(K) < X is compact, then F is
called a proper mapping. Here F~'(K) = {xe X | F(x) e K}.

Theorem 6.1. Let 2 € R be fixed. A mapping F;: V— V, F;(u) = u — ALu + N(u)
is a proper mapping of the Hilbert space V into itself.
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Proof. Let K — V be compact. Let {u,} = F;'(K) be such that
(6.1) F;(u,) =g,eK.

Compactness of K implies boundedness of the sequence {g,,}. Suppose the sequence
{u,} is not bounded, i.e.
lim [ju,| = o .

Rewriting (6.1) we have
(6.2) u, — ALu, + N(u,) = g, .
Taking the inner product of (6.2) with the element u,, we obtain

Jal? = ALaty, w,) + (N(w,), ) = (90 ) < gl ] -

The proof of boundedness of the sequence {u,}} is the same, but for small changes,
as the proof of coercivity of the functional 4 in the proof of Theorem 5.1. So, the
sequence {u,} is bounded and we can choose a subsequence (which we denote u,
again) such that
u, —u weakly in V.
Then
Lu, > Lu, N(u,)— N(u) stronglyin V.

Since {g,} = K, we can suppose g, — ¢ in K. Then u, = ALu, — N(u,) + g, >

— ALu — N(u) + g strongly. It means F; '(K) is relatively compact. The mapping

F, is continuous, so F; '(K) is closed, hence F; '(K) is compact. Q.E.D.
Now we consider the extended mapping

(6.3) FVxR->VXR,
F(u, ) = (Fy(u), 1) .

The mapping F, is a C*-Fredholm operator of index zero and consequently,
F(u, 2) is a C*-Fredholm operator of index zero.

Theorem 6.2. The mapping & defined above is a proper mapping of V x R
into itself.

Proof is the same as the proof of Theorem 6.1, with only small modifications.

Definition 6.2. Let X, Y be real Banach spaces and Q <X an open set. Letf: Q - Y
be a C'-mapping. A point x, € Q is called a singular point of the mapping f if the
Freéchet derivative f'(x,) is not an isomorphism of X onto Y. The image of the
singular point x, in Y, i.e., f(xo)e Y, is called the singular value.

We denote

L= ) v A3) U U(A-q, 4y)

where n = 2 and 7, is an eigenvalue of the problem (4.3).
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Theorem 6.3. We consider the mapping F;: V-V, F,(u) = g, F;(u) = u — ALu +
+ N(u). The point g = 0 is not a singular value of the mapping F, for Ael,.
Moreover, the point g = 0 is a singular value of F, for A = A, with the single
singular pointu = 0.

Proof. Suppose g = 0 is a singular value of F, for some 1 €I,. Then there exists
an element 0 + he V and a singular point 0 # u € V such that

(6.4) h+ N'(u)h = ALh for wueF;*0),

as u = 0 cannot be a singular point of F; for AeI,. In virtue of (6.4) 4 is an eigen-
value of the eigenvalue problem (6.4), i.e.,

| 2 ’
(6.5) 7= 4 = inf max P22+ V(@) x, %)
Vie xeVi (Lx, x)
where V, denotes an arbitrary linear subspace of the space V with the dimension k.
This value is attained at the point x = h. We can rewrite (6.5) in the form

(66) N /1 = )'k = infmax "xuz + 3(D(u’ u, x)’ x) X
Vie xeVi (Lx, x)

This follows from (3.23). From (6.4) we know that u € F; '(0) is a nontrivial solution
which does exist by Theorem 5.1, which means
. u + N(u) = ALu
or
u + D(u,u,u) = ALu .
This equation can be rewritten as
(6.7) v + D(u,u,v) = ALv

with » = u a nontrivial solution. Then A must be an eigenvalue of the problem
(6.7):

(68) )» = },1 = infmax ”x”2 + (D(u’ u’ x), x)
. Vi xeV; (Lx’ x)

