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Summary. New proofs of two previously published theorems relating nonsingularity of interval 
matrices to P-matrices are given. 
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In [5] we proved, in a broader frame of the problem of solving linear interval 
systems, two theorems relating nonsingularity of interval matrices to P-matrices 
(Theorems 1 and 2 below). It is the purpose of this paper to give alternative proofs 
of them, from which it can be perhaps better seen how nonsingularity is intertwinned 
with P-property. We also include some consequences implied by the properties of 
P-matrices. 

We begin with this simple auxiliary result: 

Lemma. Let A be a nonsingular n x n matrix and let B be an n x n matrix 
whose rows, except the j-th, are zero. Let 1 + (BA -1)^- :g 0. Then there exists 
a t e (0, l ] such that A + tB is singular. 

Proof. Consider the function cp of one real variable defined by cp(x) = 1 + 
+ T(BA_1)yi. Since (p(0) > 0 and (p(l) g 0, there exists a t e (0, l ] such that cp(t) = 0. 
Then the matrix A + tB = (E + tBA_1)A is singular since det (E + tBA-1) = 
-= 1 + iBA-% = 0. m 

Let A~,A+ be two n x n matrices, A~ g A+ (the inequality to be understood 
componentwise). The set of matrices 

A1 = {A; A" g A = A+] 

is called an interval matrix; we say that A1 is nonsingular (in [5]: regular) if each 
A e A1 is nonsingular. A square matrix A is said to be a P-matrix [ l ] if all its principal 
minors are positive. 
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First, we have this result: 

Theorem 1. Let A1 be nonsingular. Then for each Al9 A2 e A1, both A^^1 and 

A~XA2 are P-matrices. 

Proof. The proof consists of several steps. Let Al5 A2 e A1. 

(l) We shall prove that all leading principal minors ml9 ..., mn of A^^1 are 

positive. Put D = A1 — A2 so that AYA~X = E + DA J 1 , and denote by Dj 

(j = 1, ..., n) the matrix whose first j rows are identical with those of D and the 

remaining ones are zero. Then 

ntj = det(E + DyAJ1) 

holds for j = 1, ..., n. We shall prove by induction that mj > 0 for each j : 

(1.1) Case j = 1. Since m1 = det (E + D^J1) = 1 + (D^1)^, the above 

lemma implies m1 > 0, for otherwise the matrix A2 + tD! would be singular for 

some t e (0, l ] but A2 + tDx e A1, which is a contradiction. 

(L2) Case j > 1. Assume that mj„1 > 0 and consider the matrix 

(E + DjA~2

1)(E + Dj^A,1)-1 = E + (Dj - DJ.1)(A2 + Dj^y1 . 

Taking determinants on both sides we obtain 

^ ^ l + l(Dj-Dj_1)(A2 + Dj^1)~^jj. 
mj~i 

If the right-hand side were nonpositive, then, according to the lemma, A2 + D,_i + 

+ t(Dj — Dy_x) would be singular for some te(0, l ] , which is a contradiction 

since it is a matrix from A1. Hence 

m • 

И / - 1 

holds, which in conjunction with the induction hypothesis gives that m} > 0, which 

concludes the inductive proof. 

(2) Second we shall prove that each principal minor of AAAJ1 is positive. Consider 

a principal minor formed from the rows and columns with indices kl9 ...,kr, 1 :g 

g r = n. Let R be any permutation matrix with Rkjj = 1 (j = 1,..., r). Then the 

above minor is equal to the r-th leading principal minor of jRTA!AJ XR = (RTAXR) . 

.(RTA2R)~1. Since the interval matrix {jRTAK; A e A1} is nonsingular, all leading 

principal minors of (RrA1R) (RTA2R)~1 are positive due to (l). 

(3) To prove that A1

1A2 is also a P-matrix, consider the transpose interval 

matrix (A*)T = {AT; A e A1}. According to part (2), its nonsingularity implies that 

(A 2) (Ail) - x = (A~ lA2)
T is a P-matrix, hence so is A1

1A2. This completes the proof. 
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We shall now show that the result can be in a certain sense reversed, so that the 
P-property of a finite number of matrices of the form A~ XA2 will imply nonsingularity 
of A1. To this end, let us denote 

Ac = i(A~ + A+) , 

A = i ( A + -A~), 

then A" = A C - A , A + = Ac + A, A ^ 0. A diagonal matrix S satisfying \SH\ -= 1 
for each i is called a signature matrix, so that there are 2" signature matrices of size n. 

Theorem 2. An interval matrix A1 is nonsingular if and only if for each signature 
matrix S, Ac — SA is nonsingular and (Ac — SA)-1 (Ac + SA) is a P-matrix. 

