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ON NECESSARY OPTIMALITY CONDITIONS
IN A CLASS OF OPTIMIZATION PROBLEMS
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Summary. In the paper necessary optimality conditions are derived for the minimization
of a locally Lipschitz objective with respect to the constraints x € S, 0 € F(x), where S is a closed
set and F is a set-valued map. No convexity requirements are imposed on F. The conditions are
applied to a generalized mathematical programming problem and to an abstract finite-dimensional
optimal control problem.
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1. INTRODUCTION

Let us consider an optimization problem

f(x) - inf
(1.1) subject to
0€ F(x)

xes,

where x e R", f[R" - R] is a locally Lipschitz objective, F[R" —» 2%"] is a closed-
valued set-valued map and S is a nonempty closed subset of R". The relation 0 € F(x)
may represent various constraint structures or even optimality conditions for certain
internal optimization problems. Optimization problems of the type (1.1) have been
already investigated in many works, e.g. [2], [8], [11], but in accordance with most
applications the authors assume that F enjoys some kind of convexity properties.
The aim of this contribution is to derive necessary optimality conditions for (1.1)
in absence of any convexity requirements. To avoid the difficulties with the evalua-
tion of Clarke’s tangent cone to the set Q = {xe S|0e F(x)} and its polar, we
apply the reduction technique of Ioffe [6] and an important result of Hiriart-
Urruty [5]. One could alternatively exploit the expression for the above mentioned
cone given in [4] in terms of support functions; however, as our map F is not convex-
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valued, we do not find this characterization suited to our purpose. Besides the theory
developed in the next section, we give also an application proposal in Sect. 3 as an
illustration.

As we do not want to deal with existence problems, we assume throughout the
whole paper that Q is nonempty and compact. Then clearly (1.1) possesses a solution
and the corresponding objective value is finite.

For the understanding of the paper a certain basic knowledge of nonsmooth analysis
is necessary. For the reader’s convenience, we provide here at least the definitions
of the basic conical approximations.

Defirition 1.1. Let @ = R"and x € Q. Then a vector h € R" belongs to the contingent
cone Ty(x) to Q at x if there exist a sequence of (positive) scalars 4; | 0 and a sequence
of directions h; — h such that x + 1;h; € Q for all i.

A vector k € R" belongs to Clarke’s tangent cone Cy(x) to Q at x provided for all
sequences of points x; — x and all sequences of scalars 4; | 0 there exists a sequence
of directions k; — k such that x; + 1;k; € Q for all i.

As is shown e.g. in [1], Co(x) is closed and convex. Its negative polar cone — Cg(x)
is called normal, denoted by Ny(x) and for Q convex it coincides with the normal
cone in the sense of convex analysis. The convexity of Cy(x) enables us to generalize
the concept of the adjoint set-valued map introduced by Pschenichnyi in [7].

Definition 1.2. Let ®[R" — 2%"] be a set-valued map, y € ®(x) and y* € R™. Then
the map &*[R™ — 2®"] which assigns to y* the set

(1.2) D*(y*; x,y) = {x* e R" | (—x*, y*) € Chropno(X, )}
is termed the adjoint set-valued map to @ at (x, y).

We employ the following notation:|- |, is a norm in R", B(£) = {x e R"| |x — £|, <
<e}. If ¢ =1 and £ = 0, we write simply B,. 9f(x,) is the generalized gradient
of Clarke of a function f at a point x,. For a function ¢ defined in R" x R™ the
. symbols 9,¢(x, ), d,¢(x, y) denote the partial generalized gradients with respect
to the first and second variables, respectively. gfF is the graph of a set-valued map F,
distg(x) is the distance of a vector x from a set S and Projs (x) means the projection
of x onto S.

The properties of the above defined conical approximations as well as all other
necessary background are collected e.g. in [1] or [3].

2. OPTIMALITY CONDITIONS

We denote
0 ={xeS|0eF(x)}
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(2.1) ‘ Jut x o distp e, (0)

and
(2.2) Az X > Projpe(0) .
Using this notation, we may rewrite (1.1) in the form
f(x) - inf
subject to
filx) =0
xes.

