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Summary. Numerical solution of linear boundary value problems for ordinary differential
equations by the method of transfer of conditions consists in replacing the problem under con-
sideration by a sequence of initial value problems. The method of transfer for systems of equations
of the first order with Lebesgue integrable coefficients was studied by one of the authors before.

The purpose of this paper is to extend the idea of the transfer of conditions to singular boundary
value problems for a linear second-order differential equation.
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1. INTRODUCTION

The boundary value problems for ordinary differential equations of the type
(L.1) —(p(1) ¥ + a(t) y = f()

where g or 1/p has a singularity at one of the endpoints of the interval of integration
are subject of great interest for physicists and mathematicians. Such a problem
arises, for example, when using the Fourier method for the Poisson equation in polar
coordinates. Another example of a problem of this type is the eigenvalue problem

(1.2) —y() + [tﬁz +w(i) - /1] W) =0,
»0) =0,
ay(b) + By (b) =0, o + B> +0

for the radial Schrédinger equation.

A very efficient method for solving boundary value problems for ordinary dif-
ferential equations is the invariant imbedding [1], [2], [3]. In the linear case, one
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possible derivation of the method is based on the idea of transferring the boundary
conditions. The idea of transfer of conditions consists, roughly speaking, in the
observation that the function y which satisfies the differential equation (1.1) and the
condition of the type

(1.3) 2 y(to) + B p(to) ¥y'(to) = 7

should satisfy a linear differential equation of the first order, that is, a condition of
the type (1.3), at any point of the interval of integration. This approach was presented
for very general multipoint boundary value problems by one of the authors in [2],
[3], and also various algorithms resulting from it have been studied there. However,
the results of [2], [3] apply only to such equations of type (1.1) that the functions 1/p
and g are Lebesgue integrable in the interval of integration. The purpose of this
paper is to extend the method of transfer to equations for which the above assumption
is violated.

For the reader’s convenience, the next part of the paper surveys the method (and
the notation used) in the regular case. The only difficulty of the adaptation of the
method to the singular case consists in transferring the boundary condition prescribed
at the point where 1/p or ¢ has a singularity. This transfer is studied in the third
section, namely in Theorems 3.1 and 3.2.

2. THE METHOD OF TRANSFER OF CONDITIONS

This section describes the transfer of boundary conditions in the regular case and
the resulting methods for the numerical solution of boundary value problems as
developed by Taufer in [2]. Allthe proofs are omitted here as they can be found in [2].

First we give the definition of the boundary value problem we will be concerned
with in the present section.

Problem 1. Let [a, b] be a closed finite interval and let p, ¢, and f be functions
from [a, b] to R such that 1/p, g, and f are Lebesgue integrable on [a, b]. Find
a function y: [a, b] » R such that

(i) ¥ and py’ are absolutely continuous functions on [a, b];
(ii) y satisfies the equation

2.1 =((t) y'(O) + a(t) (1) = £(1)
a.e. (almost everywhere) on [a, b];
(iii) y satisfies the boundary conditions

(2.2) a; Y(a) = By p(a) y'(a) = vs
(23) o, ¥(b) + B, p(b) y'(b) = 72,
where d;, Bi» Vi € R are such that o + 7 #+ 0,i = 1,2.
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The fundamental idea of the method of transfer consists in constructing functions
o, B, and y (all from [a, b] to R) such that every solution of (2.1) satisfying the
boundary condition (2.2) satisfies the relation

(24) o{t) ¥(1) = B(t) p(1) y'(1) = (1)
at every point t € [a, b]. We then say that the condition (2.2) has been transferred
to the point ¢ and call (2.4) a transferred condition.

Similarly, we try to find functions &, 8, 9: [a, b] - R such that every solution
of (2.1) satisfying the boundary condition (2.3) satisfies

(2.5) a(t) y(t) + B(e) p(t) ¥'(1) = (1)
for any t € [a, b].