Proof. The "only if" part being an obvious consequence of Theorem 1, we must 
prove the "if" part only. This will be done if we prove that for each A e A1 and each 
b e iv", the system of linear equations 

Ax = b 

has a solution, which, according to a theorem proved in [6], is equivalent to the 
fact that for each signature matrix S, the system of linear inequalities 

(*) SAx = Sb 

has a solution. To show this, consider the linear complementarity problem 

X l = (Ac - SA)"1 (Ac + SA) x2 + (Ac - SA)"1 b , 

x]x2 = 0 , 

xt =0 , x2 = 0 . 

Since (Ac — SA)-1 (Ac + SA) is a P-matrix by the assumption, this problem has 
a solution xl9 x2, as proved in [7] . Then 

Ac(x1 - x2) - SA(x! + x2) = b 

and for each A E A1 we have 

SA(x, - x2) = SAc(xx - x2) + S(A - Ac) (xt - x2) = 

= SAc(xt - x2) - A(xx + x2) = Sb > 

hence (*) has a solution, which by virtue of the above-quoted theorem proves that A1 

is nonsingular. • 

It is worth noting that the matrices (Ac — SA)-1 (Ac + Szl) cannot be replaced 
by matrices of the type (Ac — SA) (Ac + SA)"1 in the formulation of Theorem 2: 

Example 1 (communicated to the author by M. Baumann). Let 

'3 -1> 
Á~-A 3 = ( " ) ' 
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Then (Ac — SA) (Ac + SA) i is a P-matrix for each signature matrix S, but A" 
contains the singular matrix 

'3 3^ 

Since each positive definite (not necessarily symmetric) matrix is a P-matrix [1], 
we obtain a consequence: 

Corollary 1. For each signature matrix 5, let Ac — SA be nonsingular and 
(Ac — SA)'1 (Ac + SA) positive definite. Then A1 is nonsingular. 

The converse implication is, however, not true: 

Example 2. Let 

---(-uW! J 
Then A1 is obviously nonsingular, but none of the matrices (Ac — SA)"1 (Ac + SA) 
is positive definite. 

Finally, using the well-known properties of P-matrices, we may draw some con­
sequences regarding nonsingular interval matrices: 

Corollary 2. Let A1 be nonsingular. Then for each A1? A2 e A1 we have: 

(i) each diagonal element of both Al~
1A2 and AtA2

x is positive, 

(ii) for each signature matrix S there exist x l9 x2 such that Axxx = A2x2> 

Sxi > 0, Sx2 > 0, 

(iii) for each signature matrix S there exist xx,x2 such that Ax
ixl = A2

_1x2> 

Sx! > 0, Sx2 > 0, 

(iv) if A!xi = A2x2 for some xt 4= 0, x2 4= 0, then (xx\ (x2); > 0 for some 
ie{\, ...,n}, 

(v) if A^xi = A2
1x2 for some xi 4= 0, x2 4= 0, then (xi); (x2)* > 0 for some 

ie{\, ..., n}. 

Proof, (i) follows from the fact that each diagonal element (i.e., first order minor) 
of a P-matrix is positive, (ii) Let S be a signature matrix. Then the interval matrix 
{AS; Ae AT] is nonsingular, hence ( A i S ) - 1 (A2S) = SA^^S is a P-matrix; 
then, as proved by Gale and Nikaido [3], there exists a y2 > 0 such that yt = 
= SA1~

1A2Sy2 > 0. Setting xx = Syu x2 = Sy2, we obtain vectors with the pro­
perties stated, (iii) is proved in a similar manner as (ii). (iv) If Axx± = A2x2, then 
xi = A~l1A2x2 and since A~[1A2 is a P-matrix, the result follows from the charac­
terization by Fiedler and Ptak [2]. (v) follows in a similar way from the fact that 
AyA^1 is a P-matrix. • 
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The necessary and sufficient nonsingularity conditions given in Theorem 2 are 

generally very difficult to verify. This fact becomes more understandable in the light 

of the recent result by Poljak and Rohn [4] stating that testing nonsingularity of an 

interval matrix is an NP-complete problem. 
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S o u h r n 

REGULARITA A P-MATICE 

JIŘÍ ROHN 

JSOU uvedeny nové důkazy dvou dříve publikovaných vět o vztahu regularity intervalových 
matic k reálným P-maticím. 

Pe3K>Me 

PEryJDIPHOCTB H P-MATPHHBI 

JIŘÍ ROHN 

B CTaTbe npHBeAeHbi HOBtie flOKa3aTejibCTBa ABVX paHee ony6jiHKOBaHHbix TeopeM o B3anMo-
OTHomeHHH peryjiHpHtix HHTepBajibHbix Maiprm H P-Maipnu. 
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