Aplikace matematiky

Jan Franct
Monotone operators. A survey directed to applications to differential equations

Aplikace matematiky, Vol. 35 (1990), No. 4, 257-301

Persistent URL: http://dml.cz/dmlcz/104411

Terms of use:

© Institute of Mathematics AS CR, 1990

Institute of Mathematics of the Czech Academy of Sciences provides access to digitized documents
strictly for personal use. Each copy of any part of this document must contain these Terms of use.

This document has been digitized, optimized for electronic delivery and
stamped with digital signature within the project DML-CZ: The Czech Digital
Mathematics Library http://dml.cz



http://dml.cz/dmlcz/104411
http://dml.cz

35 (1990) APLIKACE MATEMATIKY No. 4, 257—301

MONOTONE OPERATORS
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Summary. The paper deals with the existence of solutions to equations of the form Au = b
with operators monotone in a broader sense, including pseudomonotone operators and operators
satisfying conditions S and M. The first part of the paper which has a methodical character is
concluded by the proof of an existence theorem for the equation on a reflexive separable Banach
space with a bounded demicontinuous coercive operator satisfying condition (M),. The second
part which has a character of a survey compares various types of continuity and monotony and
introduces further results. Application of this theory to proofs of existence theorems for boundary
value problems for ordinary and partial differential equations is illustrated by examples.

Keywords: monotone, pseudomonotone operators, operators satisfying S, M conditions,
existence theorems for boundary value problems for differential equations.

AMS Classification: 35-02, 35A05, 47H05, 35F30.

INTRODUCTION

Theory of monotone operators represents — besides variational methods — an
essential functional-analytical method for the investigation of nonlinear equations.
In the paper we give a survey of the theory of monotone operators in a broader
sense including also the generalization of the concept of monotony, e.g. pseudo-
monotony, S — conditions and M — conditions. The survey is directed to existence
theorems for boundary value problems for nonlinear ordinary and partial differential
equations.

The literature on monotone operators is very extensive, containing hundreds of
papers and many monographs. One can find various formulations of existence
theorems. Writing the paper I aimed to find a general theorem which would imply
the other theorems, using comparison of various types of continuity and monotony.
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The aim required some restriction of the problems considered. Therefore we shall
confine ourselves to the case of the equations Au = b on a reflexive Banach space V'
with a coercive (single-valued) operator A acting from V to its dual space V'. Thus
we do not deal with multivalued monotone mappings. Further, we omit monotone
operator theorems for variational inequalities, Hammerstein integral equations,
non-stationary problems and other domains, where the concept of the monotone
operator is used.

The first five sections are rather of a methodical character. The existence theorems
are treated starting with equations in a one-dimensional space and ending with the
main theorem for abstract equations in infinite-dimensional Banach spaces. A special
case of strongly monotone Lipschitz-continuous operators is studied in Section 4.

The next two sections have a suveying character. In Section 6 various types of
continuity and monotony are compared. Since the terminology is not unified,
definitions of the concepts considered are introduced. The “graphical form” of some
comparison theorems was inspired by the book [14]. A lemma on pseudomonotony
of operators with monotony in the principal part is added. Section 7 contains some
consequences to the main theorem and some special results provided the assumptions
are stronger. Theorem 7.5 (which is not a consequence of the main theorem) is
introduced for its elegant proof using the Minty lemma. In the end some remarks on
variational inequalities and maximal monotone multivalued mappings are introduced
without proofs.

The last Section 8 contains four examples of applications of the theory to boundary
value problems for differential equations. Due to the limited extent of the paper the
presentation of the examples is by no means exhaustive or complete. The reformula-
tion of differential equations into abstract operator equations is only outlined, the
excellent text book [4] may be recommended for details. Historical remarks close
the paper.

Textbooks dealing with monotone operators are [2], [4], [5] in Czech; [14]
in German and e.g. [1], [4], [11], [14] in English. The book [12] is a comprehensive
monograph. .

Although most definitions, properties and theorems are taken from [4], [6], [7],
[8], [11], [12], [14] and [15], some results seem to be new — namely condition (M),
in 6.6, Theorem 6.8 (b),(c) and the comprehensive formulation of comparison
theorems 6.2, 6.5, 6.7. The second example in the remark following Lemma 6.2 as
well as Example 8.18 were also constructed for this paper.