For a fixed t € [a, b] the transferred conditions (2.4) and (2.5) represent a system
of two linear algebraic equations (with unknowns y(t) and p(r) y'(t)) that the solution
of Problem 1 — if there is any — should satisfy. Hence, if the transfer is practicable
(i.e. if we are able to construct the functions «, 8, y and &, B, 3‘») and if Problem 1 has
a solution, then the value y(t,) of the solution at a point t, € [a, b] may be found
by solving the system of equations (2.4), (2.5) with ¢ = t,.

It has been shown [1], [2] that appropriate functions «, B,y and &, 8, % in (2.4),
(2.5) may be found as solutions of initial value problems for certain nonlinear ordinary
differential equations of the first order. In such a way we arrive at a method which
reduces the boundary value problem under consideration to solving several initial
value problems and certain linear algebraic systems. Since the solution of initial
value problems seems today to be a relatively easy task ‘due to the existence of very
good and well-programmed methods, the above procedure for solving boundary
value problems may be quite useful.

Observing that multiplication of equation (2.4) or (2.5) by an arbitrary function
different from zero leads to the same condition, we can see that there exist infinitely
many ways of transferring boundary conditions. Hence, the general idea of the transfer
of boundary conditions may lead to algorithms with substantially different properties.
For example, the well-known simple shooting method is also tractable in terms of
a transfer of boundary conditions. However, this algorithm is known to be numerical-
ly unstable in general. The questions of stability were studied in detail by Taufer
in [2] and an example of a numerically stable transfer of the left boundary condition
is given in the next theorem.

Theorem 2.1. Consider Problem 1 and suppose, in addition, that p(t) > 0 and
q(t) = 0 a.e. on [a, b] and that a; 2 0, B; = 0 for i = 1,2. Then:

(i) If o, > O then there are absolutely continuous functions n,{: [a, b] - R
which are uniquely determined by differential equations

(2.6) n'(1) = q(t) n*(1) — 1 a.e. on [a,b],

p(?)
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27) £(0) = g n() 00 — () /(1) ac. on [a,b]
with initial conditions

(23) n(a) = = Bufos s

(2.9) {a) = yyfoy.

These functions possess the property that every solution of (2.1) that satisfies the
left boundary condition (2.2) satisfies also the transferred condition

(2.10) (1) + n(t) p(t) y'(£) = L(1)
for any te(a,b].

(ii) If By > O then there are absolutely continuous functions 1,{:[a, b] > R
which are uniquely determined by differential equations

(2.11) 0 =—1—t—r12(t) —4(t) ae on [a,b],

p(t)

(2.12) £(t) = —%—r)(t) Ut) - £(f) ae. on [a,b]
p()

with initial conditions

(2.13) n(a) = —as[By,

(2.14) {(a) = —1/Bs -

These functions possess the property that every solution of (2.1) that satisfies the
left boundary condition (2.2) satisfies also the transferred condition

(2.15) n(t) 1(2) + p(t) y'(1) = (1)

for any te[a, b].

Remark 2.1. Completely analogous statements are true regarding the transfer
of the right boundary condition (2.3), provided o, > 0 or 8, > 0. Thus, Theorem
2.1 yields a procedure for constructing functions a, f, y and &, B, 9 in the transferred
conditions (2.4), (2.5). In addition, if these functions are constructed according to
Theorem 2.1 it may be shown [2] that the following is true:

(i) The system (2.4), (2.5) for y(t) and p(t) y'(¢) has a solution for any t e [a, b]
if and only if Problem 1 has a solution.

(ii) The system (2.4), (2.5) has a unique solution for any t € [a, b] if and only if
Problem 1 has a unique solution.

Remark 2.2. If the hypotheses of Theorem 2.1 are satisfied and, in addition,

p(t) = po > O for all t € [a, b] and either o; + &, > 0 or g(t) % 0, then Problem 1
has a unique solution.
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Remark 2.3. The generalization of the transfer of conditions described in Theorem
2.1 to systems of linear differential equations and to multipoint boundary value
problems with internal conditions of various types was studied by one of the authors

in [2].

