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FIRST KIND INTEGRAL EQUATIONS FOR THE NUMERICAL
SOLUTION OF THE PLANE DIRICHLET PROBLEM*)

SOREN CHRISTIANSEN

(Received December 29, 1987)

Summary. We present, in a uniform manner, several integral equations of the first kind for the
solution of the two-dimensional interior Dirichlet boundary vaiue problem. We apply a general
numerical collocation method to the various equations, and thereby we compare the various
integral equations, and recommend two of them. We give a survey of the various numerical
methods, and present a simple method for the numerical solution of the recommended integral
equations.

Keywords: Integral equation of Ist kind, Dirichlet problem, collocation method.

1. INTRODUCTION

Boundary value problems, formulated in terms of partial differential equations
and boundary conditions, can be solved using various methods:

l) By means of finite difference methods or finite element methods the boundary
value problem is replaced approximately by a system of linear algebraic equations,
which is solved numerically.

2) By means of certain analytical methods the boundary value problem is re-
formulated, without any approximation, as integral equations, which are replaced
approximately by a system of linear algebraic equations, which is solved numerically;
see the survey papers [C14], [C16], and the references given therein. It is much more
common to reformulate as integral equations of the second kind than in terms of
first kind integral equations. This difference is without doubt due to the fact, that the
analytical and numerical treatment of second kind equations is easier than that for
the first kind equations. On the other hand, first kind equations can have some
advantages in that their unknowns can be of particular interest, e.g. because of their
physical significance, or because they are well suited as input to some further cal-
culations.

*) Partly based on material which were to be presented as an invited lecture at EQUADIFF 6,
Brno, Czechoslovakia.
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As a model for the boundary value problem we here exclusively consider a two-

* dimensional interior Dirichlet problem for the Laplace’s equation for a simply con-

nected domain D with closed, simple and smooth Boundary curve I'®, where the

boundary value f is prescribed

(1-1a) 4Y(P) =0, PeD,

(1-1b) ¥(P) = f(P), Perl®.

This system can be used for the solution of two-dimensional boundary value problems

arising in various physical and technical applications, e.g., the classical conductor

problem, conformal mappings, plane elasticity and viscous flow problems.

As mentioned above (1-1) is more often reformulated as an integral equation of
the second kind [J1; § 2.6] than as an equation of the first kind. However, we will
here exclusively reformulate (1-1) in terms of first kind equations. This is because
they actually appear within applications (see, e.g., [H6; Part II] and several references
mentioned in [Cl], [H5], [L1]), and also because the unknown of the equations
have special significance when applied to the problems just menticaed (see, e.g.,
[H6; §2.2]). '

When we reformulate (1—1) as integral equations of the first kind it turns out that
several equations can be obtained, and it is therefore of interest to choose among the
various equations. We present (§ 2) the various first kind equations together with
results concerning existence and uniqueness of the solution. We apply (§ 3) the same
general numerical method to the various integral equations and obtain various
systems of linear algebraic equations; by means of the condition number of the
corresponding rectangular matrices we carry out a numerical comparison of the
various integral equations, and recommend two of them. Finally we present (§ 4)
a survey of known methods and a simple method which can be applied to solve the
recommended integral equations.

2. THE INTEGRAL EQUATIONS

In principle two types of methods are available for derivation of the first kind
integral equations for the problem (1-1), viz. via single layer potentials, i.e., the
indirect formulation, (§ 2.1) and via Green’s third identity, i.e., the direct formula-
tion, (§ 2.2). Besides the boundary curve I" B it is convenient to introduce an auxiliary
curve I', which is placed outside I'®, cf. (§2.1.2) & (§2.2.2).

