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Summc ry. The author investigates non ergodic versions of several well known limit theorems
for strictly stationary processes. In some cases, the assumptions which are given with respect
to general invariant measure, guarantee the validity of the theorem with respect to ergodic
components of the measure. In other cases, the limit theorem can fail for all ergodic components,
while for the original invariant measure it holds.
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1. FACTORS AND EXISTENCE OF AN ERGODIC DECOMPOSITION

Let (2, 7, i) be a probability space, where <7 is a g-algebra of subsets of Q and p
is a probability measure on (Q, 7). Tis a 1-1 bimeasurable mapping of Q onto
itself, uT~' = pu. The quadruple (2, o, T, i) is called a dynamical system. The
collection 5 = {A € s/: TA = A} is a o-algebra. If u(A) = 0 or u(4) = 1 for each
A€ #, we say that p is ergodic. If there exists a family (m,,; w € Q) of regular condi-
tional probabilitics (r.c.p.) induced by .# with respect to u, and m, are ergodic
probability measures, we say that (m,; w € Q) is an ergodic decomposition of .

Let f be a measurable function; the process {f . T') is (strictly) stationary. We shall
deal with limit theorems for such processes. Assumptions of our theorems can be
expressed in terms of a dynamical system (@, %, T, ) where ¥ < </ is a separable
c-algebra, T™'% = © = T% (see Section 3); we say that ¥ is separable if these exists
a countable collection of sets generating %. (Correctly, we should use the restriction
w6 of ponto ¢ intsead of u.) For a separable c-algebra ¢, there exists a function g
which generates ¢. For example, we can put g = (1/3") , where {4, 4, ...}

k=1

generates 4. By y we denote the mapping of Q into R” defined by
(Yo); = g(T'w), ieZ.
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Let 47 be the Borel g-algebra on R” and S: R* — R” be defined by (S(x)); = x4y,
i€ Z. Thesets A;; = {x e R”: x; eI}, where I is an interval in R and i € Z, generate
the g-algebra #%; the sets = '(A; ), where I is an interval, generate 4. We have
S¥4; ; = A, for k€ Z. Hence, ¥ is a measurable mapping, Y~ '(#%) = %, and
S is a 1-1 bimeasurable mapping of R* onto itself. Moreover,

Sy =yoT.

From this identity we can easily derive that v = uy~' is an S-invariant measure,
i.e. vS™! = v. Thus, (R? %%, S, v) is a dynamical system. In the language of ergodic
theory (see [1]) we say that it is a factor of (2, &, T, p). For a #-measurable function
f there exists a #”-measurable function f’ such that

(1) f=1 .

This can be easily seen if f is a simple function. For f 2 0, (1) follows from the fact
that there exists a monotone sequence of ¢-measurable simple functions converging
to f; the general function f can be expressed as a difference of two nonnegative
functions. For a more detailed proof see [19].

In virtue of (1), we can investiagte (f’ o S') instead of (f o T%). As we shall see
in Section 3, the assumptions of the limit theorems which we use here, are preserved
in (R? %%, S, v). The advantage of the dynamical system (R” %7, S,v) is in the
existence of an ergodic decomposition of the measure v. Let #’ denote the o-algebra
of all A € A% such that A = SA.

Proposition 1. There exists a family (m,; x € R) of r.c.p. induced by JF' with
respect to v where each m, is an S-invariant and ergodic probability measure.

The existence of a family of r.c.p. is a well known fact, see [12]. The invariance
and the ergodicity of the measures m, is proved in [16].
Let 4 be a countable algebra generating %. Put

D, = {yeR*:(1/n) Y x(S’y) > m(A) foreach Ae%}.
Ji=1

Each D, is ' — (hence #* —) measurable and following the Birkhoff ergodic
theorem (see [1]), m,(D,) = 1. Fora.e. (1) € Q we thus have y/(w) € D, for some x.
The realization of the process (f« T) at o can be described in terms of a dynamical
system (D, #* N D,, S|D,, m,[D,) where #* N D, = {A 0 D,: A€ #*}, S|D,isthe
restriction of S onto D,, and m,/D, is the restriction of m, onto %% n D,; the
measure m,/D, is ergodic.