To be able to apply the reduction theorem of Ioffe, we have to impose some fundamen-
tal assumptions. To this purpose we recall that a point z € Q is said to be a regular
point (in the sense of Toffe) for the equality constraint f(x) = 0 relative to S if there
are k > 0 and a neighbourhood O of z such that forallxe O n S

disty (x) = inf [v — x|, £ kfy(x) = kinf |y|, .
veQ yeF(x)
Thus, we will assume that for a local solution £ of (1.1)

(i) f, is Lipschitz near £;
(i) % is a regular point (Ioffe) for f; relative to S.

The validity of hypothesis (i) depends on the nature of the “distance” problem

J(¥) = [y|n — inf
(2.3) subject to
y € F(%)

with 0 being its unique global solution. For example, if gfF is given by means of
equalities and inequalities, the standard Mangasarian-Fromowitz constraint quali-
fication at y = 0 implies that (i) holds, see [10]. Hypothesis (ii) is termed in [4]
as nondegeneracy of F on S at £. In [4] and [11] we can find various “regularity”
conditions implying this nondegeneracy and hence the validity of (ii).

The application of the result from [5] requires to impose still another assumption
which, however, does not seem to be so restrictive as the previous two.

(iii) The set-valued map A possesses a selection « which is continuous at £.

If gfF is given by equalities and inequalities, the sufficient second-order opti-
mality condition of [9] applied to (2.3) at y = 0 (with J(y) replaced by |y|2) together
with a constraint qualification suffices for hypothesis (iii) to hold, cf. [9].

Proposition 2.1. Assume that % is a local solution of (1.1) and that assumptions
(i)—(iii) hold. Then there exists a vector y* € R™ such that the pair (&, y*) satisfies
the relation

(2.4) 0 of (%) + F*(y*; £, 0) + Ns(%).
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Proof. For r > 0 we denote
(2.5) M,(x) = f(x) + r(f:(x) + dists (x)) -

The reduction theorem from [6] implies that under assumptions (i), (i) and for
sufficiently large r, M, attains its local minimum at £. It implies furthermore that

due to (i) and Clarke’s calculus
(2.6) 0 of(8) + rlof(%) + o(dists (£))] -

However, now we need to express df;(x) or an upper estimate of this set in terms
of F.Because of assumptions (i), (iii), we may apply to this purpose the important
result from [5] stating that

of1(8) = {x* e R" | (x*, —y*) € N (%, v), y* € 3J (v)} ,
where v = (%) = A(%). As A(%) = {0}, one has 8J(v) = B,, and we obtain that
(2.7) of,(%) = {x* e R" | x* e F¥(y*; £,0), y* € B,.}

by using the adjoint set-valued map concept introduced in Def. 1.2.
It is well-known from the nonsmooth analysis that for any 7 > 0

(2.8) t 8(dists (£)) = Ns(%) .

Thus, the assertion is directly implied by (2.6), (2.7), (2.8). 0O
The method used has enabled us to express the optimality conditions in terms
of the normal cone to gfF instead of that to Q and hence to avoid the difficulties with
the evaluation of Ny(x).
We employ now the regularity concept of Clarke to characterize y*. We recall
that a set Q is regular (in the sense of Clarke) at x € Q provided Ty(x) = Cg(x).

Proposition 2.2. Let all assumptions of Prop. 2.1 hold and additionally let gfF
be regular (Clarke) at (%, 0). Then

(2.9) y*€ —Npe(0) .
v Proof. By Prop. 2.1 and due to the regularity hypothesis

0€df (%) + x* + Ng(%),
and
{=x*& + (¥, 0> 20 forall (&n)e T,p(%,0).

Let v € Cp)(0) © Tre)(0). By the definition of the contingent cone it is clear that
then (0, v) € T, ;x(%, 0). (Indeed, there exist sequences A, | 0 and v, - v such that
Av; € F(8) for all i. But this implies that (£ + 1,0, 0 + 1,;v;) € gfF for all i.) Thus,

y*, vy 20 forall ve Cpg)0),
and the proof is complete. O
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Corollary. Under the assumptions of Prop. 2.2 and provided that F(£) is convex,
one has

(2.10) {y*,y> 20 forall yeF(R).
Proof. Due to the convexity of F(&)
V€ Cpg(0) forall yeF(%). O

Relations (2.4), (2.10) are termed in the literature as the support principle, cf.
[4], [11].