5

and the value A is attained at x = u. Here I = k, as follows from Theorem 3.5:
0 < (D(u, u, x) x) < 3(D(u, u, x), x) .
Setting x = h in (6.8) we obtain

x||> + (D(u, u, x), x) _ ||h|* + (D(u, u, h), h) _

l=infmax” §[

Vi xeV, (Lx, x) (Lh, h)
_ B2 + 3(DGu, u, h), b) — 2D, u, ), B) _,  2AD(w,u k). h) _
(Lh, h) (Lh, h) '

a contradiction with the minimality of (6.8).
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Suppose that for A = A, and the singular value g = 0 there exists a singular point
u + 0. We obtain the same contradiction as above. Q.E.D.
The following theorem holds [3].

Theorem 6.4. Let X, Y be Banach spaces and f: U - Y a C'-proper Fredholm
mapping of index zero. Here U < X is an open set. Then the number of solutions
of the equation f(x) = y is finite and constant in each connected component of
Y — B(S), where B(S) is the set of the singular values of the mapping f.

Lemma 6.1. The number of solutions of the equation F,(u) = 0 (problem (CP))
in space V is finite and constant for A€ (4,-, A,), n = 2,3, ... independent of 1,
where A, is an eigenvalue of (4.3).

Proof. Theorem 6.1 implies that the set of solutions of the equation F,(u) = 0
is compact for each A€ (4,_,, 4,). By virtue of Theorem 3.3. the set of solutions
of F,(u) = 0 must be discrete, hence finite for each Ae€(4,-y,4,). Theorem 6.3
shows that the point (0, 1) is not a singular value of the mapping #(u, 1) for Ae
€ (4,-1, 4,), which means that the line segment 0 x (4,_,, 4,) lies in the same con-
nected component of ¥V x R — {the singular value of #(u, A)}. Then by Theorem
6.4 the number of solutions of

F(u,7) = (0, 2)
or equivalently
Fy(u) =0 for Ae(A,—y4)

is finite and constant independently of A. Q.E.D.
Theorem 6.5. The equation
(6.9) u— ALu + N(u) =0,

or equivalently the problem (CP), has a unique solution u = 0 for Ae(—oo, il]
and exactly 2n + 1 solutions in V for A€ (A, Aye1], n = 1,2, ..., where 4, is an
eigenvalue of (4.3). The solutions lie on smooth branches bifurcating from (0, 4,).
There exist no secondary bifurcations from these branches.

Proof. (i) Suppose 4e(—o0, 4] and let 0 + u € V be a solution of (6.9). Then
taking the inner product of (5.9) with u we have

(u, u) — A(Lu, u) + (N(u),u) = 0.
By the variational characterization of 1; we know that
(u,u) — A(Lu,u) 20 for Ae(—oo,4,], andforeach ueV.

By Lemma 3.3. we have (N(u), u) > 0, so u must be 0.

(ii) Suppose A € (14, 4,). The properness of % (u, 4) implies that the set of solutions
of the equation
F(u,2) = (0,2) for Le[ly,4,]
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is compact and hence uniformly bounded independently of A. Lemma 6.1 implies
that the number of solutions of the equation F,(u) = 0 for A e (4,, 4,) is finite and
constant. Let us have k solutions. As A varies in (4, 4,), the Implicit Function
Theorem and the fact that 0 is not a singular value of F,(u) imply that these solutions
lie on continuous mutually nonintersecting curves which we label

(6.10) uy(A), ooy wi(2) .

We assert: For a fixed value 4 € (1, 1,) the solutions (6.10) lie in a sphere B((0, 4,),
R(7)) (the sphere with the center at (0, A,) and the radius R(%)), and R(%) - 0 as
4 — A1. If it were not true, there would be a weakly convergent sequence {u;,(4)} 1,
where iy € {1, ..., k} is such that
(6.11) lim inf [ju; (2,)] = « > 0.
Ag—~igt

Let u;(4g) — u, A3 > A (u is the weak limit), then

wig(kg) = ApLtio(Ag) = N(uio(%g)) = ALt — N(u)
strongly, the limit element fulfils ;
(6.12) u— A Lu+ N@u)=0,

and by (6.11) "
ul =a>0.

