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THE ROTHE METHOD AND TIME PERIODIC SOLUTIONS
TO THE NAVIER-STOKES EQUATIONS AND EQUATIONS
OF MAGNETOHYDRODYNAMICS

DANA LAUEROVA
(Received March 29, 1988)

Summary. The existence of a periodic solution of a nonlinear operator equation z’ 4 Ayz -+
— Byz = Fis proved. The theory developed may be used to prove the existence of a periodic
solution of the variational formulation of the Navier-Stokes equations or the equations of
magnetohydrodynamics. The proof of the main existence theorem is based on Rothe method
in combination with the Galerkin method, using the Brouwer fixed point theorem.
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1. INTRODUCTION

In this paper Rothe method is applied to prove the existence of a periodic solution
of a nonlinear operator equation

(1) u' + Agu + Bou = F,

where A, is a linear differential operator continuous as an operator from the separable
Hilbert space LZ(O, T, V) into his dual L,(0, T; V'), B, is a nonlinear differential
operator of a special type operating on L,(0, T; V) and F € L0, T;: V).

Special properties of the nonlinear operator B, arise as a consequence of the fact
that the equation (1) represents a general form of the variational formulation of the
Navier-Stokes equations or the equations of magnetohydrodynamics. In particular,
B, does not fulfil the condition of monotonicity, therefore it is not possible to use
Rothe method in such a way as it was done e.g. in [ | —4]. The most similar problems
to that given by (1) were solved by R. Temam in [5] but without periodicity as-
sumptions.

In solving our problem we first apply time-discretization to the equation (1) (with
a partition of interval 0, T in N subintervals of length h = T/N) and then we look
for a solution of the m-dimensional approximation of this semi-discretized problem
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(the principle of the Galerkin method). A solution of the equation (1) is then obtained
by simultaneous limiting processes m — oo and h = h,, — 0.

2. DEFINITIONS AND NOTATION

Let two real separable Hilbert spaces V, H be given, V being compactly and densely
embedded in H. Identifying H with its dual H', we may write V(Q HQ V'. The
inner products in H and V are denoted by (-, +) and [+, ], and the norms induced by
these products are denoted by | ], and [+], respectively. Further, let a real separable
Hilbert space V, be given, s € N (s fixed), with an inner product [+, -], and the norm
[-]s such that ¥, is continuously and densely embedded in V. The dual pairing
between Vand V' as well as between V and V| is denoted by {-, *>.

In the sequel, B-spaces L,(0, T; X), L,(0, T; X) will be used, where X is a B-space;
their definitions may be found e.g. in [3].

We shall denote by 2'(0, T; V;) the space of distributions on <0, T) with values
in V,. We shall understand under the derivative z’ of a function z € L,(0, T; V) <
= 2'(0, T; V,) the derivative in the sense of distributions such that 2z’ € L,(0, T; V.).

Let the operator A,: V' — V' be defined by the relation

(2) (Aoz, 2y = [2, 2], z,2eV.

A, is a linear continuous operator on V.
Let the operator B,: V — V| be defined by the relation

(3) Boz = By(z, 2),

where By: H x V — V. is a bilinear continuous operator such that

4) (Bo(z, %), 2y = —<(By(z,%),2), z,zeV, zeV,
and
(5) (By(z,2),2) < clz| [£] [£],, zeH, ZeV, teV,

hold (c is positive constant).
It follows from (4) that

(6) {Byz,z) =0, zeV,.

We shall assume the operators A4,, B, to be defined on L,(0, T; V) by the relations
(Aoz) (t) = A, 2(1)
(Boz) (t) = B, (1)

for a.e. te (0, T).
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Analogously, the operator B, is supposed to be defined on L,(0, T; H) x
x L,(0, T; V) by the relation

(Bo(z, 2)) (1) = Bo(=(1), £(1))

for a.e. te <0, T).

3. EXISTENCE THEOREM

Theorem 1. Let a function F e L,(0, T; V') be given. Then there exists at least
one function z satisfying the relations

@) z €eL)(0, T, V)n L,(0,T; H),
2 e L,(0, Ty VY),

(3) z + Aoz + Byz = F,

) z(0) = z(T).