However, there need not exist any ergodic decomposition of the measure u, even
if o is a separable o-algebra. Each y~'(D,) is #-measurable and T/}~ '(D,) is
a 1-1 mapping of ¥~ !(D,) onto itself, bimeasurable with respect to &/ n y~'(D,).
Nevertheless, there need not exist any invariant probability measure on

(b~ 'D,, o A Y~ 'D,)) (see [20]).
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The existence of the measures m, can be derived using the Krylov-Bogoliubov
theory without any reference to the measure g, see [13].

2. MAIN THEOREMS

We shall present several limit theorems now. Theorems 1A —S5A are given with
proofs in [7] and all of them use the assumption that u is an ergodic probability
measure. Theorems 1B— 5B are generalizations of the previous ones to an arbitrary
T-invariant probability measure u (i.e. such that uT~! = p). In Theorems 1C—5C
we suppose that an ergodic decomposition (m,; w € Q) of measure u exists. The
measures m,, are refered to as the ergodic components of u. We shall deal with the
problem whether — with assumptions of Theorems 1B—5B fulfilled — the limit
theorems which hold with respect to the measure p (due to Theorems 1B—5B) hold
with respect to its ergodic components as well.

First, let us introduce several definitions and the necessary notation. Let A be
a probability measure on (Q, &/) and let 2 < o/ be a g-algebra. By L'(2, 1), [X(2, 1)
we denote respectively the Banach and the Hilbert space of all measurable functions
f on @ for which [|f| dA < oo, [f? dA < co and there exists a Z-measurable function
g such that f = g a.s. (1); functions which are equal a.s. (1) are considered equal.
We shall sometimes write L'(2), I*(2) respectively, instead of L'(2, u), I*(2, p).
A c-algebra M < o is said to be (T)-invariant if .# < T~'.#. The orthogonal
projection onto [X(T~'~'.#/) e I>(T~'.#) is denoted by P; and called the difference
projection operator (d.p.o.) generated by T '# in I*(o/, n), i€ Z; notice that
for f e I*(s7),

Pf=E(f| T ") —E(f| T " tt) as. (u).

In I*((s#), m,) where m,, is an ergodic component of g, the invariant o-algebra
T~ 4 generates the d.p.o. P.
In the sequel, we shall use the notation
n ° Tj
s,,(f)=zf , o n=1,2,...
j=1 \/n
Theorem i.A. (P. Billingsley, I. A. Ibragimov) Let u be an ergodic measure and
let (fo T%) be a sequence of square integrable martingale differences. Then the
measures Us, 1(f) weakly converge to a distribution with the characteristic function
exp (—10? t?), where o* = Ef*.

Theorem 1.A is one of the first limit theorems for strictly stationary (not indepen-
dent) processes. It was proved independently by P. Billingsley ([2]) in 1961 and by
I. A. Ibragimov ([11]) in 1963.

Theorem 1.B. (C. C. Heyde) Let (fo T") be a sequence of square integrable
martingale differences. Then the measures us, '(f) weakly converge to a distribu-
tion with the characteristic function E exp (—4n? t?), where n* = E(f* | #) a.s. (n).

353



Theorem 1.B is a corollary to Theorem 3.2 from [7], as noticed in the fifth chapter
of [7].

Theorem 1.C. Let an ergodic decomposition (m,; w € Q) of the measure u exist,
and let {f o T') be a sequence of square integrable martingale differences. Then
for a.e. (1) measure m,,, the measures m,s, '(f) weakly converge to a distribution
with the characteristic function exp (—in*(w) t?).

Theorem 2.A. (M. I. Gordin) Let pu be an ergodic measure and let Q be the set
of all g € () for which an invariant o-algebra .4 < s/ and a positive integer n
such that g e (T ") © LX(T"M#) exist.

If fel*(<f)and
®) inf lim sup Es;(f — g) = 0,

geQ n—o

then there exists a limit ¢ = lim Esf(f), and the measures us, '(f) weakly con-

n—o

verge to a distribution with the characteristic function exp ('- 1o? t2).

Theorem 2.A was given by M. I. Gordin in 1969 (see [5]).