Theorem 2.1 assumes Lebesgue integrability of 1/p, ¢, and f on the whole interval
[a, b]. The rest of the paper is devoted to the study of boundary value problems
with g or 1/p having a singularity at an endpoint of [a, b] (see, for example, (1.2)).
Our aim is to obtain a modification of Theorem 2.1 in which the transfer of the bound-
ary condition from the singular point will be described.

" 3. TRANSFER OF THE BOUNDARY CONDITION FROM A SINGULAR POINT

We first describe the singular boundary value problems we will be concerned
with in what follows. The problems are similar to Problem 1 but the assumptions
on g or 1/p are weakened.

Problem 2. Let [a, b] be a closed bounded interval and let p, g, and f be functions
from [a, b] to R such that 1/p e #([a, b]), f € #([a, b]). Suppose further that
ge Z([a + & b]) for any 0 <e < b — a and q¢ Z([a,b]). Find a function
y: [a, b] - R such that

(i) y and py’ are absolutely continuous on [a, b];

(ii) y satisfies the equation (2.1) a.e. on [a, b];

(iii) y satisfies the boundary condition

(3.1) ay(db) + Bp(b)y(b) =7, o>+ %0.

Problem 3. Let [a, b] be a closed bounded interval and let p, g, and f be functions
from [a, b] to R such that qe Z([a, b]), f€ £([a, b]). Suppose further that
1/pe #([a + & b]) for any 0 <& < b — a and 1/p ¢ &([a, b]). Find a function
y:[a, b] - R such that

(i) y and py’ are absolutely continuous on [a, b];

(ii) y satisfies the equation (2.1) a.e. on [a, b];

(iii) y satisfies the boundary condition (3.1).

At first sight it seems that Problems 2 and 3 are not boundary value problems
since no conditions are prescribed at the left boundary point t = «, The following
two lemmas, however, show that this is not true and that some special conditions
of the type (2.2) are automatically satisfied at the point ¢t = a. Before formulating
them, it will be useful to say what we mean under a solution of the differential equation
(2.1) in general. In what follows, a solution of (2.1) on [a, b] is any function y such
that y and py’ are absolutely continuous on [a, b] and y satisfies the equation a.e.
on [a, b].
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Lemma 3.1. Let y be a solution of Problem 2. Then
(32) wa)=0.

Proof is by contradiction. First, suppose that y(a) > 0. This and the continuity
of y imply the existence of & > 0 and y, > 0 such that

(3.3) wt) =y, forall tela,a+6].

From (2.1) we easily obtain that gy € £([a, b]) for any solution of Problem 2.
Further, (3.3) implies that 1]y is bounded on [a, a + &] and since y is continuous,
1]y is also integrable on this interval. Thus, gy . (1/y) = q € £([a, a + J]), which
contradicts the assumption that g ¢ £([a, b]).

Assuming y(a) < 0 we can proceed analogously. Hence y{a) = 0.

Lemma 3.2. Let y be a solution of Problem 3. Then
(3.4) p(a) y'(a) = 0.

Proof of this lemma is completely analogous to that of Lemma 3.1.

Since the functions g and 1/p are Lebesgue integrable on [a + ¢, b], 0 <& <
< b — a, the transfer of the right boundary condition from b may be performed in
the usual way based on the analogue of Theorem 2.1 for the point ¢t = b. Our task
here is to describe the transfer of the left boundary conditions (3.2) and (3.4). This
may be performed with the help of the next two theorems.

Theorem 3.1. Consider Problem 2 and suppose that p(t) > 0 and g(t) = 0 a.e.
on [a,b]. Then there is a unique pair of absolutely continuous functions n,{:
[a, b] = R which satisfy the differential equations

(3.5) n'(1) = q(t) n*(1) — 1 ae.on [a,b],
0
(3.6) U(t) = q(t) n(r) L(r) — n(t) f(t) a.e. on [a, b]

and the initial conditions

(3.7) n(a) =0, -
(3.8) n(t) £ 0 in a right neighbourhood U .(a) of é ,
and

(3.9) {(a) = 0.