Proof. We shall apply Rothe method in the following way: Let {t,}Y_, be a uni-
form partition of <0, T)», h = TN, Ne N, t, = ph. Semidiscretizing (8) we get
a system of N equations

1

ZP_ZP_
(10) P — 4+ Aoz + ByzP = F?, p=1,..,N,

where z” = z(1,),

= [ KO 1= (et p= 1N,
h.,jp
It is evident that
(11) 1E v = IFllpmorvs -

We shall use the Galerkin method to solve (10).
The space V; being compactly embedded in H, there exists an orthonormal base

2]

{w;}72, in ¥, and the set of numbers y; > 0, i = 1,2, ... such that
(12) [wi v]s = yiw;, v)

for every ve V.
For every m € N we look for a sequence {z/}, p = 0,1, ..., N of the form

m

(13) zn = ). Eo;
i=1
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so that the following equations are satisfied:

p _ ,p—1
(14) <»Zﬂ~v]~'ﬂr— , w,) + [22, w;] + {Bozh, w;> =
h
={Frwy, j=1,...m,
(15) 20 =2V,

To prove the existence of a solution of (14) and (15) we formulate the next two
lemmas:

Lemma 1. There exists a number R > 0 independent of m, h, p and such that
the following assertion holds: If zI,” ' € B,(0, R) for some pe{l,...,N} (B,(0, R)

denotes the closed ball with center 0 and radius R in the space lin {w}7- | with the
norm |+|), and if =57, 2! satisfy the equation (14), then z[, € B,(0, R) as well.

Proof of Lemma 1. Using (6) we obtain from (14) (¢ > 0)
]IZ

N ] L A 1
2 2 2¢ 2

(16) Iz,”,,z + h[zmz <

For 0 < ¢ < 2 and R such that

(17) Rz |l o) \/<3(T1_7)>

we get easily from (16) that the desired implication
(18) |z27' < R=|zf] < R

m

holds (¢, denotes the constant of the embedding of Vin H).

Lemma 2. Let R satisfy (17). Then for every me N there exists h = h,, such
that the following assertion holds: If zI”' € B, (0, R) then there exists a unique
function zi e B,(0, R) such that z"', z satisfy the equation (14) (with h = h,,).
Moreover, z, depends continuously on z0~'.

To prove Lemma 2 we shall use the theorem on local existence of a solution of
an cquation depending on a parameter (Theorem 3.4.1, Chap. I, [6]) which we

present here as Lemma 3:

Lemma 3. Let (X, d,), (X,,d,) be two complete metric spaces, let x,€ X,
Po€X, 0 f>0,0< 1< 1and suppose that
(i) G: B(xg, % X;) x B(po, B; X2) = X, is continuous;
(it) d,(G(x,, p), G(x3, p)) < 2 d(xy, x;) for x, x, € B(x,, o; X,) and
p e B(po, B: X,);
(i) d,(G(xq, p), xo) < 2(1 — 1) for pe B(py, B; X,).
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Then the equation x = G(x, p) has a unique solution x = x*(p)e B(xo, ; X,)
for any pe B(py, B: X,). Moreover, x*: B(po, B; X,) = B(xq, 2 X{) is continuous.

Proofof Lemma 2. Using (13) we can rewrite the equation (14) in the form
(19) &= &7l g AT [P — AEP — B(e) &7

where &” and ¢” are vectors, the coordinates of which are respectively &2 and (F”, ,),
i=1,...,m, while 4, A and B(é‘”) are matrices, the elements of which are respec-
tively (4);; = [o;, o], (4);; = (0;, w;) and B(&?),; = (By(2h, ), 0>, i = 1,...,m,
j=1,...,m. To prove the existence of a solution of the equation (19) we use
Lemma 3:

Let the mapping G: R™ x R™ — R™ be defined by the relation

(20) G(er, ert) = &7 4 hA™ [P — AEP — B(&P) &7].

Without going in details, we may ensure that the conditions (i)—(iii) of Lemma 3 be
fulfilled by making h dependent on m. In particular, it can be easily shown that for
every me N there exists h = h,, sufficiently small (h, — 0, m — o) such that G
defined by (20) satisfies the conditions (i)—(iii) of Lemma 3 (with o > § > 0).
Moreover, we choose (for every m) h = h, so that h, = T|N,, where N, € N.
Thus, the partition of the interval {0, T is made dependent on m.

For G defined by (20) the assertion of Lemma 3 can be formulated as follows:

For every &7~ e B(0, B, R™) (B(0, B, R) denotes the closed ball with center 0 and
radius B in the space R™) there exists one and only one &” € B(0, o, R™) (¢ > f) such
that 771, &7 satisfy (19) (with h = h,) and, moreover, &” depends continuously
on &P 1,

To interpret this result in the space of functions z%~ ', z7, we choose f sufficiently
large so that

B(0, R, R}') = B(0, B, B™)

m
where R denotes the space R™ with the norm |o,,, = /(Y (¢?/7))). (v; were defined
in (12)). =t
Thus, 77" e B(0, B, R™) for z&~ '€ B,(0, R), and we may define a continuous
mapping 77 (meN, pe{l,...,N,}) in the following way:

J?: B,(0, R) - B,(0, k)

m

p—1
Zn l——)Zp,

where k is the constant of the embedding of V;in H, « > f > 0, and z? is the unique

