Beloslav Riečan
On mean value in F-quantum spaces

Aplikace matematiky, Vol. 35 (1990), No. 3, 209--214

Persistent URL: http://dml.cz/dmlcz/104404

Terms of use:

© Institute of Mathematics AS CR, 1990

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these *Terms of use.*
ON MEAN VALUE IN F-QUANTUM SPACES

BELOSLAV RIEČAN

(Received February 17, 1989)

Summary. The paper deals with a new mathematical model for quantum mechanics based on the fuzzy set theory [1]. The indefinite integral of observables is defined and some basic properties of the integral are examined.

Keywords: Quantum mechanics, observables, states, probability, fuzzy sets.

AMS Classification: 81C20.

1. INTRODUCTION

A new model for mechanics was suggested by A. Dvurečenskij and the author in [1] and [2]. This model was further developed e.g. in [3–5]. In [6–8], a calculus for observables was constructed. There are three basic notions in the F-quantum space theory: F-quantum space, F-observable and F-state.

F-quantum space is a family $F \subseteq \langle 0, 1 \rangle^x$ of real functions satisfying the following properties: 1. If $f \in F$, then $f' = 1 - f \in F$. 2. If $f_n \in F$ ($n = 1, 2, \ldots$), then $\bigvee f_n = \sup f_n \in F$.

F-observable is a σ-homomorphism from the σ-algebra B of Borel subsets of R to F, i.e. a mapping with the following two properties: 1. $x(E') = x(E)'$ for every $E \in B$. 2. $x(\bigcup E_n) = \bigvee x(E_n)$ for every $E_n \in B$ ($n = 1, 2, \ldots$).

F-state is a mapping $m: F \to \langle 0, 1 \rangle$ defined on an F-quantum space F and satisfying the following two conditions: 1. $m(a \lor a') = 1$ for every $a \in F$. 2. If $a_n \in F$ ($n = 1, 2, \ldots$) and $a_i \leq a'_j$ ($i \neq j$), then $m(\bigvee a_n) = \sum m(a_n)$. Recall that the definition due to Piasecki [9] inspired our investigations.

A classical analogue of a state is a probability measure, a classical analogue of an observable is a random variable ξ defined on a probability space (Ω, S, P). To every random variable ξ an F-observable x can be assigned by the formula $x(E) = \xi^{-1}(E)$.

If x is an F-observable and m is an F-state, then the composite mapping $m \circ x$ is a probability measure on the σ-algebra B. We shall denote it by m_x, hence $m_x(E) = m(x(E))$, $E \in B$.

209
In a framework of the calculus constructed in [6—8], we shall construct the indefinite integral of an observable and prove its \(G \)-additivity. Another approach to the problem is given in [10].

Recall that an \(F \)-observable \(x \) is called integrable, if the integral \(\int_R t \, dm_x(t) \) exists. It is then denoted by \(m(x) \) and called the mean value of \(x \). This definition is also in full agreement with the classical one.

2. INDEFINITE INTEGRAL

Our aim is to define the indefinite integral \(\int_a x \, dm, a \in F \). This integral presents the crucial point in the concept of conditional probability. We shall follow again the classical case, where \(\int_A \xi \, dP = \int_{A}^{A} \xi \, dP \). Therefore we must investigate the preimages \((\xi_A)^{-1}(E), E \in B \). This investigation leads to the following definition.

Definition 1. If \(x: B \to F \) is an \(F \)-observable, then for every \(a \in F \) and every Borel set \(E \in B \) we define

\[
x_a(E) = \begin{cases}
 a \land (x(E) \lor a'), & \text{if } 0 \notin E \\
 a' \lor (x(E) \land a), & \text{if } 0 \in E
\end{cases}
\]

Proposition 1. The mapping \(x_a: B \to F \) is an \(F \)-observable for any \(a \in F \). If \(x \) is integrable, then \(x_a \) is integrable, too.