Theorem 2.B. (G. K. Eagleson, D. Volny) Let fe [*(</) satisfy Condition (2).
Then there exists a limit (in the sense of the norm of L'(£)) n* = lim E(s2(f) | #),

and the measures us, '(f) weakly converge to a distribution with the characteristic
Sunction E exp { —1n? t?).

In [3] G. K. Eagleson gave a theorem claiming that if f € [?(s7) satisfies Condition
(2), then there exists an .#-measurable function #, n > 0 a.s. (1), and the measures
us, '(f[n) weakly converge to the standard normal distribution N(0, 1). Tt is a matter
of fact, however, that without additional assumptions, the inequality # > 0 a.s. (x)
is not guaranteed. Theorem 2.B which is an improvement of Eagleson’s contribution
(also in calculating #?), was given in [14], [15]. The proof was done by a technique
different from that used by G. K. Eagleson.

Theorem 2.C. There exists a dynamical system (Q, o, T, 1) and f e [*(/) such
that an ergodic decomposition (m,; w € Q) of the measure u exists, the function f
satisfies Condition (2), and for each m,, the sequence m,s; ' (f) has at least two
different weak limit points.

Theorem 3.A. (C. C. Heyde) Let the measure u be ergodic, let Ml = o/ be an
invariant g-algebra, and P, be the difference projection operator generated by M .
If fe 2(),

(3) the sum g =Y Po(foT) convergesin I*(sZ),

ieZ
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and
(4) Eg® = lim sup Es;(f),
) n-—»oo
then the measures ys,,"(f) weakly converge to a distribution with the characteristic
Sfunction exp (—10” t?).

This theorem was given by C. C. Heyde in 1974, see [9].

Theorem 3.B. Let f € I*(Z), and let Conditions (3),(4) hold. Then E(s;(f)| &) =’

in L'(s7), and the measures us, '(f) weakly converge to a distribution with the
characteristic function Eexp (—1n* ).

Theorem 3.C. There exists a dynamical system (Q, o7, T, p) and fe L*(</) such
that an ergodic decomposition (m,; we Q) of the measure u exists, [ satisfies
Conditions (3) and (4), and the sequence m,s, '(f) has at least two different weak
limit points for each m,,.

Theorem 4.A. (M. 1. Gordin) Let the measure u be ergodic and let f be an inte-
grable function (nol necessarily square integrable). If

() S {E|E(f| T40)| + E|f — E(F| T} < o0
: k=0
and
(6) lim sup (1//n) E|S,| = 2, where S, =3 foT,
n= o j=1

then lim (l/’\/"n) E|S,,| = ] exists for some 1,0 < 4 < o0, and the measures ys,fl(f)
n= o0

weakly converge to a distribution with the characteristic function exp (—3n 122 t?).

Theorem 4.A was presented by M. I. Gordin at the Vilnius Conference on Prob-
ability and Statistics in 1973. Proceedings from the conference with the original
Gordin’s proof seem to be hardly available outside the USSR. The theorem is quoted

“in [7]; the proof from [7] is corrected in [4].

Theorem 4.B. Let f be an integrable function and let (5), (6) hold, or

() 3 (E(EGIT] | )+ B BT[] < 0 as (),
and
(8) limsup (1//n) E(|S,| | #) < 0 a.s. (1) .

n—oo

Then there exists a limit n = lim (1/\/n) E(|S,| | #) in L'(a/), and the measures

ps,,"’(f) weakly converge to a distribution with the characteristic function
E exp (—4nin® ).
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Theorem 4.C. Let an ergodic decomposition (mw; w € Q) of the measure u exist,
and let fe L'(s, W) satisfy the assumption of Theorem 4.B. Then for almost
all (u) m, we have (1/\/n)E, (|S.||#) - n(w) in L'(s£, m,), and the measures
m, s,,_l(f) weakly converge to a distribution with the characteristic function
exp (—1nn*(w) ?). ’

Eventually, we shall deal with Heyde’s functional limit theorem. Let us abbreviate
X,=f-T", S,=)YX;
ji=1

(as in Theorem 4.A), and o, = E(S; | #). Let g = sup {n: o, < e}. Notice that for
u ergodic the functions ¢, and g are constant almost surely. In Theorem 5.A we shall
consider them as numbers.