“m

solution of the equation (14). From Lemma 1 we obtain that =, = J7(zf"")e

€ B,(0, R). Thus, the mapping 7/, maps the closed ball B,(0, R) continuously into
itself. This completes the proof of Lemma 2.
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Define a mapping
'@m = g‘Nmo...oy,:,
Plzn) = 2"
such that in the sequence
(21) {zp, ..., zom}
each two neighbouring elements satisfy the equation (14) (with i = h,,), each element
is uniquely determined by its predecessor and depends on it continuously. £,, maps
the closed ball B,(0, R) continuously into itself. From the Brouwer fixed point
theorem we obtain the existence of a function z,,, such that 2,(z,,,) = zo,,. We put
0
z

= Zo, and for this initial function there exists a unique sequence (21) with the
properties mentioned above. The following estimate takes place:

(22) |z2] <R, p=0,1,...,N,, meN.

4. APRIORI ESTIMATES AND LIMITING PROCESSES

Using the sequence (21) with z), = z,,, we define functions

(23) zm(t) =Z,I;, tEIp, Ipz((p'—l)hmaphm>$ p=1;-'-5Nm9
z,(0) = 20,

(24) Z,(1) = (_1’}1‘—1)"»!) oy (ﬂr;:l) 2t
m 1m

tel,, p=1,...,N,,
Z,(0) = z,
Further, we define
F,(t)=F?, tel,, p=1,...,N,.
In the following lemma standard methods are used to prove some of the apriori

estimates (cf. e.g. [4], [5]).

Lemma 4. The sequences of functions {z,}7_,,{Z,}w_, are bounded in the
space L2(0, T, V) n L,(0, T; H). Moreover,

(25) —Z,—0 in Ly0,T;H), m—- 0.
Proof. From (22) we immediately obtain

(26) Iznlr.io, sy = R

(7) 1Zulz.co,rim S R
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The equation (14) implies

N Non
X (znf* = 127+ 2 = 27 + 2k Y [ <
p=1 p=1

< ¥ ha(lFl + [2F).

Using (11) and the periodicity condition (15), we conclude that

N
(28) leh = 27 < dy
p=1
(29) I2u]| 220,70y = Zl ha[zh]* < dy,
h 2
(30) [Zull7a0,750) = :Z h,[z5]? < 2d,

where dy = T||F|; 0.1
The condition (25) is easily proved if we notice that

Zm(t) Zm(t) = (Z - Z;‘:; 1) B te Ip )
and that (28) holds.

Lemma 5. The sequence {dZ,,/dt}*_, is bounded in the space L,(0, T; V).

Proof. The proof of this lemma is based on a special choice of the base {w;}{ ,
in the space V (relation (12)): For the functions (23), (24) the equation (14) is of the

form

00 (L 0)) o Bl o + Blanl) 20 00 = Bl .

forae. te0, Ty, j=1,...m
Define a projector

P,: H - lin {07,
m
(32) P,(v) =.; 7:(v, @) w; .
For v e ¥, we have from (31)

(33) (d—Z(%t) R v) = (F,(1), P> — [z,(t), Puv] — {Bo(z.(t), Zn(1)), Py .
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It follows from (32) that
(34) [Puv]s < [v]
and, consequently,
(35) [P,] £ csfv]s -
Thus, from (33) we get
Z,(0), )P = el [Ful)p + [2aD]? + |2a(0] [2u()]?} [01

and this implies, by virtue of (11), (26) and (29), the assertion of Lemma 5.
Lemmas 4 and 5 enable us to assert that there exist subsequences {z,} < {z,}.
{z,} ={Z,} such that

(36) z, =z (weak convergence in L,(0, T; V) and
x-weak convergence in L, (0, T; H)),

(37) Z,—~ Z (weak convergence in L,(0, T; V) and
x-weak convergence in L, (0, T; H)),

(38) Z, — Z' (weak convergence in L,(0, T; V})).

The theorem on compact embedding (Theorem 5.1, Chap. I, [7]) implies that

(39) Z,— Z stronglyin L,(0,T; H).

From (25) and (36)—(39) it follows that

(40) z=12Z

and

(41) Z, — z' (weak convergence in L,(0, T; V7).

From the definition of A, we have
(42) Aoz, — Aoz (weak convergence in L,(0, T; V')).

Lemma 6. There exists a subsequence of §0(z“, zu) that converges weakly to
By(z, z) in L,(0, T, V).

Proof. Using the properties of B, and the fact that z, — z in L,(0, T; H), it can
be easily proved that

(43) {Bo(z,5 2,), vy = (By(z, z),v) for veL,(0,T;V,).