1. MOTIVATION — ONE DIMENSIONAL CASE

The main subject of this paper is to examine conditions ensuring the existence of
a solution of an abstract equation Au = b with a monotone operator A.

258



We start with the simplest case. A monotone operator on R — the real line — is
any non-decreasing function f: R — R, and a strictly monotone operator is any
increasing function. A prototype of theorems on monotone operators is the following
theorem (see Fig. 1):

1.1. Theorem. Let f be a real monotone continuous function on an interval
(a,b)[—0 < a < b = +]. Then the equation

(1.1) fGx)=y
has a solution for all y e (A, B), where

A =limf(x) and B =limf(x).
x—b—

x—a+

If the function f is strictly monotone then the solution is unique.

Fig. 1

The theorem implies

1.2. Theorem. Let f: R — R be a continuous monotone function satisfying

(1.2) lim f(x) = —oo, lim f(x) = +o0.

X= — 0 x— + 0

Then the equation (1.1) has a solution for each y € R.
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1.3. Remarks.

(a) Provided the limits A4, B exist, the assumption of monotony can be omitted.
(b) In order to generalize the condition of monotony

x; < xy = f(xy) £ f(x,)
to more-dimensional cases, we rewrite it in the form
(1.3) (f(x2) = f(x1)) (x2 = x;) Z 0.
The condition (1.2), which can be rewritten in the form

lim f___‘(x) Yo

|x|= IX!

is called the coercivity and plays an important role in existence theorems.

2. FINITE DIMENSIONAL CASE

We will consider a mapping f: R" — R". We rewrite the definitions of monotony
and coercivity in terms of the scalar product denoted by (x, ).

2.1. Definition. The mapping f: R* - R" is called
monotone iff

(2.1) (f(xy) = f(x3), x; — x,) 20 Vx;,x,€R",

strictly monotone iff

(22) (f(x1) = f(x2), x; — x;) >0 Vx;,x,€R", x; * x;,
coercive iff
(2.3) lim (i(li)_") =+,
I

Let us start with an existence theorem for the closed ball B, = {x e R", |x| < r}.

2.2. Theorem. Let f: B, — R" be a continuous mapping satisfying on the boundary
the condition

(2.4) (f(x),x) >0 Vx, |x| =r.
Then there exists at least one solution x € B, of the equation
(.5) f(x) =0.
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2.3. Remarks.

(a) The condition (2.4) has an intuitive geometrical meaning. The values of the
mapping f — the vector field in Fig. 2 — are directed outwards of the ball B, on the
boundary of this ball. Indeed, the scalar product (f(x),x) = |f(x)| |x| cos ¢ >0
implies that the vectors f(x), x form an acute angle ¢. From Figure 2 it is obvious
that the continuous vector field must contain a zero vector in the ball.

(b) The theorem holds with a weakened condition (2.4) (f(x), x) = 0 Vx, |x| = r.

Figs 2

We introduce a proof based on the Brouwer fixed point theorem.

2.4. Theorem (Brouwer). Let g be a continuous mapping from B, into itself —
g: B, = B,. Then the mapping has a fixed point, i.e. there exists x € B, such that
g(x) = x.

The proof of this fundamental theorem is not simple, therefore we only refer e.g.
to [4] for a proof via the topological degree or to [13] for a classical proof using
homological algebra.

Proof of Theorem 2.2. We convert the problem of solving equation (2.5) into
a fixed point problem. An element x isa solution of the equation f(x) = 0 iff x is
a fixed point of a mapping g, (¢ > 0) defined by

(2.6) gi(x) = x — ef(x).
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The mapping is continuous. In order to be able to use the Brouwer theorem we find
a constant ¢ > 0 such that g, maps B, into itself.
The mapping is continuous on the compact ball B,, therefore it is bounded on B,, i.e.

’f(x)] <L Vx, le <r.

Moreover, the condition (2.4) on the boundary 9B, for a continuous mapping on
a compact implies (f(x), x) = K on 0B, for a constant K > 0, and further the same
inequality with a smaller constant in a neighbourhood of B,, i.e.

(f(x),x) = K[2 Vx, |x|e(e,r], e<T.
The estimates

|9 x)1* = [x[* = 2&(f(x). x) + &2|f()|* =

< r? — 26K[2 + &2 Vx, |x| e (e, r]

< @® + 2oL + &7 Vx, |x| €0, ¢]
imply the existence of a constant ¢ > 0 such that

|9{x)| £r VxeB,.