Proof. If \(0 \notin E \), then \(0 \in E' \). Therefore

\[
x_a(E') = a' \lor (x(E') \land a) = a' \lor (x(E') \land a) = (a \land (x(E) \lor a'))'.
\]

The case \(0 \in E \) can be examined similarly.

If \(A, B \) are disjoint Borel sets and \(0 \notin A, 0 \in B \), then \(0 \in A \cup B \) and

\[
x_a(A) \lor x_a(B) = [a \land (x(A) \lor a')] \lor a' \lor (a \land x(B)) = a' \lor (a \land (x(A))) \lor (a \land (x(B))) = a' \lor (a \land (x(A) \lor x(B))) = a' \lor [a \land x(A \cup B)] = x_a(A \cup B).
\]

The case \(0 \notin A, 0 \notin B \) can be examined similarly. Now, if \(A_n \in B \) \((n = 1, 2, \ldots) \) and \(A_n \) are disjoint, then \(0 \) belongs at most to one set, say \(0 \in A_1 \). Then by the above

\[
x_a(\bigcup_{n} A_n) = x_a(A_1) \lor x_a(\bigcup_{n=1}^{\infty} A_n) = x_a(A_1) \lor (a \land (\bigvee_{n=1}^{\infty} x(A_n)) \lor a') = x_a(A_1) \lor \bigvee_{n=1}^{\infty} (a \land (x(A_n) \lor a')) = x_a(A_1) \lor \bigvee_{n=1}^{\infty} x_a(A_n).
\]

The case when \(0 \notin \bigcup_{n} A_n \) can be examined similarly.
Let \(x \) be integrable. Put \(G(t) = m(x((-\infty, t))) \), \(H(t) = m(x_a((-\infty, t))) \). Then \(H(t) \leq G(t) + 1 \). Since \(x \) is integrable, the integral \(\int_R |t| \, dH(t) \) exists. Therefore, \(\int_R |t| \, dH(t) \) and hence also \(\int_R t \, dH(t) = \int_R t \, dm_x(t) \) exists.

Definition 2. Let \(x \) be an integrable \(F \)-observable, \(a \in F \). Then we define

\[
\int_a x \, dm = m(x_a) = \int_R t \, dm_x(t) .
\]

3. SUM OF OBSERVABLES

Since our next step is the proof of the \(\sigma \)-additivity of the mapping \(a \mapsto \int_a x \, dm \), in the connection with the relation \(\chi_{A \cup B} = \chi_A + \chi_B \ (A \cap B = \emptyset) \), we must first study the sum of observables. The sum was defined in [6—8] as an \(F \)-observable \(z: B \to F \) by the formula

\[
z((-\infty, t)) = \bigvee_{r < t} x((-\infty, r)) \land y((-\infty, t - r)) , \quad t \in R .
\]

Of course, it was proved that by this formula an \(F \)-observable \(z \) is uniquely determined. It is denoted by \(z = x + y \).

Proposition 2. If \(a, b \in F \) are orthogonal elements (i.e. \(a \perp b \)), then \(m(x_{a \lor b}) = = m(x_a + x_b) \).

Proof. First observe that \(m(b) = 1 \) implies \(m(b \land c) = m(c) \) and \(m(b) = 0 \) implies \(m(b \lor c) = m(c) \). Denote \(z = x_a + x_b \). Let \(t \leq 0 \). Then

\[
m(z((-\infty, t))) = m(\bigvee_{r < t} (a \land (x((-\infty, r)) \lor a'))) \land
\]

\[
\land (b' \lor (x((-\infty, t - r) \land b)) \lor \bigvee_{t \leq r \leq 0} (a \land (x((-\infty, r)) \lor a')) \land
\]

\[
\land (b \land (x((-\infty, t - r) \lor b')) \lor \bigvee_{r > 0} (a' \lor ((x((-\infty, r)) \land a)) \land
\]