2.1. Single layer potentials

Solutions to Laplace’s equation (1-1a) are expressed as

(24) i) =o-¢

r

In|P — Q| 2(Q)dsy,
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where |P — Q| is the distance between the two points P and @, with Q placed on the
source curve I'S, along which an integration is carried out with respect to the arc
length s. The function ©(Q) (source density) and the scalar w are at disposal; when
they are determined, sec below, a function  can be computed, and it may satisfy

(1-1).
2.1.1. Without auxiliary curve

In (2-1) we put I'® := I'” and w := 0 and require that | satisfy the boundary
condition (1-1b) when P — I'®. This leads to the integral equation [J1; Eq. 4.3.1]

(2-2) - § Bln |P— 0| 2(Q)dsq = f(P); P,QeI”,

with the unknown function Q(Q). For certain curves I'? the solution Q(Q) does not
exist, nor is it unique [J1; § 4.3]. When in (2-1) we do not put w := 0, the equation
(2-2) can be replaced by the following system (2-3) (cf. [H3], [S4]), in which we
here have introduced the scalars W and K, because they are important for the
numerical solution (§ 3),

(2-3a) - 4; In|P — Q| 2(Q)dsy + Kg =f(P); P,Qel®”,
(2-3b) W§ Q(Q)dsg = Wa; QerI®.

Here the unknown quantities are the function 2(Q) and the scalar w, while the known
quantities are the function f(P) and the scalar «. When f and o are given then Q
and o exist and are unique [H3; Th. 3]. When Q and w have been determined, they
can be inserted in (2-1) and the solution to (1-1) can be computed.

2.1.2. With auxiliary curve

In (2-1) we put I’ := I'* and o := 0 and require that y satisfy the boundary
condition (1-1b) when P — I'®. This leads to the integral equation

(2-4) - E‘;ﬂln |P— Q| 2(Q)dsy = f(P); Pel®, QerI*,

with the unknown function ©(Q). It can be inserted in (2-1) and a function § can be
computed. The solution 2(Q) may not exist [C10; Appendix A.1, Method I] and for
certain curves I'* it is not unique [C10; Appendix A.2, Method I]. (Despite the defi-
ciences connected with (2-4) it has been used in a number of cases: [B1], [D1],
[M1], [M3]; see the references in [C10; § 3.1] for other problems than (1-1).) In
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analogy with (2-2) & (2-3) the equation (2-4) can be replaced by the following
system (2-5), in which we here have introduced the scalars W and K, because they
are important for the numerical solution (§ 3),

(2-50) -3€ In|P - 0| Q(Q)ds + K £ = (P); Per”, Qert,
ra

(2-5b) W§ QQ)dsg = Wo; Qerl*.
Ir4

Here the unknown quantities are 2(Q) and w. It may be questioned whether Q and w
exist and are unique. If Q and w have been determined, they can be inserted in (2-1)
and a function ¥ can be computed.

2.2. Green’s third identity

When ¥ and 0y/dn, are both known on I'?, where 0/dn, denotes differentiation
in the direction of the inward normal to I'® at the point Q, then Green’s third identity
[J1; §4.4]

—§ 2 [P — 0| ¥(Q)dsg +3€ In|P - Q| -a—lll(Q)dsQ .
re anQ B BnQ

(2-62) =2ny(P); P inside I'®
(2-6b) =7 y(P); PonI®
(2-6¢) =0 y(P); P outside I'*,

can be used primarily to compute 1//(P) for P inside I'?; for P on I'® or P outside I'?
the value of the integral in (2-6) is still known. In the present case only ¥ is known
on I'%, cf. (1-1b), and 8y[dny must be found before (2-6a) can provide the sought
value of  inside I'5.

2.2.1. Without auxiliary curve

In (2-6) we insert the boundary condition (1-1b) and obtain from (2-6b), i.e. for P
on I'?, an integral equation [J1; Eq. 4.4.4]

(2-7a) —§ In|P— Q| Q)dsy =T {f}; P,QelI®,

where "

(2-76)  Ts{f} = —nf(P) - ﬁﬁw i—an |P— 0|f(Q)dsg; P,Qerl®,

is an integral transformation of f, where the curve on which P is placed is explicitly
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indicated by the index B. The unknown of the integral equation is Q(Q). A solution
exists because dy|[dn, is a possible solution. However, Q(Q) is not unique for all |
curves I'® (see [C2], [C4], [J1; § 4.5]), but the uniqueness is assured if Q(Q) further-
more has to satisfy the following supplementary condition (2-7c) (see [C2; Eq. 7],
[C4; Eq. 6.9], [J1; §4.5]), in which we here have introduced the scalar W, because
it is important for the numerical solution (§ 3),

(2-7¢) WSQ Q(Q)dsy =0; Qerl®,
rBs

The possible solution dy//dng, also satisfies this condition.