Since (26) and (29) hold, the sequence By(z,, z,) is bounded in L,(0, T; V). Thus,
there exists a subsequence of By(z,, z,) that converges weakly in the space
L,(0, T; V}). For simplicity it will be denoted by By(z,, z,) again. By virtue of (43)
the assertion of Lemma 6 is proved.
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Lemma 7. The sequence {F,} converges to F in L,(0, T; V’).

The proof of this lemma is quite analogous to that of Lemma 4.9, Chap. III, [5],
therefore we do not present it here.

The system of equations (31) can be rewritten in a form suitable for the limiting
process:

@ () ¢ n 0+ Bl 20) 0 =

= <Fp(t)’wj>’ J=1L.,u.

Let {g;};2, denote the base in L,(0, T). From (44), using Lemmas 6 and 7 and the
relations (41) and (42), we obtain by the limiting process u — oo, for every i, j € N,
the equation

(45) {z, giwj>t + {4z, giwj>t + {Byz, gin>r = (F, gi“’j)z s

where (-, *), denotes the dual pairing between L,(0, T; V;) and L,(0, T: V;). This
implies that (8) is fulfilled. The periodicity condition (9) is also satisfied since it
follows from (37), (40) and (41) that

(46) Z,(t) = z(1) (weak convergence in V}) for every te<0, T),
and, simultaneously,

Z,(0)=Z(T) forall p.
This completes the proof of Theorem 1.

Remark. Specifying the operators A,, B, and the spaces V;, Vand H, we can use
Theorem 1 to prove the existence of a periodic solution of a variational formulation
of the Navier-Stokes equations and the equations of magnetohydrodynamics, for
details see [8].

References

[1] J. Neéas: Application of Rothe’s method to abstract parabolic equations. Czechoslovak
Math. J. 24 (1974), p. 496— 500.

[2] J. Kalur: Application of Rothe’s Method to Nonlinear Equations. Mat. as. 25 (1975),
p. 63—81.

[3] J. Kalur: Method of Rothe and Nonlinear Parabolic Boundary Value Problems of Arbitrary
Order. Czechoslovak Math. J. 28 (1978), p. 507— 524.

[4] K. Rektorys: The method of Discretization in Time and Partial Differential Equations. D.
Reidel Publishing Company, Holland a SNTL Praha 1982.

[5]1 R. Temam: Navier-Stokes Equations. Theory and Numerical Analysis. North-Holland
Publishing Company — Amsterodam, New York, Oxford 1977.

[6] O. Vejvoda et al.: Partial Differential Equations. Time Periodic Solutions. Sijthoff Noordhoft
1981.

97



[7] J. L. Lions: Quelque méthodes de résolution des problemes aux limites non linéaires. Dunod,
Paris 1969.

[81 D. Lauerovd: Proof of existence of a weak periodic solution of Navier-Stokes equations and
equations of magnetohydrodynamics by Rothe’s method. (Czech.) Dissertation, Praha 1986.

Souhrn

ROTHEHO METODA A PERIODICKE RESENI NAVIER-STOKESOVYCH ROVNIC
A ROVNIC MAGNETICKE HYDRODYNAMIKY

DANA LAUEROVA

V ¢lanku je dokazana existence periodického feSeni nelinearni operatorové rovnice z’ -
-+ Agz + Byz = F, ktera vznika zobecnénim variaéni formulace ulohy Navier-Stokesovych
rovnic nebo rovnic magnetické hydrodynamiky. Vhodnym spojenim Rotheho metody, Galerki-
novy metody a Brouwerovy véty je dokazana hlavni existenéni véta.

Pe3rome

METO/, POTE U MEPUOJUYECKUE PEMIEHUSI VPABHEHUI
HABUEPA-CTOKCA U YPABHEHUUN MATHETOIMAPOJAVHAMUKHA

DANA LAUEROVA

B cTatbe 0Ka3bIBa€TCs CyNIECTBOBAHUE IIEPHOIMYECKOTO PEILEHMS HEIMHEHHOTO ONEPATOPHOIO
ypaBHeHust z’ - Agz + Byz = F. CHOpMyIHPOBAHHYIO TCOPEMY CyLIECTBOBAHMS MOXHO HEIIO-
CpeCTBEHHO IIPUMEHHTh K [10Ka3aTEJbCTBY CYyLICCTBOBAHMS IEPUOJAMYECKOIO PEIIEHMsl Bapua-
LIMOHHON (GOpMYTHPOBKHM ypaBHeHuit HaBuepa-CTokca MM ypaBHEHHH MarHeTOrMIPOAWHAMHKM.
["J1aBHBIM METOZOM JIOKa3aTesbCTBa siBisieTcs MeTox PoTe B xoMOMHauuu ¢ meTogom I'anepkuna
TIPU MCTIOJIb30BaHUM TeopeMbl Bpoyapa.
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