\[
\land (b \land (x((-\infty, t - r)) \lor b'))) = m(\bigvee_{r < t} (a \land (x((-\infty, r))))) \land
\]

\[
\land (b' \lor x((-\infty, t - r))) \lor \bigvee_{r \leq t} (a \land (x((-\infty, r)) \land
\]

\[
\land (b \land x((-\infty, t - r)) \lor \bigvee_{t \geq r} (a \lor x((-\infty, r)))) \land
\]

\[
\land (b \land x((-\infty, t - r))) \lor \bigvee_{r \geq 0} (a' \lor x((-\infty, r))) \land
\]

\[
\land (b \land x((-\infty, t - r))) = m((a \land x((-\infty, t)))) \lor
\]

\[
\lor (b \land x((-\infty, t))) = m((a \lor b) \land x((-\infty, t))) =
\]

\[
= m(x_{a \lor b}((-\infty, t))).
\]
If \(t > 0 \), then

\[
m(z((-\infty, t))) = m(\bigvee_{r \leq 0} ((a \land (x((-\infty, r)) \lor a'))) \land \\
\land (b' \lor (x(-\infty, t - r) \land b))) \lor \bigvee_{0 < r < t} ((a' \lor x((\infty, r)) \land a) \land \\
\land (b' \lor (x((-\infty, t - r)) \land b))) \lor \bigvee_{r \geq t} ((a' \lor x((\infty, r)) \land a) \land \\
\land (b \land x((-\infty, t - r)) \lor b'))) = m((a' \lor b') \lor x((-\infty, t))) = \\
= m((a \lor b)' \lor x((-\infty, t))) = m(x_{a\lor b}((-\infty, t))).
\]

Since the equalities hold for every \(t \in R \), we have \(m(x_{a\lor b}(D)) = m(x_a + x_b(D)) \) for every \(D \in B \).

Proposition 3. If \(x \) is an integrable \(F \)-observable and \(a, b \) are two orthogonal elements of \(F \), then

\[
m(x_{a\lor b}) = m(x_a) + m(x_b).
\]

Proof. For every \(c \in F \) we define \(Q_c : B \to \langle 0, 1 \rangle \) by the equality \(Q_c(D) = m(x_c(D \setminus \{0\})) \). Since \(0 \notin D \setminus \{0\} \), we have

\[
Q_a(D) = m(c \land x(D \setminus \{0\})),
\]

hence

\[
Q_{a\lor b}(D) = m((a \lor b) \land x(D \setminus \{0\})) = Q_a(D) + Q_b(D).
\]

Moreover,

\[
m(x_c) = \int_R t \, dm_{x_c}(t) = \int_{R \setminus \{0\}} t \, dm_{x_c}(t) + \int_{\{0\}} t \, dm_{x_c}(t) =
\]

\[
= \int_{R \setminus \{0\}} t \, dm_{x_c}(t) = \int_R t \, dQ_c(t)
\]

for every \(c \in F \), hence

\[
m(x_{a\lor b}) = \int_R t \, dQ_{a\lor b}(t) = \int_R t \, dQ_a(t) + \int_R t \, dQ_b(t) = m(x_a) + m(x_b).
\]

4. **Properties of the Indefinite Integral**

Proposition 4. If \(a_n \in F \) (\(n = 1, 2, \ldots \)), \(a_n \succ a \), \(a \in F \) and \(x \) is an integrable observable, then

\[
\int_{s_n} x \, dm \to \int_a x \, dm.
\]

Proof. Put \(\mu_n = m_{x_{a_n}} (n = 1, 2, \ldots) \), \(\mu = m_{x_a} \), i.e.

\[
\mu_n(E) = \begin{cases}
m(a_n \land x(E)), & \text{if } 0 \notin E \\
m(a_n' \lor x(E)), & \text{if } 0 \in E,
\end{cases}
\]

and a similar rule holds for \(\mu \). Evidently \(\mu_n(E) \prec \mu(E) \) for \(0 \notin E \) and \(\mu_n(E) \succ \mu(E) \) if \(0 \in E \). Moreover, \(\mu_n(E) \leq \mu(E) \) in the former case and \(\mu_n(E) \leq \mu_1(E) \) in the latter.