A term o, with @ = 0, can be added to the left hand side of (2-7a) whereby we
get the following system (2-8), in which we here have introduced the scalars Wand K,
because they are important for the numerical solution (§ 3),

(2-8a) —f#; 1n|P—-Q|Q(Q)dsQ+K;‘—<’=9*,,{f}; P,Qel®,
I‘B

(2-8b) Wff Q(Q)dsg =0; QerI®?,
re

which has a strong resemblance with (2-3). A solution, Q and o, exist, because 2(Q) =
= 0y[dng and = 0 are possible; this solution is unique. When Q has been deter-
mined, it can be inserted in (2-6a) and the solution to (1-1) can be computed.

2.2.2. With auxiliary curve

In (2-6) we insert the boundary condition (1-1b) and obtain from (2-6c), i.e. for P
outside I'®, and P placed on I'4, an integral equation, called Kupradze’s Functional
Equation, [K1], [K2] and the references in [C5; Footnote 11], [C8], [C10; § 3.2,
11 1.1] (see the references in [C10; § 3.2] for other problems than (1-1))

(2-9a) —4; In|P— Q| QQ)dse = T, {f}; Pel*, Qerl”,
rs
where
(2-9b) Jq{f}z—jﬁ ——a-ln|P—Q|f(Q)dsQ; Per*, Qer®,
,—aanQ .

is an integral transformation of f, where the curve on which P is placed is explicitly
indicated by the index A. The unknown of the integral equation is ©(Q). A solution
Q(Q) exists because dy/dn, is a possible solution. However, (@) is not unique for
all curves I'', I'® (see [C3], [C5]). but the uniqueness is assured if Q(Q) furthermore
has to satisfy the following supplementary condition (2-9¢c) (see [C3; Eq. 4], [CS;

289



Eq. 4.10] and [K2; p. 746, Footnote]), in which we here have introduced the scalar W,
because it is important for the numerical solution (§ 3),

(2-9¢) W§ Q(Q)dsq =0; QerI®.
I‘B

The possible solution (Q) = dy/dn, also satisfies this condition (2-9c), which is
identical with (2-7c), while (2-9a) is different from (2-7a).

A term o can be added to the left hand side of (2-9a) whereby we get the following
system (2-10), in which we here have introduced the scalars W and K, because they
are important for the numerical solution (§ 3),

(2-]03) —§ 1n|P—Q|Q(Q)dsQ+K§=ﬂ’A{f}; Pel*, Qer®,
rB

(2-10b) WSE Q(0)dsg = 0; Qel®.
re .

This system has some resemblance with (2-8). A solution, Q and o, exist, because
Q(Q) = dy[dny and w = 0 are possible; this solution is unique. When Q has been
determined, it can be inserted in (2-6a) and the solution to (1-1) can be computed.

3. NUMERICAL COMPARISON

Of the various first kind equations presented (§ 2) we consider here the systems
(2-3) (2-5) (2-7) (2-8) (2-9) and (2-10). Except for (2-5) they are known to have
a unique solution. For the numerical solution of the systems we present (§ 3.1)
a general method which in all cases leads to systems of linear algebraic equations
having a rectangular (and sometimes a square) matrix of coefficients. Partly based
on the 2-norm condition number derived from the singular values of the cor-
responding matrix, suitable values for Wand K are determined (§ 3.2), and the various
systems of integral equations are discussed (§ 3.3), leading to the conclusion that the
systems (2-3) and (2-7) are preferable. For these two systems a simpler numerical
method is presented (§ 4.2).

