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ON NECESSARY OPTIMALITY CONDITIONS 
IN A CLASS OF OPTIMIZATION PROBLEMS 

JlRf V. OUTRATA 

(Received July 1, 1988) 

Summary. In the paper necessary optimality conditions are derived for the minimization 
of a locally Lipschitz objective with respect to the constraints x e S, 0 e F(x), where S is a closed 
set and F is a set-valued map. No convexity requirements are imposed on F. The conditions are 
applied to a generalized mathematical programming problem and to an abstract finite-dimensional 
optimal control problem. 
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1. INTRODUCTION 

Let us consider an optimization problem 

f(x) -> inf 
(1.1) subject to 

0 e F(x) 

xe S, 

where x e R", f[i?" -> R] is a locally Lipschitz objective, F[2T -> 2Rm~\ is a closed-
valued set-valued map and S is a nonempty closed subset ofRn. The relation 0 e F(x) 
may represent various constraint structures or even optimality conditions for certain 
internal optimization problems. Optimization problems of the type (1.1) have been 
already investigated in many works, e.g. [2], [8], [11], but in accordance with most 
applications the authors assume that F enjoys some kind of convexity properties. 
The aim of this contribution is to derive necessary optimality conditions for (1.1) 
in absence of any convexity requirements. To avoid the difficulties with the evalua­
tion of Clarke's tangent cone to the set Q — [x e S | 0 e F(x)} and its polar, we 
apply the reduction technique of loffe [6] and an important result of Hiriart-
Urruty [5], One could alternatively exploit the expression for the above mentioned 
cone given in [4] in terms of support functions; however, as our map F is not convex-
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valued, we do not find this characterization suited to our purpose. Besides the theory 
developed in the next section, we give also an application proposal in Sect. 3 as an 
illustration. 

As we do not want to deal with existence problems, we assume throughout the 
whole paper that Q is nonempty and compact. Then clearly (1.1) possesses a solution 
and the corresponding objective value is finite. 

For the understanding of the paper a certain basic knowledge of nonsmooth analysis 
is necessary. For the reader's convenience, we provide here at least the definitions 
of the basic conical approximations. 

Definition 1.1. Let Q c= Rn and x e Q. Then a vector h e Rn belongs to the contingent 
cone TQ(x) to Q at x if there exist a sequence of (positive) scalars lt [ 0 and a sequence 
of directions ht^ h such that x + Xtht e Q for all i. 

A vector keRn belongs to Clarke's tangent cone Cfi(x) to Q at x provided for all 
sequences of points xt -> x and all sequences of scalars Xt j 0 there exists a sequence 
of directions kt -> k such that xt + XJ^i e Q for all i. 

As is shown e.g. in [1], CQ(x) is closed and convex. Its negative polar cone — Cj(x) 
is called normal, denoted by NQ(x) and for Q convex it coincides with the normal 
cone in the sense of convex analysis. The convexity of Ca(x) enables us to generalize 
the concept of the adjoint set-valued map introduced by Pschenichnyi in [7]. 

Definition 1.2. Let &[Rn -• 2Rm] be a set-valued map, y e <P(x) and y*eRm. Then 
the map $*[Rm -> 2Rn~\ which assigns to y* the set 

(1.2) d>*(y*; x, y) = {x*eRn \ (-x*, y*) e Cg*raph*(x, y)} 

is termed the adjoint set-valued map to $ at (x, y). 

We employ the following notation:] • \n is a norm in Rn, Bn(%) = {xe Rn\ \x — x\n g 
^ s}. If s = 1 and & = 0, we write simply Bn. df(x0) is the generalized gradient 
of Clarke of a function / at a point x0. For a function <p defined in Rn x Rm the 
symbols dx<p(x, y), dycp(x, y) denote the partial generalized gradients with respect 
to the first and second variables, respectively. gfF is the graph of a set-valued map F, 
dists(x) is the distance of a vector x from a set S and Proj5 (x) means the projection 
of x onto S. 

The properties of the above defined conical approximations as well as all other 
necessary background are collected e.g. in [1] or [3]. 

2. OPTIMALITY CONDITIONS 

We denote 
Q = {x e S | 0 e F(x)} 
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(2.1) fi: x \~y distF(x)(0) 

and 

(2.2) A: x r - ProjF(jc)(0). 

Using this notation, we may rewrite (1,1) in the form 

f(x) -» inf 
subject to 

fi(x) = 0 

xeS. 