The Brouwer fixed point theorem implies the existence of a fixed point of g,. Thus
equation (2.5) has a solution. [J

The finite-dimensional version of Theorem 1.2 is a simple consequence of Theorem
2.2:

2.5. Theorem. Let f: R" — R" be a continuous coercive mapping. Then the
equation

@) &=y
has at least one solution for arbitrary y € R".
Proof. Let y € R". The mapping f si coercive, which implies
(f(x) =y, x) >0 Vx, |x] =r

for a sufficiently large » > 0, and the result follows. []

3. INFINITE DIMENSIONAL CASE — INTRODUCTION

Let us pass to operators on infinite dimensional spaces. Let V' be a Banach space —
a linear vector space with a norm [I +|| and complete with respect to this norm. The
dual space (also called the adjoint space) — the space of all continuous linear
functionals on V — is denoted by V' and the value of a functional fe V' at a point
u €V is denoted by {f,u). The space V' is also a Banach space with the norm

[7] = sup {[<f,ud], we ¥, Ju] = 1}.
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We will consider an operator A: ¥ — V' and look for a solution to the equation
(3.1) Au=b

with the right-hand side b € V'. The equality (3.1) is understood in the sense of equali-
ty of functionals Au and b in the dual space V', i.e.

(3.1) (Au, vy = {b,v) VYveV.

The equation (3.1) is an abstract formulation of many problems, e.g. boundary
value problems for ordinary differential equations and stationary partial differential
equations — see Section 8.

Definition 2.1 of monotony and coercivity can be simply rewritten for operators 4
on a Banach space V by replacing the scalar product (f(x), x) in R" by the duality
{Au, u) on the space V. The strict monotony directly implies the uniqueness of the
solution:

3.1. Theorem. Let the operator A: V — V' be strictly monotone, i.e.
(32) CAuy — Auy, uy — uyd >0 Vuj,u, eV, uy +u,.
Then equation (3.1) has at most one solution.

Proof. Supposing the equation has two solutions u,, u, € V, we have Au, = Au,
and {Au, — Au,, u; — u,» = 0. Due to condition (3.2) we conclude u; = u,. [

Infinite-dimensional spaces bring some difficulties. A closed bounded set, e.g. the
ball B, = {ueV, |u| £}, is not compact in general, which implies e.g. that
a bounded sequence need not contain a convergent subsequence. In addition, a con-
tinous mapping on B, need not be bounded.

This is the reason why we introduce the following concept: Besides the strong
convergence

(3.3) u, > u iff |u, —ul >0

on a Banach space V we introduce the weak convergence on V, denoted by a half-
arrow,

(3.4) u,—~u iff <b,u,—ud—>0 VbeV'.

Similarly, on the dual space V' we have the strong and weak convergences:
b,—» b iff ]]b,,— b”V,—>0,
b,—= b iff {¢,b,—b)—>0 VoeV",

where V” it the second dual space, i.e. the space of linear continuous functionals
on V'. We can get some elements of V" if we assign to each u € Va functional ¢ € V"
by the relation (¢, b) = <{b, u), but in general we do not obtain the whole space V".
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The spaces in which V can be identified with V" by this canonical imbedding are
called reflexive. In these spaces the weak convergence on V' can be defined as

(3.5) b,—b iff <b,—b,vd—>0 YoeV.

Moreover, the weak convergence makes bounded closed convex subsets of infinite-
dimensional reflexive spaces compact:

3.2. Theorem. In a reflexive Banach space the closed ball B, is weakly sequentialy
compact, i.e. each bounded sequence contains a weakly convergent subsequence.

The theorem is a special case of the Eberlein-Schmulian theorem, which moreover
asserts that if the ball B, is weakly sequentially compact then the Banach space is
reflexive, see e. g. [4], [9], [12]. In finite dimensional spaces both the strong and
weak convergences coincide.

4. STRONGLY MONOTONE OPERATORS

The operators satisfying the monotony condition in a stronger form,
(4.1) CAuy — Auy, uy — uy) > olluy — uy|* Vug,u,e V(x> 0),

are called strongly monotone operators. These operators forming a special subclass
of monotone operators are in a certain sense close to linear elliptic operators. Exis-
tence and unicity of solutions can be easily proved by the Banach fixed point theorem.