In many real cases the computation of C,x(%, 0) is very difficult and hence the
evaluation of the adjoint map F* is hardly possible. However, from the proof of
Prop. 2.1 it is clear that in (2.4) F*(y*; £, 0) may be replaced by the set

(2.11) {x*eR"| (—x* y*) e D*},

where D is any convex cone with the vertex at the origin and satisfying the inclusion
D < C,p(%,0). The optimality conditions are then correspondingly less selective.

Assumption (ii) concerns only the problem constraints x € Q. It may be replaced
by a “calmness” requirement concerning, however, the whole problem (1.1). We
denote

(2.12) Y.(s) = inf {f(x) | x€ S n Bj(&), s e F(x)}
and replace (ii) by the hypothesis
(ii)" there exists an ¢ > 0 such that

(2.13) tim inf Ye(8) = ¥:(0)

—t > — 0 .

s—0 Slm

Problems of the type (1.1) satisfying hypothesis (ii)’ are termed calm at £. It has
been shown in [11] that for such a problem there exists a positive constant r for which
the function

W(x) = f(x) + rfy(x)

attains its local minimum over S at £. Prop. 2.4.3 in Chap. 2 of [3] implies then the
validity of (2.6).

3. APPLICATIONS

Consider an optimization problem of the type (1.1) in which
(3.1) F(x)={yeR"|ye — u(x) + K},

where u[R" — R™] is a continuously differentiable operator and K < R™ is a non-
empty closed set. Necessary optimality conditions for such a problem can be found
in many works under the assumption that K is a convex cone with vertex at the
origin. The theory from the previous section enables us to omit this assumption.
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Proposition 3.1. Assume that £ is a local solution of (1.1) with F given by (3.1)
and that assumption (i) holds. Then there exists a vector k* € Cx(u(8)) for which
one has

(32) 0edf(%) — (Vu(R)" k* + Ny(X).

In the proof we make use of the following lemma.

Lemma 3.1. Let X € R" be given and let j = —pu(x) + ©, where 5 € K. Then for F
given by (3.1) C,pp(X, 7) = D, where ‘
(3.3) D={(hkcR xR"|k=—Vu(%) h + & & e Culd)} -

Proof. Let (h, k) € C,p(%, ). By definition for all (x;, y;) = (%, ), 4; L O there
exist sequences h; — h, k; » k such that

yi + Ak = —p(x; + Lh) + 3, 3,€K
for all i. We may certainly express the vectors ; in the form
U; = v; + 445,

where v; = y; + p(x;) so that v, - ©. Hence,

(3.4) k= _ Mot iifi) —Hx)

As h; - h and k; > k, the sequence &; converges to the vector & = k + Vu(%) h.
Moreover, we observe that for all sequences v; —» 5, 4; | 0
v; + j‘ifi eK

so that & € Ci(¢) and consequently (h, k) € D.

Conversely, let (h,k)e D, ie. k= —Vu(X) h + &, £ C(p),d = 7 + u(%). We
take arbitrary sequences (x;, y;) = (%, ¥), 4; | 0 and denote v; = y; + u(x;) so that
v; — 0. By definition there exists a sequence &; — & such that v; + 1;¢; € K for all i.
We set now h; = h and assume that k; are given by (3.4). Clearly, k; - k and

Vit+ Ak =y; — il(xi + Ah) + p(x;) + A& =
= —pu(x; + L) + v, + L& e —p(x; + Ah) + K.
The assertion has been proved. O

It can be easily shown that

Core(%: 0) = {(*, k*) e R" x R™ | * = (VA(X))" k*, k* € Cx(u(%))}

so that to prove Prop. 3.1 one needs merely to verify assumptions (i) and (iii) of the
previous section.
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Proof of Prop. 3.1. Consider the ““distance” problem (2.3) which attains for a fixed
x € R" the form
I ylm — inf
(3.5 subject to
ye —u(x) + K.
One immediately sees that in this case

f1(x) = distg (u(x)) -
As the distance function is known to be Lipschitz (cf. [3]) assumption (i) is fulfilled.
Concerning assumption (iii), observe that

(3-6) A(x) = —p(x) + Projg (u(x))

and the map A is indeed set-valued due to the nonconvexity of K. To show the
existence of a selection o of 4, continuous at £, observe that for x from a neighbour-
hood O of £ and y € A(x) one has

|y = A®)]m = [—#(x) + Projx (u(x))lm < [—u(x) + w(&)|n < Lix — £,
where Lis the Lipschitz constant of u on O. Thus A4 is upper Lipschitz on a neigh-
bourhood of £ which implies the validity of assumption (iii). O
In optimal control problems p is often given implicitly, by means of a system
equation

(3.7) G(x,y) =0,
where G[R" x R™ — R™] is a continuously differentiable operator and
(3.8) G(x, u(x)) =0 forall xeR".