212
Since the integrals \(\int R \mu_{n}(t) \) and \(\int R \mu(t) \) exist, for every \(\varepsilon > 0 \) there is an interval \((a, b) \) such that
\[
\int_{R \setminus (a, b)} \mu_{n}(t) < \varepsilon, \quad \int_{R \setminus (a, b)} \mu(t) < \varepsilon.
\]

It is not difficult to see that
\[
\lim_{n \to \infty} \int_{(a, b)} \mu_{n}(t) = \int_{(a, b)} \mu(t).
\]

Therefore
\[
\left| \int_{a} \mu_{n}(t) - \int_{a} \mu(t) \right| \leq \left| \int_{R \setminus (a, b)} \mu_{n}(t) \right| + \left| \int_{R \setminus (a, b)} \mu(t) \right| < 3\varepsilon.
\]

Theorem. Let \(x \) be an integrable observable. For any \(a \in F \) put \(v(a) = \int_{a} x \, dm \).

Then \(v \) has the following two properties:

1. \(v(a \lor a') = v(1) \) for every \(a \in F \).

2. If \(a_{n} \in F \) (\(n = 1, 2, \ldots \)), \(a_{n} \subseteq a_{n}' (n \neq m) \), then \(\mu \left(\bigvee_{n=1}^{\infty} a_{n} \right) = \sum_{n=1}^{\infty} \mu(a_{n}) \).

Proof. \(v(a \lor a') = \int_{R} \mu(t) \), where \(\mu(E) = m((a \lor a') \land x(E)) \) or \(v(E) = m((a \lor a') \lor x(E)) = m(x(E)) \).

Similarly \(v(1) = \int_{R} x \, dx(t) \), where \(x(E) = m(x(E)) \) in both cases. Therefore \(\mu = \varepsilon \) and \(v(a \lor a') = v(1) \) for any \(a \in F \).

If \(c, d \) are pairwise orthogonal, then by Proposition 2 and Proposition 3
\[
v(c \lor d) = m(x_{c \lor d}) = m(x_{c} + x_{d}) = m(x_{c}) + m(x_{d}) = v(c) + v(d).
\]

Hence, by induction,
\[
v(\bigvee_{i=1}^{n} a_{i}) = \sum_{i=1}^{n} v(a_{i}).
\]

If we now put \(b_{n} = \bigvee_{i=1}^{n} a_{i} \), then \(b = \bigvee_{n=1}^{\infty} a_{i} \). Therefore by Proposition 4
\[
v(\bigvee_{i=1}^{\infty} a_{i}) = v(b) = \lim_{n \to \infty} v(b_{n}) = \lim_{n \to \infty} \sum_{i=1}^{n} v(a_{i}) = \sum_{i=1}^{\infty} v(a_{i}).
\]

References

Súhrn

O STREDNEJ HODNOTE V F-KVANTOVOM PRIESTORE

BELOSLAV RIEČAN

Práca sa zaobiera novým matematickým modelom pre kvantovú mechaniku, ktorý je založený na teórii fuzzy množín [1]. Definuje sa neurčitý integrál z pozorovateľnej a skúmajú sa jeho základné vlastnosti.

Резюме

О СРЕДНЕМ ЗНАЧЕНИИ В F-КВАНТОВОМ ПРОСТРАНСТВЕ

BELOSLAV RIEČAN

В работе рассматривается новая математическая модель квантовой механики, основанная на теории нечетких множеств. Определяется неопределенный интеграл от измерения, рассматриваются его основные свойства.

Author’s address: Prof. RNDr. Beloslav Riečan, DrSc., MFF UK, Mlynská dolina, 842 15 Bratislava.