3.1. A general method

It is common to all the above systems of equations that they contain products of
the unknown function Q and the known functions In |P — Q| or 1 integrated along
a curve, the integration curve, here denoted I', with Q € I', and that the value of the
integral is to be evaluated at points on a curve, the collocation curve, here denoted I,
with P = Q e I". The curve I' may coincide with I', or the curve I’ may be placed
inside or outside I'. The relation among the various curves are (with I'* outside I'®):
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§211: T =T [ =1"

§212:Ir=Ir*, T =r1"

§221.: ' =I5 I =r1"

§222: T =15 T =r4
The integral with the factor In |P - QI becomes

L ~ Qel

(1) 70) - - [ 1n10 - ola(@)awe, {3
with source density Q(Q). The value of Q is sought at the collocation points 0 := 0,
0. ..., Oy, with Q;el'; i =1,2,...,N. The curve I is divided into N small sec-
tions I';; j =1,2,...,N, by the interval points Qy;2, @32, ..., @n-1;2 Oon I; ie.,
I'; = Q;_1,2Q;+12- Within each section I'; a nodal point Q;is chosen. The section I';
is approximated by the union of two straight lines Q;_1,,Q; and Q;0;, />, Which
is denoted by I'; and has the length ;. We assume the unknown to be a constant,
denoted by Q;, along I';. We are therefore led to integrate the kernel —In |Q, - Q|;
0, e I’ with respect to the arc length s along I’ ;» with Q € I';. In general this integral
cannot be worked out in closed form. Therefore the integration is performed with Q
along I'; in order to get an approximation

— ~ _ 0.el’ i=12,..,N
e
This integral can be expressed in closed form by means of the lengths involved
[C17; Appendix B (with corrections)]. The elements {A;;} are combined to form
the matrix A. The element A;; computed from (3-2) may be expressed as A,; = h;a,;,
with a;; = —In|Q;, — 0%"]; 0;e I, Q' e I';, where Q" is a point whose position
depends in general on Q. However, the value of @;; is not computed using 05, but
simply as

(3-3) 3, = Ayh)~",
where A ; is determined from (3-2).

The integrals in (2-2) (2-3a) (2-4) (2-5a) (2-7a) (2-8a) (2-9a) and (2-10a) are ap-
proximated by the sums

(3-4a)

A0

ijej s

1=

j=

and similarly the integrals in (2-3b) (2-5b) (2-7c) (2-8b) (2-9¢) and (2-10b) are ap-
proximated by the sum

o =

(3-4b) R,

1

]

J

Hereby it is possible to replace the various integral equations by systems of linear
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algebraic equations with a square or rectangular matrix B and with suitable
unknowns:

Equations (2-2) and (2-4):
Matrix
(3-52)

=
It
>l

unknowns {Q;}}.
Equations (2-7) and (2-9):
Matrix

=
I

(3-5b)

unknowns {Q}).

Equations (2-3) (2-5) (2-8) and (2-10):

Matrix
| K
_ A I
(3'5C) B:= K >
Why..Why| 0

unknowns {Q;}} and w/K.
However, it is advantageous to introduce new unknowns

(3-6) ot = a8,

whereby the matrix a, cf. (3-3), is introduced instead of A. This replacement cor-
responds to a column-scaling') of the first N columns of the matrices B in (3-5).
Compared with A the matrix a is less non-symmetric because it does not contain the
factors {h;}.

Hereby it is again possible to replace the various integral equations by systems.
of linear algebraic equations with a square or rectangular matrix b and with suitable
unknowns:

Equations (2-2) and (2-4):

Matrix

(3-7a)

unknowns {Q}}7.

=1
I
]

1y Dr. Per Christian Hansen and Professor Dr. Hans Bruun Nielsen, Institute for Numerical
Analysis, The Technical University of Denmark, are thanked for helpful discussions.
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Equations (2-7) and (2-9):
Matrix

1]

(3-7b) b=

unknowns {@}}).
Equations (2-3) (2-5) (2-8) and (2-10):
Matrix
’ K

K
W..W|o
unknowns {Q}} and w/K.

The computation of the right hand side of the equations (2-7a) (2-8a) (2-9a) and
(2-10a) is not discussed here; for (2-9a) and (2-10a), see [C5], [C7], [C8].

(3-7¢) b:= ’ 2

5

3.2. Determination of " and K

The purpose now is to choose among the various systems of integral equations
presented above (§ 2), and this is done by carrying out a comparison of the various
systems of linear algebraic equations having the matrices (3-5) or (3-7). Before that can
be done suitable values of W and K have to be determined. The determination of W
and K, and the choice among the various matrices, is performed by applying the
concept condition number, K, of a matrix, which is defined in terms of the singular
values {G;} of the matrix, as [Y1; p. 766 & p. 811]

(3-8) K= miax {6i}/miin {6;}.