We define

0,(t) = 0, (Sx + (nt — k) X;sy) for o7 >0,
= 0 otherwise ,
k=nt=k+1, k=0,1,...,n—1;
m(t) = [L6)] " (S + (nt — k) Xpyq) if n>g,
= 0 otherwise ,
k<snt<k+1, k=0,1,....,n—1, where ((t)= (2tloglogt)'/?,
e<t< .

The functions 6, and 7, belong to C = C[0, 1], the space of continuous functions
on [0, 1]. By W we denote the Wiener measure on C as well as the standard Brownian
motion process. Let K be the set of all absolutely continuous t € C such that 7(0) = 0,
fo [(*'(t)]* dt < 1 where 7’ denotes the derivative of t (which is determined almost
everywhere with respect to the Lebesgue measure).

Theorem 5.A. (C. C. Heyde) Let the measure u be ergodic, let the c-algebra JM
and the operator P, be defined as in Theorem 3.A. Let f € L'(</) and x; = P(f - T"),
leZ. If

9) E(f| M) =f as. (), E(f|M_4)=0 as. (),
where M _, = o T'M and M, is the smallest g-algebra containing all T'4, and

(10) Z {lim sup E(Y x;)* + limsup E( Y x_,)*} < o0,
m=1 n— o l=m n— o I=m
then lim o,[n'/* = ¢ exists and 0 < ¢ < co0. If o > 0, then the measures pf, "

weakly converge to W. Also, g < oo, {n,:n = 1,2,...} is relatively compact, and
the set of its limit points coincides with K almost surely.
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Theorem 5.B. Let f € I*(s/) and let either (9), (10) or (9), (11) hold;

(11) "2 {11m sup E(( z x)? | ) + 11m sup E((Z x_)? | )} < w0 aws. (4)-

I=m

Then lim o,[n'* = ¢ exists with ¢ an S-measurable function, 0 < ¢ < c0. If
o > 0 a.s. (), then the measures p0, ' weakly converge to W. Also, g < oo a.s. (u),
{n;n=1,2,...} is relatively compact, and the set of its limit points coincides
with K a.s. (u).

Theorem 5.C. Let (m,; @ € Q) be an ergodic decomposition of p, f e [*(«£), and
let the assumptions of Theorem 5.B. be fulfilled. Then for almost all (u) m,, the
conclusions of Theorem 5.A hold for m, in the place of the measure u.

3. PROOFS

Let # < </ be an invariant o-algebra and let P; be the difference projection
operator (d.p.o.) generated by T~ '.# in I*(«, p). For f e LX</, p),
(12) Pf=E(f| T M) — E(f| T™'utt) as. (p).
We can easily see that for an arbitrary o-algebra 2 < &/,
(13) E(f|2) T=E(f-T|T'2) as.(n)
(see [14]). So, taking T~ " for @, we have

(14) (Pif)oT="Piy((foT) as.(u), ieZ.

The last equality implies that if f = P,fforsome i € Z, thenf, f - T, ... is a sequence
of martingale differences. On the other hand, the o-algebra generated by f. T,
i < 0, is invariant, so for each martingale difference sequence (f o T") there exists
ad.p. o. Py such that f = P,f.

Let an ergodic decomposition (m,,; w € Q) of measure u exist. We shall show that

_if some relatively weak assumptions are fulfilled, the relations of the process (f o T

to the g-algebras T'.# are preserved in I*(sZ, m,,) for almost all (1) ergodic com-
ponents m,, of p.

By .# ,, we denote the smallest o-algebra containing all T'.#, i € Z.

Lemma 1. Let . be an invariant and separable c-algebra and let f € L'(M , p).
Then

£, (/] 4) = E(7| ) as. (m)

for almost all (/1) ergodic components m,, of p.

Proof. By Birkhoff’s pointwise ergodic theorem, (l/n) Z g-T > E(g| o) as. ()
for each g € L'(# ,, p), hence E(g | #) = E(g | # n //Zw) a.s. (). Let 4 be a count-
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able algebra of sets from .# which generates .#. Following [16], Theorem 3, we have
14 =EQu| ) as. (n)

for each Ae S n ., Hence, for Be%, we have E(y; E(f|.#)|.7) =

= EEQup f| )| I dl,) = EE(xs [ | )| I ) = E(g f | 7 ) =

=E(usf|F 0 tl,) = E(ysf| F)as. (u).