Suppose that u is continuously differentiable on a neighbourhood of £. Then on the
basis of Prop 3.1 we may derive the optimality conditions for the finite-dimensional
abstract control problem
f(x) - inf
subject to
(3.9) G(x,y) =0
xeS

yeK.

Proposition 3.2. Assume that the pair (%, $) is a local solution of problem (3.9)
which satisfies all requirements of Prop. 3.1 with u being the implicit function of
(3.7). Then there exists a vector p € R™ such that the Lagrangian

g(xx ) P) = f(x) - <P’ G(x’ }’)>
satisfies the relations
0€0,2(% 9, ) + N,(%)

(3.10) V,2(% 9, ) e CL0) -
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Proof. Clearly, relation (3.2) holds with some k* e Cx(9) and we have to express
Vu(%) in terms of G. Assume that p is a solution of an “adjoint” equation

(3.11) (V,G(£, 9)" p + k*=0.
Then for a vector h € R” one has

= {(ViR)TR* By = (V)T (V,6(%, 9)) b, > =
because V,G(%, §) + V,G(%, ) Vu(£) = 0. Hence,

(Vu(2)" k* = (V.G(&, 9))" b

so that (3.2) directly implies the first relation from (3.10). The second is merely
a transcription of (3.11). O

Remark. In a dynamic context this second relation of (3.10) generates the appro-
priate adjoint inclusion.

CONCLUSION

It is true that in the most important applications of model (1.1) (like in the optimum
design problems with variational inequalities) the map F is convex-valued. Then,
of course, the optimality conditions (support principle), derived e.g. in [11] under
less stringent requirements than those of Sect. 2, suffice. On the other hand it seems
reasonable to investigate possible extensions of this principle for general maps F,
and Sect 3 shows that we can find interesting applications also in this case, Moreover,
the technique used in the proof of Prop. 2.1 may well be applied also to the numerical
solution of (1.1) independently of whether F is convex- or nonconvez-valued. The
idea relies on the combination of the exact penalization with some modern numerical
method for nonsmooth optimization. In particular, such a method could be applied
to the “augmented “’problem

W(x) = f(x) + r fi(x) > inf
subject to
xeSsS.

This possibility will be investigated elsewhere.
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Souhrn

PODMINKY OPTIMALITY V JEDNE TRIDE OPTIMALIZACNICH ULOH

JIRf V. OUTRATA

V &lanku jsou odvozeny nutné podminky optimality pro minimalizaci lokalné lipschitzovské
kriteridlni funkce na mnoZin€ bodu vyhovujicich omezenim x € S, 0 € F(x), kde S je uzaviena
mnoZina a F je mnohozna&né zobrazeni, u néhoZ se nepfedpoklada konvexnost v Zadném smyslu.
Ziskané podminky jsou aplikovany na zobecnénou ulohu matematického programovani a ab-
straktni ulohu optimalniho fizeni kcne¢né dimenze.

Pe3rome

HEOBXOJUMBIE VCJIOBUS OIITUMAJIBHOCTH OJISI OJHOI'O KJIACCA
SKCTPEMAJIBHBIX 3ATAY

JIRf V. OUTRATA

M3yuaroTca HeoOXOQUMBbIE YCITOBKA 9KCTPEMYMa B 3a[24aX MUHHMHK3ALMY JIOKAJBHO JIMITIUHLIE-
BO LiesieBOM QYHKIUY NIPU HATIMYUK OrpaHuYeHui x € S, 0 € F(x), rae S — 3aMKHYTO€ MHOXECTBO

u F — MHOTo3HAYHOE oTo0paxerye. He npernonararoTcs HY BBINYKIOCTb HU BbIYK/IO3HAYROCTD F.
VcioBus CNONTB3YIOTCS B 0000IIEHHOM 32/1a4€ MAaTeMaTHYECKOTO NPOrPAMMEPOBAHHS M B abCT) pa-
KTHO# 33a7a4€ OITHMAJBHOTO YIIPaBJICHHUS KOHEYHOIT Pa3MEepHOCTH.
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