In this section we restrict ourselves to the case that V'is a Hilbert space. In this
case we can identify the functionals from V’ with the elements from V and replace
the duality <b, v) by the scalar product (b, v).

4.1. Theorem on strongly monotore operators. Let V be a Hilbert space and
A: V- Van operator which is

— strongly monotone, i.e. there exists o > 0 such that

4.1) (Auy — Auy, uy — uy) 2 afluy — uy|® Vug,u, eV,
— and Lipschitz continuous, i.e. there exists M > 0 such that
(4.2) [Au, — Au,| < Mluy, — u,| Vug,u,eV.

Then the equation

(4.3) Au = b

has a unique solution for each be V.

Proof. Again we convert the pioblem of solving equation (4.3) into a fixed point
problem. This equation has a solution u iff u is a fixed point of the mapping T,(u) =
= u — ¢(Au — b) for a constant & > 0.

264



We shall find ¢ > 0 such that T, is a contractive mapping, i.e. | Ty(u;) — T,(u,)| <
< cfju; — u,| with a constant ¢ < 1.In the estimate we use inequalities (4.1'), (4.2):

| To(uy) = Tus)[* = (w1 — u2) — e(duy — Au,)|* =

= |luy — u,]* — 26(Auy — Auy, uy — uy) + €2 Au, — Au,|® £

< Juy — un)? (1 — 2ex + 2M?).
For ¢ = a/M? the constant ¢ = (1 — 2ex + e2M?)"/? = (1 — o«*[M?)"/?isless than 1.
The mapping T, is a contractive mapping on the complete metric space, therefore,

following the Banach fixed point theorem, T, has a unique fixed point # which is
the unique solution of (4.3). O

4.2. Remarks.

(a) If A4 is a linear operator on a Hilbert space the condition (4.1') is equivalent
to the so-called ellipticity condition

(Au,u) = oz“unz YueV.

Similarly, for linear operators the conditions of Lipschitz continuity, continuity,
continuity at 0 and boundedness are equivalent and (4.2) can be replaced by

[Au]| < M|u| VueV.

In this way we come to the well known Lax-Milgram lemma.

(b) The proof of Theorem 4.1 by means of the Banach fixed point theorem is
constructive and yields an important approximate method. The sequence of approxi-
mate solutions {u,} defined by

(4.4) ugeV — arbitrary , u,,, = T(w,), k=0,1,2,...

converges in the norm to the solution of equation (4.3). We can compute even the
rate of convergence. The estimate |ju,,, — ;]| < *|T,(uo) — uo| (c is the constant
of contractivity, ¢ < 1) yields

@) u= el S = ) - wl

5. MAIN EXISTENCE THEOREM

We shall generalize Theorem 2.5 to operators on infinite-dimensional spaces. The
assumptions introduced above are ‘‘fit to measure” for the proof of the theorem.
In Section 7 we replace these assumptions by more natural ones.

We shall deal with the existence of a solution to the equation

(5.1) Au=b
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with an operator A: V' — V' and b € V'. The problem can be written in the following
form:
Find u € V such that

(5.1) {Au, vy = {(b,v) veV.

In order to be able to use Theorem 2.5 we define a restriction of the problem to
a finite dimensional subspace ¥, — the so-called Galerkin approximation.

5.1. Definition. Let V, be a subspace of V. The problem

Find u, € V, such that
(5.2) {Au,, vy = {(b,v> YveV,

is called the Galerkin approximation of problem (5.1') on the subspace V.

In other words, we have restricted the functionals Au,, b to the subspace V.

In sequel we denote the strong or weak convergence by an arrow or half-arrow,
respectively, see (3.3)—(3.5).

5.2. Main Theorem. Let V be a reflexive separable Banach space and A: V- V'
an operator which is

— coercive, i.e.

(5.3) lim %W _
e Ju]

— continuous on finite-dimensional subspaces,

— bounded, i.e. there exists an increasing function M: R* — R* such that

G4 auly = M(luly) e,

— and satisfying the so-called condition (M), i.e.
u,—=u, Au,—b _

G Gty > <, u>}° Au=".

Then A is surjective, i.e. equation (5.1) has a solution for each be V'. Moreover,
A~ as a multivalued mapping is bounded, i.e. there exists an increasing function
N:R* - R* such that

(5.6) [ully < N(|Au]y) YueV.