The functions n and { possess the property that any solution y of the equatwn
(2.1) on [a, b] satisfies the condition

(3.10) y(1) + () p(e) y'(1) = (1)

for any te]a,b].
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Theorem 3.2. Consider Problem 3 and suppose that p(t) > 0 and ¢(t) = 0 a.e.
on [a, b]. Then there is a unique pair of absolutely continuous functions n,{:
[a, b] — R which satisfy the differential equations

(3.11) n'(f) = I—JE—O n*(t) — q(t) a.e. on [a,b],
1 ,
;Zt—j n(t) {(t) — f(t) a.e. on [a,b]

and the initial conditions (3.7)—(3.9). The functions n, { possess the property that
any solution y of the equation (2.1) on [a, b] satisfies the condition

(3.13) n(t) »(1) + p(1) y'(1) = (1)
for any tela,b].

Thus, the conditions (3.10) and (3.13) may be viewed as the transferred conditions
(3-2) and (3.4), respectively.

To prove Theorems 3.1 and 3.2 we need several simple lemmas.

(.12) o) =

Lemma 3.3. Let P, Q € %([a, b]) be nonnegative a.e. on [a, b] and let n, < 0.
Then there exists a unique function n which is absolutely continuous on [a, b]
and satisfies the differential equation

(3.14) n'(t) = (1) n*(t) — P(t) a.e. on [a,b]
along with the initial condition
(3.15) ’7(“) =To -

Moreover, for the function n and all t € [a, b] we have the bound

(3.16) Mo — [aP(s)ds < n(t) < 0.

Proof. The existence and uniqueness of # has been proved in [2], Lemma 1.1.
The proof of n(t) < 0 may be found there as well. The remaining part of (3.16)
follows from (3.14) by integration. For the reader’s convenience we briefly sketch
the existence proof as the uniqueness part follows from the well-known general
theorems on ordinary differential equations.

The solution of (3.14) may be found in the form ——u/v where u and v are solutions
of the linear system

(3.17) w'(t) = P(1) o) ,
| v(1) = (1) u(t)

with the initial conditions

(3.18) u(a) = —no, vfa)=1.
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For the system (3.17), (3.18) one can easily show that u(t) v(t) = 0 for any t € [a, b}
and, moreover, that v(t) > 0 in [a, b]. The last inequality shows that the ratio —u/v
is well defined in the whole interval [a, b].

Lemma 3.4. Let P, Qe #([a,b]) be nonnegative a.e. on [a,b] and suppose
that ny,7, are two nonpositive solutions of (3.14) on [a, b]. Let ny(t,) < n,(to)
for some t, € [a, b]. Then

(3.19) n:(t) £ n(1) £ 0 forall tela,b]
and for any pair t',t" € [a, b] such that t' £ t" we have
(320 ma(t) — my(t) = mo(t”) — my(t') .

Proof. The inequality (3.19) may be proved by contradiction using the continﬁiiy
of 1y, 1, and the uniqueness statement of Lemma 3.3. To prove (3 20) we first use
(3.14) to write

(3.21) (n2(t) = ma(0)) = O(1) (ma1) + n4(8)) (ma(2) — m(1)) -

Since Q is nonnegative a.e. on [a, b] and, furthermore, 1,(t) + #,(r) < 0 for all
te[a, b] we find from (3.19) and (3.21) that (n,(t) — n,(¢)) < 0 a.e. on [a, b].
This inequality and the absolute continuity of 74, 11, yield (3.20).

Lemma 3.5. Let P, Q € ¥([a, b]) be nonnegative a.e. on [a, b] and let no 2 0.
Then there exists a unique function n which is absolutely continuous on [a, b]
and satisfies the differential equation (3.14) a.e. on [a, b] along with the initial
condition

(3.22) n(b) = 1o .
Moreover, for the function n and all t € [a, b] we have the bound
(3.23) 0=n(t)<n + [2P(s)ds.