However, this is a contradiction with part (i) of the proof. The assertion is proved.
By Lemma 5.1 we know that in a sufficiently small right neighbourhood of 1, the
equation (6.9) has exactly three solutions, namely, one trivial and two nontrivial
ones which differ only by the sign. Now Lemma 6.1 implies that for 1 e (4, 4,)the
number of solutions of (6.9) is exactly three. One of them is trivial and the other two
we will denote by u (1) and —u,(2). We have

[us(2,)] = B> 0.

Indeed, otherwise there would be a weakly convergent sequence u,(2,) where u(1,) +
* 0 such that u,(2,) = u,(1,) weakly as A, - A7, liminf ||u,(4,)] = 0, and each
member u,(4,) would satisfy Ay 22T

(6.13) uy(4,) — A,Luy(4,) + N(u,(%,)) = 0.
By the compactness of L, N the limit u,(Z,) is also the strong limit and we obtain
uy(42) — A,Luy(2;) + N(uy(3;)) = 0 and  [ju,(4,)] = 0.

This means that in a sufficiently small left neighbourhood we find an element
uy(4,,) * 0for which (6.13) holds. This is a contradiction with part (i) of Lemma 5.1.
Hence, as u;(4,) = 0, it is a regular point of F,(u). By the Implicit Function Theorem
u (%) can be continued smoothly to the interval (1,, A;) and no secondary bifurcation
occurs in (41, 4,) and at the point 4,. All the above assertions hold for —u ().
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(iii) Let A € (4,, A5). By the same argument as in part (i) the equation (6.9) has
a finite number m + 1 of solutions labelled as

(6.14) uy(2), —uy(2), uy(2), ..., u,(4)

where u,(4) and —u,(4) continue smoothly from (4,, 4,). We assert: For a fixed
value A € (1,, A;) the solutions (6.14) with the exception of u;(1) and —u,(2) lie in
the sphere B((0, 2,), R,(1)) where R;(1) - 0 as A — 1;. Indeed, otherwise there
would be a weakly convergent sequence {u;(4;)}, jo € {2, 3, ..., m} such that

u;(As) = u;(4,) weakly as A5 — 15, I;imlinf [uo(25)]| = 6 >0
oAzt

and u;(4;) fulfils (6.9) with 2 = 4,
However the weak limit is also the strong limit and we obtain

”ujo('ll)” =0>0, u(4y) — ALuj(2,) + N(us(22)) = 0.

It means u,,(2,) is a regular point (Theorem 6.3) and by the Implicit Function Theor-
em in a sufficiently small neighbourhood of 1, there exists a smooth solution curve
u;,(4), but part (ii) of the proof implies u;,(1) = u(A) or u; (1) = —u,(2), a contra-
diction. Then by Lemma 5.1 and part (ii) of this proof, in a small right neighbourhood
of 1, the equation (6.9) has exactly five solutions. There are solutions smoothly
continuing from (A, 4,): u,(4), —u,(2), nontrivial solutions which we label u,(2),
—1u,(2) such that u,(4,) = —u,(4,) = 0, and the trivial solution. Then for each
% €(2,, 23) the equation (6.9) has exactly five solutions lying on smooth mutually
non-intersecting curves. By the same argument as in part (ii) of this proof we can
prove that the solution curves do not intersect each other, no secondary bifurcation
occurs, and they do not approach the trivial solution at 4;.

(iv) Arguing as above we obtain by induction the statement of the theorem. Q,E,D,

7. NODAL PROPERTIES OF SOLUTIONS

Theorem 5.3 implies that each nontrivial solution in a sufficiently small neigh-
bourhood of the bifurcation point (0, 2,) has the form

(7.1) (sv, + v2,(s), 4(s)), |s] S e

where v, is the n-th eigenfunction corresponding to the n-th eigenvalue of the problem
(4.3) and v,,(0) = v5,(0) = 0, 4(0) = 4,, v,,(s) e R(I — 4,L). We see that in such
a neighbourhood the nontrivial solution (7.1) has the same nodal properties as the
eigenfunction v,. We show that the nodal structute of solutions is preserved along
a smooth curve of solutions.