Proof. We divide the proof into four steps:

(1) We construct a sequence of finite dimensional subspaces V,. In this way we
obtain a sequence of Galerkin approximations of problem (5.1).

(2) By means of Theorem 2.5 we prove the existence of a solution of problem
(5.2). In this way we obtain a sequence of approximate solutions u,.
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(3) We prove that the sequences {u,},{Au,} contain weakly convergent sub-
sequences: u,, — u, Au, — f.

(4) We prove that u is a solution of equation (5.1).

In each step we indicate the assumptions being used.

1°* step. By the definition, a separable space V contains a countable dense subset.
‘We choose a linearly independent sequence

{wi, wa, wa, ) wil| =1
which generates a sequence of finite dimensional subspaces V,:

V, = span {wy, wa, ..., w,} .
The sequence of subspaces V, obviously has the following approximative property:
5.7 YoeV v}, v,eV, suchthat v,—>v.

By the Galerkin approximation (5.2) we restrict equation (5.1) to the finite dimen-
sional subspaces V.

2" step. We make use of the existence Theorem 2.5. The space V, is isomorphic
to R". The operator 4, = A[V" induces a mapping f: R" - R"™:

fixeR" = {CAQXxw;), wl-1€R"
1
Ay Yxwie Vo~ AYxw)|y, e V.

We have transformed equation (5.2) into an equation of the form f(x) = y, where
v = {<b, w;>}; € R". The continuity on the finite dimensional subspace V, and the
coercivity of the operator A4 yields the continuity and coercivity of the mapping f
on R". Due to Theorem 2.5 there exists a solution x of the equation f(x) = y and
thus also a solution u, = Y x;w; of the approximation (5.2).

3" step. We prove that the sequence {u,} is bounded. The coercivity (5.3) implies
_the existence of an increasing function N: R* — R* such that forallue V
{Au, uy

Ju

Transposition of this implication yields

lufl > NG =

(58) -<A“':H“> < r=u] < N

The approximate solutions u, of equation (5.2) satisfy

(Aupuy _ Cbouy

le ]

Il
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which due to (5.8) implies the boundedness of {u,},

59 July = N(je]v)-

Strengthening the left-hand side of implication (5.8) to |Adull,. <r we obtain
assertion (5.6).

We know that {u,} is bounded. Thanks to assumption (5.4) the sequence {Au,}
is bounded as well:

5100 [du,]y = M(N([B]y) -

The space V, and thus also its dual space V’, are reflexive. Due to Theorem 3.2 we
can extract weakly convergent subsequences

u, —~u, Au, —f,

ni

where the limits are some elements u e V, fe V'.

4™ step. First, we show that f = b, where b is the right-hand side of (5.1). Let
v € V be arbitrary. Due to the approximative property (5.7) there exists a sequence
{v.}, vy € V,, v, = v. Using (5.2) we have

{Au,, v,y = <{b,v,> = {b,v).
On the other hand,

{Au,,, v, = {Au,,, v, — v) + {Au,,v) > {f,v),
since (5.10) implies

<A, 0, — 03] < [[Au, [y [on, = o]y = 0.
Thus we have obtained {f, v) = <{b, v) Vv e V, which implies f = b.

To complete the proof we show that u is a solution. Besides u, — u, Au, — b we
have due to (5.2)

<Aunks unk> = <b’ unk> - <b7 u> >

which is the last assumption of condition (M),. The assertion of (M), yields Au = b,
thus u is a solution of equation (5.1), and the proof is complete. []

5.3. Remarks to the assertion of the theorem.

(a) The proof is constructive. Galerkin approximations represent the basis for
many numerical methods.

(b) In general, the sequence of approximate solutions u, converges neither strongly
nor weakly,in contrast to Theorem 4.1. Since the solution need not be unique, only
weak convergence of an extracted subsequence is ensured. On the other hand, if u,
converges to u € V weakly, then Au, — b and u is a solution of (5.1). If the solution
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of (5.1) is unique, then we have u, — u. Moreover, if the operator A is monotone,
solutions of (5.1) form a closed convex set as will be proved in 7.2.