Thus,
Is E(f|-#)dm, = [z fdm,, Be%,

for a.e. (/,L) ergodic component m,, of y, q.e.d.

As a corollary to Lemma 1 and to (12) we get:

Lemma 2. Let #/ < o be a separable and invariant o-algebra, let P; be the d.p.o.
generated by T~/ in X/, ), and P} the d.p.o. generated by T~ '.# in I*(sZ, m,,),
i€Z. For feI?(#,, 1) we have ‘

P.f = P¢f as. (m,)
for a.e. (u) ergodic component m,, of p.

Proof of Theorem 1.C. Let .# be the smallest g-algebra with respect to which
the functions /o T7", n = 1,2, ... are measurable. .# is invariant and separable.
If f satisfies the assumptions of Theorem 1.C, then f = P,f a.s. (u), where P is
the d.p.o. generated by .#. According to Lemma 2, f = Pyf a.s. (m,) for almost
all (u) m,, so (fo T") is a martingale difference sequence in almost every (u) space
I*(o/, m,). Now, the theorem follows from Theorem 1.A.

In the proofs of Theorems 4.C, 5.C, we shall replace an invariant g-algebra .#
by a separable and invariant g-algebra .# " < .#. This will be possible by virtue
of Lemma 3.

Lemma 3. Let ¥ < o/ be a separable g-algebra, T™'% = ¥, and let 4 <
be an invariant o-algebra. Then there exists a separable and invariant algebra
M" <= M such that for each g e L'(%, ) and i€ Z,

E(g | T"#") = E(g | T'M) as. (u).

Proof. Let 4 = % be a countable algebra of sets which generates %. We define
A" as the smallest invariant o-algebra with respect to which the functions
E(xa | #), A€ ¥, are measurable. .#" is separable and with respect to each %-
measurable simple function h, E(h | .#*) = E(h | .#) as. (u). Each he L'(¢, p) is
a limit of ¥-measurable simple functions in L'(Z, u), hence E(h | .#") = E(h | .4)
a.s. () for each he I!(%, u). For every i€ Z, the function ho T' is #-measurable
(and integrable) as well. Hence, according to (13),
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s

E(h | Tty = E(ho T | ") o T T = E(ho T' | M) o T~ ' =

=Eh|Tw) as. (n).
This completes the proof.

Proof of Theorem 4.C. Let (7), (8) hold. By Lemma 3, we can suppose that
Al is a separable c-algebra. Hence, by Lemma 1, (7) and (8) are fulfilled in a.s. (r)
all spaces L'(sZ, m,,). Now, the conclusion of Theorem 4.C follows from the ergo-
dicity of m,, and from Theorem 4.A.

Let us start from (5), (6). Using the proof from [7] for the ergodic version of the
theorem, we can see that the function f can be expressed as

(15) f=h+g—-g-T,

where g, h e L'(<Z, p), and (h o T') is a martingale difference sequence. In the proof
of the ergodic case it is shown that he LZ(&{, u), and that the limit behaviour of
s,(f) is the same as that of s,(/), where us, '(h) converge by Theorem 1.A, see [7],
[4]- We shall show that in the non ergodic case, the same development is possible,
with respect to the ergodic components m,, of u.

We shall prove that h € I*(sZ, m,,) for a.e. (1) ergodic component m,, of x. (Equality
(15) is preserved as well.) Birkhoff’s pointwise ergodic theorem implies that there
exists a [0, oo]-valued function /',

(1 /n\ Z h* o TV — ().