The determination of suitable values of W for (3-5b) and of W and K for (3-5c)
is lengthy (in particular for (3-5¢)). The results obtained can be found in the following
references:

Matrix (3-5b), Equation (2-7): [C11]
Matrix (3-5b), Equation (2-9): [C8]
Matrix (3-5¢), Equation (2-3): [C13] [C15] [W2]
Matrix (3-5¢), Equation (2-5): [C12]
The analysis for the matrices (3-5b & c) is here carried over to the matrices (3-7b & c)

with some modifications and the results obtained are presented below. It is here
necessary to apply the concept of the external conformal radius of a curve C,
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which we denote ECR{C}, [L2; p. 172]. We introduce

(3-9a, b) d = ECR{I'}, d=ECR{l}
(3-10a, b) R = MAX(d, a), r = MIN(d, d)
(3-11) y =R[r=1,

and we find:

Matrix (3-7a): & = oo for R ~ 1, indicating that the corresponding systems of
linear algebraic equations do not have a unique solution, because the corresponding
integral equations do not have a unique solution.

Matrix (3-7b): For both curves I' and I a geometrical scaling is performed by
multiplying all length by the same positive factor, in order to obtain that R =~ 1.
Suitable values for W are

1/2
(3-12) W=IXL.L; 1<y N
2wy 2

IIA
IIA

leading to a minimal value of &, which can be approximated (cf. [C15; Appendix A])
by the function

(3-13a) K=g¢m*hnmﬂ
where

(3-13b) 1 £ F(R,y) £ V(1 + (2vInR)?)
for R = 1.

Matrix (3-7c): As above, a geometrical scaling is performed, so that R ~ 1.
Suitable values for W and K are

Nx/z
(3-14a, b) W=K, W=—
2y
leading to a minimal value of &, which can be approximated (cf. [C15; Appendix A])
by the function

(3-15) K = %y(m”_‘ (1 +y|R = 1)

for R ~ 1.

Some of the above results, which are stated here for general curves I and I, are
obtained by generalizing results derived for two concentric circles C and C, with
radii ¢ and ¢, respectively, in which case d = ¢ and d = ¢. In particular we have
used the fact the integral operator leading to the matrix A has eigenvalues which
contain a factor ¢ (cf. [C12; Eq. 3-5]), while the column-scaled matrix @ can be con-
sidered as being derived from an integral operator with eigenvalues

(3-16a) Jo= -NIR,
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(3-16b) Im= = m=1,2,...,
where R and y are defined in (3-10), (3-11).

3.3. Discussion of the various equations

We are now able to choose among the various integral equations, which is done
by choosing among the various systems of linear algebraic equations having the
matrices (3-5) and (3-7):

1) The matrices (3-5) may be more non-symmetric than (3-7), because they contain
the factors {h;} and the systems of linear algebraic equations corresponding to (3-7)
can probably be solved more accurately than the systems of linear algebraic
equations corresponding to (3-5). Therefore (3-5) are left out of consideration.

2) The matrices (3-5a) and (3-7a) have & = oo, for a certain geometry characterized
by MAX(d,d) ~ 1 (cf. (3-16a) and (3-10a); [C10; § 7]), indicating that the cor-
responding systems of linear algebraic equations do not have a unique solution.
Therefore (3-5a) and (3-7a) are left out of consideration.

3) The matrices (3-5b) and (3-7b) are not square indicating that the corresponding
systems of linear algebraic equations are not so simple to solve as if the matrix of
the systems were square. Therefore (3-5b) and (3-7b) are left out of consideration.

4) We are now left with the matrix (3-7¢), which is derived from integral equations
with a term . They are now to be discussed.