To be able to apply the reduction theorem of Ioffe, we have to impose some fundamen­
tal assumptions. To this purpose we recall that a point z e Q is said to be a regular 
point (in the sense of Ioffe) for the equality constraint fi(x) = 0 relative to S if there 
are k > 0 and a neighbourhood 0 of z such that for all x e O n S 

distQ (x) = inf \v - JC|B = kfi(x) = fc inf \y\m . 
veQ y?F(x) 

Thus, we will assume that for a local solution x of (1.1) 

(i) fx is Lipschitz near £; 
(ii) ^ is a regular point (Ioffe) for fx relative to S, 

The validity of hypothesis (i) depends on the nature of the "distance" problem 

J(y) = \y\m -> i nf 
(2.3) subject to 

y G F(x) 

with 0 being its unique global solution. For example, if gfF is given by means of 
equalities and inequalities, the standard Mangasarian-Fromowitz constraint quali­
fication at y = 0 implies that (i) holds, see [10]. Hypothesis (ii) is termed in [4] 
as nondegeneracy of F on S at x. In [4] and [11] we can find various "regularity" 
conditions implying this nondegeneracy and hence the validity of (ii). 

The application of the result from [5] requires to impose still another assumption 
which, however, does not seem to be so restrictive as the previous two. 

(iii) The set-valued map A possesses a selection a which is continuous at jc. 
If gfF is given by equalities and inequalities, the sufficient second-order opti-

mality condition of [9] applied to (2.3) at y = 0 (with J(y) replaced by \y\m) together 
with a constraint qualification suffices for hypothesis (iii) to hold, cf. [9]. 

Proposition 2.1- Assume that St is a local solution of (1.1) and that assumptions 

(i) —(iii) hold. Then there exists a vector j * eRm such that the pair (£, y*) satisfies 

the relation 

(2.4) 0 e df(x) + F*(y*; *, 0) + Ns(x). 
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Proof. For r > 0 we denote 

(2.5) Mr(x) = f(x) + r(ft(x) + dist5 (x)). 

The reduction theorem from [6] implies that under assumptions (i), (ii) and for 
sufficiently large r, Mr attains its local minimum at x. It implies furthermore that 
due to (i) and Clarke's calculus 

(2.6) 0 e 3f(x) + r\dh(St) + 3(dists (*))] . 

However, now we need to express dft(x) or an upper estimate of this set in terms 
of F. Because of assumptions (i), (iii), we may apply to this purpose the important 
result from [5] stating that 

8fx(x) cz {x* e Rn | (x*, - y * ) e NgfP(x, v), y* e dJ(v)} , 

where v = <x(x) c A(x). As A(x) = {0}, one has dj(v) = Bm and we obtain that 

(2.7) dfx(*) c {x* e Rn | x* e F*(v*; x, 0), j * e Bw} 

by using the adjoint set-valued map concept introduced in Def. 1.2. 
It is well-known from the nonsmooth analysis that for any T > 0 

(2.8) T d(dists (*)) cz Ns(x). 

Thus, the assertion is directly implied by (2.6), (2.7), (2.8). • 
The method used has enabled us to express the optimality conditions in terms 

of the normal cone to gfF instead of that to Q and hence to avoid the difficulties with 
the evaluation of NQ(x). 

We employ now the regularity concept of Clarke to characterize y*. We recall 
that a set Q is regular (in the sense of Clarke) at xeQ provided TQ(x) = Cn(x). 

Proposition 2.2. Let all assumptions of Prop. 2.1 hold and additionally let gfF 
be regular (Clarke) at (%, 0). Then 

(2.9) y*e-NW)(0). 

Proof. By Prop. 2.1 and due to the regularity hypothesis 

0 G 8f(x) + x* + Ns(x) , 
and 

< - x * , O + <j;*, tf> => 0 for all ({, n) e TgfF(x, 0) . 

Let v G CF(jt)(0) cz TP(jt)(0). By the definition of the contingent cone it is clear that 
then (0, v) e TgfF($, 0). (Indeed, there exist sequences Xt I 0 and vt -> v such that 
XiVt e F(x) for all i. But this implies that (x + Xfi, 0 + Afvf) e gfF for all i.) Thus, 

<y*, v> ^ 0 for all v e C W ) ( 0 ) , 

and the proof is complete. • 

469 



Corollary. Under the assumptions of Prop. 2.2 and provided that F(Jc) is convex, 
one has 

(2.10) <}>*, y> = 0 for all y e F(x). 

Proof. Due to the convexity of F(x) 

yeCP{Jt)(0) for all y e F(x). Q 

Relations (2.4), (2A0) are termed in the literature as the support principle, cf. 

W, [11]-
In many real cases the computation of CgfP(%, 0) is very difficult and hence the 

evaluation of the adjoint map F* is hardly possible. However, from the proof of 
Prop. 2.1 it is clear that in (2.4) F*(y*; $, 0) may be replaced by the set 
(2.11) {x*eRn | (-**, y*) e I)*} , 

where D is any convex cone with the vertex at the origin and satisfying the inclusion 
D c CgfP($, 0). The optimality conditions are then correspondingly less selective. 