Proof follows from Lemma 3.3 by substitution.

Lemma 3.6. Let P, Q € #([a, b)) be nonnegative a.e. on [a, b] and suppose that
N1, M2 are two nonnegative solutions of (3.14) on [a, b]. Let n,(to) = n4(to) for
some ty € [a, b]. Then

(3.24) n2(t) Z n4(t) 2 0 forall te[a,b]
and for any pair t',t" € [a, b] such that t' < t" we have
(3.25) ma2(t) = my(t') < mat”) — my(1") .

Proof is quite analogous to that of Lemma 3.4,
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; Lemma 3.7. Let Pe %([a, b]). Further, let Qe #([a + ¢, b]) for any 0 < ¢ <
< b — a and suppose Q ¢ £([a, b]). Finally let P and Q be nonnegative a.e.
on [a, b]. Then there exists one and only one function n:[a, b] > R which is
absolutely continuous on [a, b], satisfies the differential equation (3.14) a.e. on
[a, b] and is nonpositive in some right neighbourhood U .(a) of the point a.

Proof. Let te(a, b] and 5, = 0. Let ¢ be an arbitrary number satisfying a <
< ¢ < 7. Then, by Lemma 3.5 there exists a solution #(+; 7, 7,) of (3.14) in [c, 7]
satisfying the initial condition

(3.26) n(T; 7, n0) = 1.

Since ¢ > a was arbitrary, the function #(+; 7, 7,) is well defined in (a. t]. Let us
now investigate its limit for t — a+.
From (3.14) we have

(3.27) n(t; 7, n) = ne — [ [Q(s) n*(s: 7. m) — P(s)] ds =
=1, — [; Q(s) n*(s; T, n,) ds + [} P(s) ds

for any t € (a, 7] as the right-hand side of (3.27) has sense. Since Q(+) n*(*; 7, 7.) is,
obviously, measurable and nonnegative on (a, 7] and P € &([a, b]) we can pass in
(3.27) to the limit as t - a+ obtaining

(3.28) limn(t; ©,n0) = n, — [2 Q(s) n*(s; T, m.)ds + 3 P(s)ds = 4.
t—a+

Lemma 3.5 yields that ;1(1; 7, 7,) is nonnegative and therefore A is also nonnegative.
This fact and the summability of P imply that A is finite and Q(+) #*(*; 7, n,) €
e #([a, 7))

Thus, we have proved that there exists a finite limit of 5(t; 7, n,) as t — a+. We
define the value of the function # at the point a by this limit. In this way we obviously
get a function which is continuous on [a, 7). Further, we necessarily have

(3:29) n(a;t,n) =0

since in the opposite case the function Q would be integrable on [a, a + ] for some
& > 0. (Indeed, if (3.29) were not satisfied then 1/y* would be measurable and
bounded in some neighbourhood of a and it would be sufficient to take into account
that Qn?® is integrable.)

Let us now consider the function #(-; ) which is defined as n(t; 7, 0) on [a, 7]
(hence nonnegative there) and as the solution of (3.14) with zero initial condition
at the point 7 on [z, b] (such a function is defined uniquely and is nonpositive on
[, b] according to Lemma 3.3). Therefore, the function n(-; t) represents a solution
of (3.14) on any interval [a + &, b] with 0 < ¢ < b — a. It is, moreover, continuous
on [a, b] and satisfies the conditions

(3.30) n(a; 1) = y(t;7) = 0.
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Further, for n we have the estimates

(3.31) 0<n(t;7) < [;P(s)ds for tela,r],
and
(3.32) — [¢P(s)ds £ n(t;7) £ 0 for telr,b],

which follow from (3.27) and Lemma 3.3, respectively.