From Burkholder’s inequality (compare [4]) we get

(1) Y. h* o TV > 2} < (c[A) E[S,[\/n| for n=1,2,.., A>0;
i=1

¢ is a positive constant. Hence, u{h’ > 1} = (c/2)lim sup (1//n)E|S,|. Using
n—o

plh' > 2} = [m {0 > A} dp(w) we get m,{h" = oo} = 0 for a.e. (1) measure m,,.
The measures m,, are ergodic and m,{/’ == w0} = Oyleldsthz(yi m,,); if h* were not

ol’t
integrable w.r. tom,,, then from Birkhoff stheorem(l/n)z h? TV — o = h'as.(m,).
i=0
According to Lemma 3 we can suppose that .Z is a separable o-algebra. By Lemma 2,
(ho T is a sequence of square integrable martingale differences in L*(.<Z, m,,).
Using this fact, (15) and the ergodicity of the measures m,, we can derive the limit
theorem in the same way as in [7].

Proof of Theorem 5.C. According to Lemma 3 we can suppose that ./# is
a separable g-algebra.

Let the conditions (9), (11) be fulfilled. By Lemma 1 and Lemma 2, Conditions
(9). (10) are fulfilled in a.e. (1) space L*(s7, m,,), with m,, replacing the measure .
The conclusion of Theorem 5.C. thus follows from the ergodicity of m, and from
Theorem 5.A.
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Let us suppose that Condition (9), (10) are fulfilled. By [7], pp. 141 —142, there
exist functions g, h € I*(s/, ) such that

(16) f=h+g—9g.T,

where (h o T?) is a martingale difference sequence. In the ergodic case, the theorem
can be derived from (16), see [10], [7]. (The difference between (15) and (16)
is in the square integrability of g.) In the non ergodic case, according to Lemma 3
and Lemma 2, (h o T') is a martingale difference sequence in I*(Z, m,,) for a.e. (u)
measure m,, (see the proof of Theorem I.C), and the theorem can be derived from
(16) as in the previous case.

When deriving Theorems 1.B, 4.B and 5.B we first reduce the situation to a case
where an ergodic decomposition of measure u exists. The desired results then follow
from Theorems 1.C, 4.C, 5.C, and Propositions 2, 3.

Proposition 2. Let an ergodic decomposition (mw; weQ) of measure p exist.
Let fi,f,, ... be measurable functions, and let for a.e. (i) measure m,, myf, "
weakly converge to a distribution with a characteristic function @,(t). Then the
measures uf, ' weakly converge to a distribution with the characteristic function

o) = o) du(o).

Remark. Due to Theorem 2.C and Theorem 3.C, the opposite of Proposition 2
does not hold.

Proof. By the Lebesgue dominated converegence theorem we have E exp (¢t f,) =
= [[exp (¢tf,) dm,, du(w) ——> [o,(t) du(w).

Proposition 3. Let g, g,, ... be C[0, 1]-valued random variables. Let for a.e.
(u) measure m,, the measures m,g, ' weakly converge to the Wiener measure W.
Then ug, ' weakly converge to W.

Proof. We shall view g, as a function g,(t, ) of t and w. It is sufficient to prove
the convergence of finite dimensional distributions and the tightness of the set
{ug, " :n=1,2,...}. (See [7].) A proof of the convergence of finite dimensional
distributions of g, to those of the Brownian motion can be done in the same way
in which we proved Proposition 2 (see [18] for details). Tightness of ug, ' can be
expressed by (17), (18), compare [7]:

(17) sup u{|gn(0, *)| > 2} 52> 0.

A= ®

(18) Foreach &> 0, sup uf

ss—uzl|)<5lg"(5’ ) =gt )| > ¢ 0 0

|
Let ¢ > 0 be fixed. For t > 0 we put

A2, 7) = wlo: sup my{lg, 0, )| > 2} < 1} ,
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and
B(3, 1) = pfw: sup m,{ sup |g,(s, *) — g.(t, *)| > &} <1} .
n | |<éo

s—t| <4
By the assumption and by [7], the measures m, /i, ' are tight (for a.e. (1) measure m,,),

'n

hence A(4, 1)‘;.?1 and B(9, 1) 575 | for each 7 > 0. For arbitrarily small
> 0wehave u{|g,(0. )| > A} = v+ | — A(4, t)and u{ sup |g,(s, *) — g.(t, *)| >
Is—t] <o

> ¢} <1+ 1 — B(S, 7). Hence, (17) and (18) are fulfilled for the measure y, which
completes the proof.