Assumption (ii) concerns only the problem constraints x e Q. It may be replaced 
by a "calmness" requirement concerning, however, the whole problem (1.1). We 
denote 

(2.12) ij/e(s) = inf {f(x) \xeSn B^(x), s e F(x)} 

and replace (ii) by the hypothesis 
(ii)' there exists an s > 0 such that 

(2.13) l i m i n f ^ - ^ ° ) > - c o . 
5-0 \s\m 

Problems of the type (1.1) satisfying hypothesis (ii)' are termed calm at £. It has 
been shown in [11] that for such a problem there exists a positive constant r for which 
the function 

W(x) = f(x) + rffc) 

attains its local minimum over S at £. Prop. 2.4.3 in Chap. 2 of [3] implies then the 
validity of (2.6). 

3. APPLICATIONS 

Consider an optimization problem of the type (1.1) in which 

(3.1) F(x) = {yeRm\ye- fi(x) + K} , 

where jx[Rn --> Rm] is a continuously differentiable operator and K c: Rm is a non­
empty closed set. Necessary optimality conditions for such a problem can be found 
in many works under the assumption that K is a convex cone with vertex at the 
origin. The theory from the previous section enables us to omit this assumption. 
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Proposition 3.1. Assume that x is a local solution of (l.l) with F given by (3.1) 
and that assumption (ii) holds. Then there exists a vector k* e C^(ji(x)) for which 
one has 

(3.2) 0 G df(x) - (Vfi(x))T k* + Ns(x) . 

In the proof we make use of the following lemma. 

Lemma 3.1. Let xeRn be given and let y = —JLL(X) + v, where veK. Then for F 
given by (3A) CgfF(x, y) = D, where 

(3.3) D = {(h, k) c i?" x Rm | k = -Vfi(x) h + £, ff e Cx(v)} . 

Proof. Let (h, k) e CgfF(x, y). By definition for all (x,, yt) -> (x, y), A, j 0 there 
exist sequences ht -> h, k, -> k such that 

J/; + >i;k; = -//(X; + A;h;) + v;, v; G K 

for all i. We may certainly express the vectors vt in the form 

v; = v; + A,{, , 

where v, = j>, + ^(x,) so that v, ~> v. Hence, 

(3.4) fc( = - fci + ^ j ) ~ life) + -,. 
A; 

As h; -> h and k; -> k, the sequence £, converges to the vector £ = k + V/z(x) h. 
Moreover, we observe that for all sequences vt -> v, A; j 0 

v, + A,£,GK 

so that { e CK(v) and consequently (h, k) e D. 
Conversely, let (h, k) e D, i.e. k = - V>(x) h + ^, ^ e Q(v), v = j> + ju(x). We 

take arbitrary sequences (x,, yf) -> (x, y), A; J, 0 and denote v; = yt + #(x;) so that 
vi -> v. By definition there exists a sequence £, -> { such that v, + A;£; G K for all L 
We set now ht = h and assume that k; are given by (3.4). Clearly, kt -> k and 

J>, + 2 ; k ; = y, ~ j u ( x , + A ; h ; ) + j u ( x , ) + 2 ; { ; = 

= -/i(X; + A;ft,) + v; + A;£; G ~/l(X; + A;h;) + K . 

The assertion has been proved. • 
It can be easily shown that 

C*/F(x, 0) = {(/**, k*)eRn xRm\h* = (V/i(x))T k*, k* G Cl(fi(x))} 

so that to prove Prop. 3.1 one needs merely to verify assumptions (i) and (iii) of the 
previous section. 
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P r o o f of Prop. 3.L Consider the "distance" problem (2.3) which attains for a fixed 
x e Rn the form 

\y\m -+ inf 
(3.5) subject to 

j e ~/i(x) + K . 

One immediately sees that in this case 

fi(x) = dist* (fi(x)) . 

As the distance function is known to be Lipschitz (cf. [3]) assumption (i) is fulfilled. 
Concerning assumption (iii), observe that 

(3.6) A(x) = -fi(x) + Proj* (fi(x)) 

and the map A is indeed set-valued due to the nonconvexity of K. To show the 
existence of a selection a of A, continuous at x, observe that for x from a neighbour­
hood 0 of x and y e A(x) one has 

\y - A(x)\m = \-fi(x) + Fxo)K(ii(x))\m S \-fi(x) + fi(x)\m ^ L\x - x\n, 

where Lis the Lipschitz constant of /n on O. Thus A is upper Lipschitz on a neigh­
bourhood of x which implies the validity of assumption (iii). • 

In optimal control problems \i is often given implicitly, by means of a system 
equation 

(3.7) G(x, y) = 0, 

where G[Rn x T - > i?m] is a continuously differentiable operator and 

(3.8) G(x, fi(x)) = 0 for all x e Rn . 