Choose now a < 1y < 7, < b and investigate the difference #(t; 7,) — n(t; 7,)
for te(a, b]. For te(a, ;] both functions n(+;t,) and #(-; t,) are nonnegative
according to (3.31). From this and (3.32) we see that the assumptions of Lemma 3.6
are satisfied on any interval [a + ¢, t,]. Thus, supposing te[a + ¢, 1,] we have

(3.33) 0 =n(t; 7o) — n(ts 14) < n(ty572) = n(tes 7y) = n(y572) < [ P(s) ds,

where the last inequality follows from (3.31). From the continuity of n(+;1,) —
— n(+; 7,) it follows that the estimate

(3.34) 0= n(t;ty) —n(ts7y) < J2 P(s) ds

holds for any ¢ € [a, 7,]. Using inequalities (3.31), (3.32) and Lemma 3.4 in a similar
way we can conclude that (3.34) holds on the whole interval [a, b].
Finally, put

b —
(3.35) nt) =n <t; a+ "{) , n=1,2,....
n
From (3.34) it follows immediately that the sequence #, forms a fundamental
sequence in the space C of functions continuous on [a, b]. Thus, {r,} is uniformly
convergent. Denote its limit by #. The sequence 7,(t) is nonincreasing for any f as
follows from Lemmas 3.4 and 3.6. Hence, we have

(3.36) m)zn()z...2n()z2...24(t), tela, b].
Since n,(t) < 0fort = a + (b — a)[n, we have
(3.37) A(t) £0 for tela, b].

Every function 7, satisfies (3.14) on any [a + &, b] and, moreover, it satisfies the
condition n,(a) = 0 (cf. (3.30)). Thus

(3.38) n(t) = [a O(s) ni(s)ds — s P(s) ds

for any € [a, b]. Using (3.38) with t = b and taking into account that n,(b) < 0 we
obtain

(3.39) §20(s) ni(s)ds <[5 P(s)ds .
The Fatou lemma implies that
(3.40) Ja O(s) A%(s) ds < lim inf {3 Q(s) na(s) ds,
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which together with (3.39) proves that
(3.41) 0f* € Z([a, b]) -

We have 0 < n,(t) < n,(t) for te[a,a + (b — a)[n] and 0 = 5,(1) = #(r) for
te[a + (b — a)[n, b], which yields

(3-42) (1) (1) = Q) ni(t) + Q(1) #*(t) ae. on [a,b].

Since Qni + QA2 is integrable we can perform the passage to the limit as n — oo
under the integration sign in (3.38) obtaining an identity which proves that # is
a solution of (3.14) on [a, b].

It remains to prove the uniqueness. We will prove it by contradiction. Thus, let #,
and 7, be two different solutions of (3.14) which are nonpositive in [a, a + 8] for
some 6 > 0. For any t > a we have, say,

(3.43) n1(t) < na(7)

as a consequence of the uniqueness theorem for the nonsingular case. Hence, we have

(3.44) (12(1) = ma(0))" = Q1) (n2(t) + n4(1)) (n2(1) = (1)) = O

a.e. on [a, b]. But (3.44) implies 7,(r) < n4(t) on [a,a + §] which contradicts
(3.43). Lemma is proved.

Remark 3.1. It follows from the proof of Lemma 3.7 that in the singular case the
differential equation (3.14) has infinitely many solutions satisfying the zero initial
condition but only one of them is nonpositive in the whole interval [a, b].

Lemma 3.8. Let P e %([a, b]). Further, let Qe %([a + ¢, b]) for any 0 < ¢ <
< b — a and suppose Q ¢ ¥([a, b)). Finally, let Q be nonpositive a.e. on [a, b].
Then there exists one and only one absolutely continuous function (:[a,b] > R
such that

(3.45) {(t) = () U(t) + P(t) a.e. on [a,b]
and
(3.46) a)=0.

Proof. To prove the existence it is sufficient to observe that the function ¢ given
by the formula

(3.47) o(t) = [a P(s) exp (% O(u) du) ds
is a solution of (3.45), (3.46) since
(3.48) |P(s) exp ([ Q(u) du)| = [P(s)| € Z([a, 8]).

