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Summary. New proofs of two previously published theorems relating nonsingularity of interval
matrices to P-matrices are given.
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In [5] we proved, in a broader frame of the problem of solving linear interval
systems, two theorems relating nonsingularity of interval matrices to P-matrices
(Theorems 1 and 2 below). It is the purpose of this paper to give alternative proofs
of them, from which it can be perhaps better seen how nonsingularity is intertwinned
with P-property. We also include some consequences implied by the properties of
P-matrices.

We begin with this simple auxiliary result:

Lemma. Let A be a nonsingular n x n matrix and let B be an n X n matrix
whose rows, except the j-th, are zero. Let 1 + (BA")H = 0. Then there exists
a te(0,1] such that A + B is singular.

Proof. Consider the function ¢ of one real variable defined by ¢(r) = 1 +

+ 9(BA™");;. Since ¢(0) > 0and ¢(1) < 0, there exists a ¢ € (0, 1] such that ¢(t) = 0.

Then the matrix A + tB = (E + tBA™') A is singular since det (E + tBA™') =

=1+ 4BA™"); =0. [

Let A=, A" be two n x n matrices, 4~ < A" (the inequality to be understood
componentwise). The set of matrices

A'={4;4" <A< 4%}

is called an interval matrix; we say that A" is nonsingular (in [5]: regular) if each
A e A'is nonsingular. A square matrix 4 is said to be a P-matrix [1] if all its principal
minors are positive.
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First, we have this result:

Theorem 1. Let A’ be nonsingular. Then for each A,, A, € A*, both A, A" and
AT'A, are P-matrices.

Proof. The proof consists of several steps. Let 4, 4, € A".

(1) We shall prove that all leading principal minors m,, ..., m, of A;A;" are
positive. Put D = A, — A, so that 4,4;"' = E + DA;', and denote by D;
(j = 1,..., n) the matrix whose first j rows are identical with those of D and the

remaining ones are zero. Then
m; = det (E + D;A7")

holds for j = 1, ..., n. We shall prove by induction that m; > 0 for each j:

(1.1) Case j =1. Since m, =det(E + D;A;") =1+ (D;47");;, the above
lemma implies m; > 0, for otherwise the matrix A, + tD; would be singular for
some t€(0, 1] but A, + tD, € A", which is a contradiction.

(1.2) Case j > 1. Assume that m;_, > 0 and consider the matrix

(E+ D;A7)(E+ D;_ A7) ' =E+(D; — D;_y) (A, + D;_y)™" .
Taking determinants on both sides we obtain

m;

=1+ [(D; = D;—y) (4, + Dj—y) ']

-1
If the right-hand side were nonpositive, then, according to the lemma, 4, + D;_; +
+ 1(D; — D;_,) would be singular for some e (0, 1], which is a contradiction
since it is a matrix from 4’. Hence

holds, which in conjunction with the induction hypothesis gives that m; > 0, which
concludes the inductive proof.

(2) Second we shall prove that each principal minor of 4,45 ' is positive. Consider
a principal minor formed from the rows and columns with indices ky, ..., k,, 1 <
< r £ n. Let R be any permutation matrix with R, ; = 1 G=1,.. r). Then the
above minor is equal to the r-th leading principal minor of R™4;4; 'R = (RTA,R).
.(RT4,R)™". Since the interval matrix {RTAR; A € A"} is nonsingular, all leading
principal minors of (RT4,R) (R"4,R)™" are positive due to (1).

(3) To prove that A7'4, is also a P-matrix, consider the transpose interval
matrix (A")T = {AT; A € A"}. According to part (2), its nonsingularity implies that
(43)(AT)™* = (A[ 'A4,)" is a P-matrix, hence so is A7 '4,. This completes the proof.

|
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We shall now show that the result can be in a certain sense reversed, so that the
P-property of a finite number of matrices of the form A} ' 4, will imply nonsingularity
of A”. To this end, let us denote

AC = %‘(Aa + A+) s
A4 = 34" —47),

then A~ = A, — 4, A* = A. + 4, 4 2 0. A diagonal matrix S satisfying |S;| = 1
for each i is called a signature matrix, so that there are 2" signature matrices of size n.

Theorem 2. An interval matrix A" is nonsingular if and only if for each signature
matrix S, A, — SA is nonsingular ahd (A, — SA)™' (A. + S4) is a P-matrix.