Proofs of Theorems 1.B, 4.B and 5.B. In Theorems 4.B and 5.B we can
(according to Lemma 3) find a separable invariant g-algebra ./* <  such that
the assumptions are fulfilled with .# " replacing .#. Hence, there exists a separable
o-algebra ¥ < o/ such that T4 = €, 4" < ¥, and f is ¥-measurable. From Birk-
hoff’s pointwise ergodic theorem it follows that E(g | .#) is %-measurable for each
integrable and %-measurable function g. In Theorem 1.B. we can take the g-algebra
generated by fo T', ie Z for ¥. As we have seen in the first section, there exists
a mapping ¥: Q — R” such that € = ¢y~ !(#%) and Sy = o T, where S is the
shift on R” defined by (Sx); = x;,y, i € Z, x € R”, A% is the Borel g-algebra on
R” Let v = wp~". Then vS™' = v, hence (R%, #% S,v) is a dynamical system.
As we have already stated in Section I, for each measurable function f on Q there
exists a Z%-measurable function f* on R” such that (1) f = f' - .

It can be easily seen that for g € L'(oZ, 1), g = g’ o /, where g’ is a #*-measurable
function, and a g-algebra 2’ < %%, we have

E(g [y ~1(2) =E(g' | 2) o as. (n).

Hence, if the function f fulfills the assumptions of Theorem 1.B, Theorem 4.B,
Theorem 5.B, respectively, then f’ fulfills the same assumptions. If the limit theorems
hold for f7, then they hold for f as well. According to Proposition 1, there exists an
ergodic decomposition of the measure v. Theorems 1.B and 4.B thus follow from
Theorems 1.C and 4.C, and from Proposition 2. The functional log log law in Theo-
rem 5.B is a pointwise property, so it follows from Theorem 5.C. The invariance
principle is a consequence of Theorem 5.C and Proposition 3.

Theorem 2.B. can be derived from Theorem [.B via approximating the sums
s,(f) by the sums s,(g9) of square integrable sequences of martingale differences
(see [15], [14]); no ergodic decomposition is needed there (except in the proof
of Theorem 1.B, of course).

In [7], C. C. Heyde proved that (2) follows from (3), (4). In this way, Theorem 3.A
was derived from Theorem 2.A; Theorem 3.B can be derived from Theorem 2.B
in the same way.

Counterexamples needed for proofs of Theorem 2.C and Theorem 3.C can be
constructed by employing properties of difference projection operators and ergodic
decompositions, see [ 17].
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Souhrn
O NEERGODICKYCH VERZICH LIMITNICH VET

DALIBOR VOLNY

V praci jsou studovany neergodické verze nékolika znamych limitnich v&t pro striktng stacio-
narni procesy. Ukazuje se, Ze v nékterych piipadech splnéni pfedpokladi véty pro obecnou
invariantni miru ma za nasledek splné&ni pfedpokladu i vzhledem ke skoro viem jejim ergodickym
slozkam. V jinych ptipadech toto neplati a je ukazano, Ze v&ta muZe pro vSechny ergodické.
slozky této miry selhat.
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Pe3rome
O HESPI'OOAMYECKMNX BAPUAHTAX ITPEAEJIBHBIX TEOPEM

DALIBOR VOLNY

B paﬁOTC UCCICAOBAHBlI HEIPrOJAU4YECKME BAPHAHThlI HEKOTOPBIX H3BECTHBIX NPEACIBHBIX TCOPEM
IJisl CTPOTrO CTAllMOHAPHBIX npoixeccoxa. B HEKOTOPBIX ClyYasX BBIIIOJIHEHME IIPEITIONIONKEHUH
TEOPEMBI OJId obmei MHBApUAHTHON MEPBI BJIEYET MX BBHINOJHEHME W 110 OTHOIUEHHIO K MOYTH
BCEM €€ I3ProAuyYeCKUM XKOMIIOHCHTaAM. Opnako B JAPYrux ciy4yasix TeopeéMa MOXET OKa3aThbCA
HEBEPHOH IJIA BCeX 3Proau4eCKux KOMIOHEHT.

Author’s address: RNDr. Dalibor Volny, CSc., Matematicky ustav UK, Sokolovska 83,
186 00 Praha 8.
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