When the curves I' and [ coincide then —In|Q — Q| - o when Q — Q. This
unbounded kernel may make it tempting to use non-coinciding curves so that
—In IQ - Q| is bounded, so that standard routines/-methods for handling bounded
integrands could be invoked. However, if I and I’ are close to each other, but not
coinciding, the function — ln] 0 - Q| is ““peaked”” making it difficult to apply a general
purpose integration routine. Therefore it could apparently seem better to have the
curves I and I’ well separated. But this separation leads to other difficulties, which

* arise from the fact that the condition number of the matrices (3-7b) and (3-7c)
increases drastically when the two curves are moved away from each other, as can
be seen from (3-13) and (3-15), where y > 1 indicates separated curves.

When the condition number of a matrix is increased the error of the computed
solution of the corresponding system of linear algebraic equations may be increased.
When the distance between the two curves is increased it is possible that the error
of other parts of the computation will decrease. It is therefore not impossible that an
optimal accuracy is obtained for a certain small distance between the curves. However,
here we chose to strive at the smallest possible condition number.

Using the criterion that a small condition number is preferable, we can conclude
that it is best to use y = 1, i.e., to use the equations where I' and I’ coincide, i.e., to
use the equations where an auxiliary curve I'4, outside I'Z, is not used. This means,

295



¢.g., that Kupradze's Functional Equations (§2.2.2) are not to be recommended.
Nor are to be recommended the equations based on single layer potentials (§ 2.1.2);
this also because uniqueness and existence of the solution may be questioned.

The conclusion of the above reasoning is that we only consider the systems without
an auxiliary curve I'* and with an extra scalar unknown w; i.e., only the systems
(2-3) and (2-8). The numerical effort needed for solving the two systems is nearly
the same. Therefore the choice between the two systems is primarily based upon
which unknown quantities are best suited for the subsequent computation, or which
unknown quantities have the right physical significance, cf. § 1.

4. NUMERICAL METHODS

In §3.3 it is recommended to use such integral equations where the auxiliary
curve I' is not used, i.e., I' = I". The method of § 3.1 for constructing the matrix a
is applicable both when I' + I" and when I' = I'. Below we mention some methods
for solving the equations with matrices (2-3) and (2-8) in the case when I' = r:
a survey of some of the methods (§ 4.1) and, as an example, a very simple method

(§4.2).
4.1. Survey of some known methods

The methods can be divided into (1) collocation methods, (2) Galerkin methods,
and (3) other methods. However, within the framework of pseudo-differential
operators the variational formulation provides a unifying analysis of Galerkin —
and collocation methods. A detailed analysis which pertains to the first kind integral
equations in question (and to other equations) is carried out in [A6], [A7], [S1],
while [WZ] gives a very detailed and thorough survey of boundary integral equations
on smooth closed surfaces or curves with numerous references. Methods for solving
the various integral equations of potential theory are available: A collection is
deposited at VINITI, 1985 [M4]; several are mentioned in [M5], and some of them
may apply to the first kind equations considered here.

1) Collocation methods are convenient to use, because of their simplicity (the
method of § 3.1 is of this type). They have been used in many cases, and some of the
first applications are referred to in [A1], [C1]. A variant of the method, which is
very easy to use, has been proposed in [C1] and compared with a popular variant,
and found to be the best of the two methods. With some modifications the easy
method is used in § 4.2. No genuine analysis of error or convergence was performed
in [C1]. Formulas similar to the easy ones in [C1] have been derived in [A1], [A2]
where also an analysis of error and convergence is carried out. A collocation method
with interpolation is presented and analyzed in [V1], [V2].
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2) Galerkin methods can give accurate results at the expence of higher computa-
tional cost. They have been used in a number of cases and some of the first applica-
tions are referred to in [H4]. The method has been analyzed with respect to error
and convergence [H4], stability and optimal choice of the mesh size [H2]. Galerkin
methods can be formulated as a Galerkin-Bubnow method (with equal test and trial
spaces) [M2], and as a Galerkin-Petrov method (with different test and trial spaces)
[A5], [R2]. They can also be formulated without appeal to coercivity leading to
a method which can be used to handle corners, cusps, or open arcs [S2], [S3].
Galerkin methods produce systems of linear algebraic equations, which can be ana-
lyzed by singular value decomposition, whereby the integral equations can be
analyzed [H1].