Proof. The “only if” part being an obvious consequence of Theorem 1, we must
prove the ““if” part only. This will be done if we prove that for each A € A’ and each
b e R", the system of linear equations

Ax = b

has a solution, which, according to a theorem proved in [6], is equivalent to the
fact that for each signature matrix S, the system of linear inequalities

(*) SAx = Sb

has a solution. To show this, consider the linear complementarity problem
x; = (A, — SA)" (A, + SA) x; + (A, — S4)"' b,
xIx, =0,
x; 20, x,=20.

Since (A, — S4)™' (A4, + S4) is a P-matrix by the assumption, this problem has
a solution x, x,, as proved in [7]. Then

Afxy — x3) — SA(x; + x3) = b
and for each 4 € A" we have

SA(xy — x3) = SA(x; — x3) + S(4 — A4,) (x; — x3) =

2 SA(x; — x;) — A(x; + x;) = Sb,
hence () has a solution, which by virtue of the above-quoted theorem proves that A"
is nonsingular. | |

It is worth noting that the matrices (4, — S4)™! (A.-+ S4) cannot be replaced

by matrices of the type (4, — S4) (4. + S4)™" in the formulation of Theorem 2:

Example 1 (communicated to the author by M. Baumann). Let
_ (3 -1\ . (13
=(17) 4 -(69)
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Then (4, — S4) (A, + S4)™! is a P-matrix for each signature matrix S, but A’
contains the singular matrix

G3)

Since each positive definite (not necessarily symmetric) matrix is a P-matrix [1],
we obtain a consequence:

Corollary 1. For each signature matrix S, let A, — SA be nonsingular and
(A. — S4)"' (A, + SA) positive definite. Then A" is nonsingular.

The converse implication is, however, not true:

Example 2. Let

(11 . (31
= =00

Then A" is obviously nonsingular, but none of the matrices (4, — S4)™' (A, + S4)
is positive definite.

Finally, using the well-known properties of P-matrices, we may draw some con-
sequences regarding nonsingular interval matrices:

Corollary 2. Let A" be nonsingular. Then for each A, A, € A" we have:
(i) each diagonal element of both A7 'A, and A,A;" is positive,

(ii) for each signature matrix S there exist X, x, such that A;x; = A,x,,
Sx; > 0, Sx, > 0,

(iii) for each signature matrix S there exist x, X, such that A7'x, = A5 'x,,
Sx;, >0, Sx, > 0,

(iv) if Ayxy = Ayx, for some x; + 0, x, + 0, then (x,);(x;); > 0 for some

ie{l,...,n},
(v) if AT'xy = A3 'x, for some x; # 0, x5 % 0, then (x,); (x,); > 0 for some
ie{l,...,n}.

Proof. (i) follows from the fact that each diagonal element (i.e., first order minor)
of a P-matrix is positive. (i) Let S be a signature matrix. Then the interval matrix
{AS; Ae A"} is nonsingular, hence (4,S)™'(A4,S) = SA7'A,S is a P-matrix;
then, as proved by Gale and Nikaido [3], there exists a y, > 0 such that y, =
= SA7'A4,Sy, > 0. Setting x; = Sy,, X, = Sy,, we obtain vectors with the pro-
perties stated. (iii) is proved in a similar manner as (ii). (iv) If A;x;, = A4,x,, then
x; = A; 'A,x, and since A7'A, is a P-matrix, the result follows from the charac-
terization by Fiedler and Ptak [2]. (v) follows in a similar way from the fact that
A, A5 is a P-matrix. ]
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The necessary and sufficient nonsingularity conditions given in Theorem 2 are
generally very difficult to verify. This fact becomes more understandable in the light
of the recent result by Poljak and Rohn [4] stating that testing nonsingularity of an
interval matrix is an NP-complete problem.
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Souhrn

REGULARITA A P-MATICE

JIRf ROHN

Jsou uvedeny nové dukazy dvou dfive publikovanych vét o vztahu regularity intervalovych
matic k realnym P-maticim.

Pesome

PETYJISIPHOCTb U P-MATPULIbI

Jiki ROHN

B craTbhe npuBenCHbI HOBbIE JOKA3aTeJbCTBA JIBYX paHee ONyOJIMKOBAaHHBIX TEOPEM O B3aHMO-
OTHOLLEHHHU P2TYJISPHBIX HHTEPBAIbHBIX MATPULL U P-MaTpuLl.
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