The uniqueness follows from the relation (d/df) ({, — {4)?* = 2Q((, — {,)?, which
holds a.e. on [a, b] for any two solutions of (3.45) as can immediately be seen.
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Remark 3.2. If Q € Z([a, b]), then the assertion of Lemma 3.8 is obviously true
even without the assumption 0 < 0

Proof of Theorem 3.1. Existence and uniqueness of functions n and { follow
immediately from Lemmas 3.7 and 3.8 or Remark 3.2, respectively. To prove (3.10)
put

(3.49) o(0) = ¥(1) + n(0) p(1) y(8) — 1)

It is clear that the function ¢ is absolutely continuous and by direct computation
we obtain

3.50) ¢'(t) = q(t)n(t) () a.e. on [a,b].

Since any (absolutely continuous) solution of (2.1) with g ¢ #([a, b]) satisfies
y(a) = 0 according to Lemma 3.1 we have qo(a) = 0. But from this and from Lemma
3.8 or Remark 3.2 we obtain that ¢ = 0 on [a, b]. Thus, (3.10)is proved and Theorem
3.1 holds.

Proof of Theorem 3.2 is completely analogous to that of Theorem 3.1 and is
omitted.

On the basis of Theorems 3.1 and 3.2 we can develop algorithms completely
similar to that mentioned in Section 2. One must only carefully choose the numerical
method for solving equations (3.5) or (3.11) to obtain really the nonpositive solutions.
Also, studying in more detail the properties of functions # and { realizing the transfer
of boundary conditions one could obtain existence and uniqueness theorems for
singular boundary value problems 2 and 3. Both these topics will be dealt with in
further papers.
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Souhrn
METODA PRESUNU PODMINEK PRO SINGULARNI OKRAJOVE ULOHY
PETR PRIKRYL, Jiki TAUFER, EMIL VITASEK

Metoda presunu podminek ptevadi YeSeni linearnich okrajovych uloh pro oby&ejné diferen-
cialni rovnice na teSeni jistych poCate&nich Gloh a feSeni soustav linearnich algebraickych rovnic.
Pro soustavy rovnic prvniho tadu s lebesgueovsky integrovatelnymi koeficienty popsal metodu
jeden z autoru jiz drive. Cilem pfedkladaného €lanku je uprava metody pro feSeni okrajovych
uloh pro linearni diferencialni rovnici druhého fadu se singularitami v koeficientech.

Pesome
METO/I IMEPEHCOCA YCJIOBUM [JisI CUHI'VJISIPHBIX KPAEBBIX 3AIIAY
PETR PRIKRYL, JIRi TAUFER, EMIL VITASEK

YHCeHHOEe pEIeHUe JIMHEHHBIX KPAaeBbiX 3alay sk OGBIKHOBEHHBIX Au(depeHIHanbHBIX
yYPaBHEHHUI METOJOM TIEPEHOCA YCIIOBHIL COCTOUT B IIPUBENEHUH PACCMATPHBAEMOI KPaeBoy, 3a1a4n
K mocjieioBaTesibHoCTU 3a1a4 Kowm. [IpuMeHeHre 3TOro METOAA K PELUSHUIO KPAeBbIX 3a/a4 st
CHCTEM YPaBHEHHI{ IEPBOTO HOPSAKA C CYMMHPYEMbIMHM K03dduumeHTamMu ObIJIO PacCMOTPEHO
OJHHM M3 aBTOPOB Yyxe panblue. 1lesib HACTOsIER cTaTby — OGOOLIMTHL WICIO NMEPEHOCA YCIOBHUI
Ha Cily4aif KpaeBbIX 3aJay JJIS JIMHEKHOrO yPaBHEHUSI BTOPOTO TOPSIIKA C HECYMMUPYEMBIMH OCO-
6enHocTaMU B Ko3dduumenTax.
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