Theorem 7.1. The following equality holds on the solution curve:

lim sup [w;(x) — wy(x)] =0
A—+A* xe(0,1)
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where w,(x) and w,.(x) are solutions of the problem (CP) corresponding to the
parameter values A and A*, respectively.

Proof. The relations

wilx) = j ( j B wils) (1 = £)(6) ds)
- ([

0<f(x) -C;Inx,

and the estimates
w(x)] £ =C,Inx
follow from the proof of Theorem 3.1, C,, C, being positive constants. From Theor-

em 6.5 we know that the following convergence takes place on the continuous solution
curve: w, — w,. strongly in V'as 1 — A*. Hence we obtain

[ 5[] = vzt as]oe s
[ ([l = vl a5) e+
+f ([ ) = w9 a5) =
<[ a{[o00) (- )
e [ 5 ([ rera) " (] st~ midy ) e s
([ o= metom o) {5 ([ i) " ([0 o]
< Clw, — wy| [ Iti ( fv 1nzsds>”2dt] < Cllw, — wae] K(x)

where K(x) is bounded. Then
sup |fi(x) — fidx)] £ CsupK(x) [w; — wa||,
xe(0,1) xe(0,1)

]f,l(x) - fx*(x)! =

I\

which means

lim sup lfz(x) fv(x)l =0.

A—A* xe(01)
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Similarly we obtain

sup |wi(x) — wu(x)] £ Cysup Ky(x) |4 — 2*| + C, sup Ky(x) [|w; — wil| +
xe(0,1) x€(0,1) xe(0,1) .
+ Cssup Ky(x) || /5 = o
xe(0,1)
where K ,(x), K,(x), K3(x) are bounded. Then
lim sup |wy(x) — w(x)] = 0. Q.E.D.

A=r2* xe(0,1)
Definition 7.1. 4 point se(0,1) is a simple zero point of the function u(x)e
e C*((0, 1)) if u(s) = 0 and uw'(s) * 0.

Lemma 7.1. If (u, f) is a classical solution of the problem (CP) and u(x) has
a double zero point in (0, 1) (i.e., there is s € (0, 1) such that u(s) = u'(s) = 0) then
u(x) = 0, f(x) = 0.

Proof. By the proof of Theorem 3.1 we have

-3 e

It means f(x) = 0. Let s€(0, 1) be a double zero point. Then the first equation
of the problem (CP) can be written in the form

v'(x) + Ax u(x) = x> u(x) f(x).
u'(x) = ~xl—3v(x) ,

which yields
1% (x)) + Ax® u(x) v(x) = x> u(x) f(x) v(x),
, 1
H0(5)) = 550 o)
Consequently,
Hu?(x) + v*(x)) = —Ax> u(x) v(x) + %u(x) o(x) + x? u(x) v(x) f(x)
and hence in a neighbourhood of the point s we have

(u*(x) + v*(x)" £ c(u?(x) + v*(x))

which implies

u*(x) + v*(x) £ (u*(s) + v*(s)) exp[e(x — s)] = 0.
This means u(x) = 0 in the whole neighbourhood of s, and by continuation u(x) = 0
in (0, 1), hence f(x) = 0. Q.E.D.
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Theorem 7.2. A solution of the problem (CP) lying on the continuous curve
of nontrivial solutions bifurcating from the point (0, i) has exactly k — 1 simple
internal zero points. J, is the k-th eigenvalue of the problem (4.3).

Proof. In a small neighbourhood of the bifurcation point (0, 4,), say for Ae
€ (4, A*), the solution of the problem (CP) has exactly k — 1 simple internal zero
points. Suppose that for the parameter value A — A* the solution w;,. has k internal
zero points. Then due to Theorem 7.1 one of them must be a double zero point.
Then Lemma 7.1 implies w;.(x) = 0 and f,.(x) = 0 in (0, 1), which leads to contra-
distion. Q.E.D.
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