Suppose that \i is continuously differentiable on a neighbourhood of x. Then on the 
basis of Prop 3.1 we may derive the optimality conditions for the finite-dimensional 
abstract control problem 

f(x) -+ inf 
subject to 

(3.9) G(x, y) = 0 

xeS 

yeK. 

Proposition 3.2. Assume that the pair (x, j>) is a local solution of problem (3.9) 
which satisfies all requirements of Prop. 3.1 with \i being the implicit function of 
(3.7). Then there exists a vector peRm such that the Lagrangian 

<Z(x,y,p)=f(x)-(p,G(x,y)y 

satisfies the relations 
OedxJ?(Z,P,p) + Ns(X) 

{ ' } VyJ?(*,P,p)eC*K(P). 
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Proof. Clearly, relation (3.2) holds with some fc* e C%($) and we have to express 
Vjti(jc) in terms of G. Assume that p is a solution of an "adjoint" equation 

(3.11) (VyG(x, y))T p + k* = 0 . 

Then for a vector heRn one has 

- <(V„(*))T k*, h> = <(Vn(x)y (V,G(*, j>))T j), h> = 

= <p, V,G(*, j>) Vp(*) h> = -(p, VXG(Z, j>) h} 

because VXG(%, j>) + V,G(£, j>) V/i^) = 0. Hence, 

(Vn(&)yk* = (VxG(Z,9)yp 

so that (3.2) directly implies the first relation from (3.10). The second is merely 
a transcription of (3.11). • 

Remark. In a dynamic context this second relation of (3.10) generates the appro­
priate adjoint inclusion. 

CONCLUSION 

It is true that in the most important applications of model (1.1) (like in the optimum 
design problems with variational inequalities) the map F is con vex-valued. Then, 
of course, the optimality conditions (support principle), derived e.g. in [11] under 
less stringent requirements than those of Sect. 2, suffice. On the other hand it seems 
reasonable to investigate possible extensions of this principle for general maps F, 
and Sect 3 shows that we can find interesting applications also in this case, Moreover, 
the technique used in the proof of Prop. 2.1 may well be applied also to the numerical 
solution of (1.1) independently of whether F is convex- or nonconvex-valued. The 
idea relies on the combination of the exact penalization with some modern numerical 
method for nonsmooth optimization. In particular, such a method could be applied 
to the "augmented "problem 

W(x)=f(x) + rf^-tmf 
subject to 

xeS . 

This possibility will be investigated elsewhere. 
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S o u h r n 

PODMÍNKY OPTIMALITY V JEDNÉ TŘÍDĚ OPTIMALIZAČNÍCH ÚLOH 

JIŘÍ V. OUTRATA 

V článku jsou odvozeny nutné podmínky optimality pro minimalizaci lokálně lipschitzovské 
kriteriální funkce na množině bodů vyhovujících omezením x e S, 0 e F(*), kde S je uzavřená 
množina a Fje mnohoznačné zobrazení, u něhož se nepředpokládá konvexnost v žádném smyslu. 
Získané podmínky jsou aplikovány na zobecněnou úlohu matematického programování a ab­
straktní úlohu optimálního řízení kcnečné dimenze. 

Pe3K)Me 

HEOEXOAHMBIE yCJIOBHfl OHTHMAJIbHOCTH RJIX OCHOTO KJIACCA 
3KCTPEMAJIBHBIX 3A.ZIA1! 

JIŘÍ V. OUTRATA 

M3yHaK)Tca Heo6xo/jHMbie VCJIOBKÍÍ 3KCTpeMyMa B 3aflanax MHHHMM3auHH jioKajiBHo jmmuHHe-
BOH HeJieBOH ýyHKUHH n p H HaJIHHHH OTpaHHHeHHH X G S, 0 G F(*), TflC S — 3aMKHVTOe MHOJKCCTBO 
H F— MHoro3HaMHoe oTo6pa3KeKHe. He npe^nojiaraioTCH HH BbinyKJiocTb HH BbinyKjio3Ha*íHOCTb F. 
ycjioBHíí Hcnojib3yiOTCH B o6o6iHeHHOM 3a^aMe MaTeMaraHecKoro nporpaMMMpoBaíiKH H B a6cTpa-
KTHOK saAa^e onTHMajibiioro ynpaBJíeHHfl KOHCHHOH pa3MepnocTH. 
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