3) The convenience of the collocation method and the accuracy of the Galerkin
method are combined in the Galerkin-collocation method, derived in [H5] and used
in several cases in [H6]. The matrix hereby obtained [H6; Appendix] has also the
form (3-7c), and the system can be solved by using Gaussian elimination (after the
modifications of [C15] have been performed), but the system can also be solved
by using iterative techniques after a suitable preconditioning [R1]. Comparison
between the collocation method and the Galerkin-collocation method has been
carried out [A3], [A4], [H5; p. 126]. Because the integral equations are defined
on a closed curve it is possible to derive an accurate and fast numerical scheme using
Fourier series [L1].

4.2. A simple collocation method

For the construction of the matrix @ a simple method can be derived, cf. [C1],
[C15; Eq. 2-7]:

The arc length s in the integrals is replaced by a regular 1-periodic parametric
representation, with a parameter ¢, where t* and ¢ correspond to P and Q, respectively.
The distance ¢ is introduced, and it is defined by o(t*,t) := |P — Q|. New unknown
functions are introduced, cf. (3-6),

' (4-1a,b) () = Q(Q):—g, 3*(t) : = % aw.
Using equally spaced collocation- and integration points,
(4-2a) t*: =G - 1)IN; i=12, ...,‘N,
(4-2b) : tt t;i:=(G-1/N; j=12,...,N,

we can replace the left hand side of (2-3) and (2-8) by a system of linear algebraic
equations having a matrix of the same form as (3-7¢). The elements of & are computed
as follows, provided N is even,

(4-3a) : a;; = —In Q(tiy tj) ; PTF]
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i 3 - , (ds/d1);
(4-3b) ., ( Lk d)(N))
where

(4-30) $(N) = In [nN (M)] L

(NJ2)! 3N

Following [C15] the geometry of the boundary curve I'® is scaled so that d =
= ECR{I®} is near one. The values of Wand K to be used are, cf. (3-14),

(4-4a, b) W=K=1N'"

giving the condition number &, which can be approximated (cf. [C15; Appendix A])
by the function

(4-5) leg(l—i—]d—]!).

5. CONCLUSION

We have investigated several integral equations of the first kind for the solution
of the two-dimensional Dirichlet boundary value problem, and we recommend
the equations (2-3) and (2-8). For the numerical solution we propose a simple col-
location method (§ 4.2).
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Souhrn

INTEGRALNI ROVNICE PRVNIHO DRUHU PRO NUMERICKE RESENI
ROVINNEHO DIRICHLETOVA PROBLEMU

SOREN CHRISTIANSEN

Autor uvadi v jednotné form& nékolik integralnich rovnic prvniho druhu pro YeSeni dvou-
rozmé&rné vnitfni Dirichletovy okrajové tlohy. Obecnd numerickd kolokadni metoda je apliko-
vana na ruazné rovnice, pfi éemZ jsou porovnavany ruzné integralni rovnice a dvé z nich jsou
doporuceny. Je podan prehled ruznych numerickych metod a uvedena jednoducha metoda nu-
merického reSeni doporuenych integralnich rovnic.

hY

Peslome

WHTEIPAJIBHBIE YPABHEHUS ITEPBOI'O POJA 1JIAA YU CJIEHHOI'O
PEIIEHUSA 3AJAYU OVPUXJIE B INIOCKOCTH

S@REN CHRISTIANSEN

ABTOp TIPUBOLWT B €IMHOW (OpMe HCCKOJBLKO MHTETPajibHbIX ypPaBHEHVIH DCPEOTO poaa st
pellenys ABYMEPHOM BHY TpeHHEH kpaeBoil 3anaun Jlupuxie. OOl YHCT e HED /i M€T 0] KOJUIOKAUMH
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NPUMEHACTCH K DPa3JIMYHbIM YPAaBHEHMSIM, IPHYEM CPAaBHMBAIOTCA PAa3JIMYHbi€ WHTEIPaJIbHBIE
YPaBHEHUSl U 1Ba M3 HUX peKoMmeHAyrTcs. IlpuBoauTca 0030p pas3iIMyHBIX YHMCIEHHBIX METOJIOB
M npejjaraeTcs NpocTOH METOH YHCJIEHHOTO PEeIeHUsl PEKOMEHIOBAHHBIX HMHTEIpPajlbHBIX YypaB-
HEHHM. :
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