5.4. Remarks to the assumptions of the theorem.

(a) The assumption of reflexivity is substantial. The assumption of separability
can be omitted; however, this causes technical difficulties: the Galerkin approxima-
tion should then be defined for an uncountable system of finite dimensional subspaces
and one must deal with nets — the generalized sequences. A proof of existence of
a solution to an equation with a monotone operator, not requiring separability of
the space V, is the proof of Theorem 7.5.

(b) Existence of a solution (not for all right-hand sides be V') can be proved
even for noncoercive operators, see e.g. Theorem 7.3.

(c) The assumptions of theorems appearing in literature usually require continuity
or demicontinuity of the operator A instead of the weaker assumption of continuity
on finite-dimensional subspaces.

(d) Assumption (5.4) is necessary for the proof of boundedness of {4u,}. In the
case of a monotone operator the boundedness can be omitted, see Theorem 7.5.

(e) In applications to boundary value problems for differential equations the as-
sumptions of boundedness and continuity are usually not restrictive, since they follow
from the assumptions ensuring that the differential equation can be formulated as
an operator equation (5.1), see Theorem 8.9 (c).

(f) The special condition (M), enables us to pass to the limit when pairing two
weakly convergent sequences:

Uy =, b, = Au, = b= b, u,y > <buy,

which in general need not be true. Let us introduce a simple counterexample. Se-
quences of functions u,(x) = sin nx, b,(x) = sin nx [or cos nx, or — sin nx, resp.]
in the space V=V’ = L,((0, r)) converge to zero: u, —~ 0, b, — 0. but {b,, u,> =
= [§ b,(x) u,(x)dx = /2 [or 0, or —m/2, resp.].

Usually a little stronger condition is used — the condition (M), see Definition 6.6,
which is necessary in the existence theorems for variational inequalities.

(8) An analogous theorem holds for operators on a complex reflexive separable
Banach space with the coercivity condition in the form

lim Re (Au, u) _

e fu]
Similarly, in the complex case the monotony condition reads
Re CAu; — Au,, uy —u,» 20 Vug,u,eV.

Other theorems on monotone operators on complex spaces can be found e.g. in [7].
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6. CONTINUITY AND MONOTONY CONDITIONS

In the literature one can meet various formulations of theorems on monotone
operators. The theorems differ particularly by their assumptions on continuity and
monotony. Moreover, in functional analysis there appear also various types of con-
tinuity. Therefore we present a survey of their definitions (terminology is not unified)
and their mutual relations as well as some counterexamples. Some of these concepts
correspond to physical, reality, the others are of rather theoretical character. Let us
recall that monotony is an important property easy to verify, but many operators
describing real physical processes are not monotone, see Section 8, Example III,
8.18. This is the reason why various generalizations of monotony have been intro-
duced.

In what follows the strong and weak convergence will be denoted by an arrow and.
half-arrow, respectively, and the universal quantifiers as e.g. Yu € V will be omitted.

6.1. Definition (various types of continuity and boundedness).
Let A: V' — V' be an operator on a Banach space V. We say that the operator A4 is

— continuous
C iff u, » u= Au, - Au,

— demicontinuous
dcC iff u, - u = Au, = Au,

— strongly continuous
sC iff u, = u = Au, - Au,

— weakly continuous
wC iff u, = u = Au, = Au,

— completely continuous
cC iff A is continuous and maps closed bounded sets into compact ones, i.e.
M <V, M — closed bounded = A(M) — compact,

— hemicontinuous (weakly continuous on lines)
hC lﬂ {tn} [ R, tn - 0 = A(u “+ tnv) — A(u),

— continuous on lines
IC iff {8} < R. 1, 0 = Alu + ;) > A(u),

— Lipschitz continuous
LC iff IL> 0, |Au — Av|| < L|ju — o],

— uniformly continuous
uC iff IM: R* —» R*, lim M(t) = 0 for t - 0,

|4u — Ao = M(Ju - »]),
— continuous on finite dimensional subspaces

fCiff V, « ¥V, dim(V,) < o = A|y,: V, = V, is continuous,
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— bounded
B iff AM: R* — R* increasing, |Aul,. < M(||u]y).

Remark. Terminology is not entirely unified, sometimes sC is called completely
continuous and ¢C is called compact. In [8] there is another equivalent definition
of fC:
fC iff v, <V, dim (V) < oo, [{u;} = V,, u; > u = Au; —~ Au].

6.2. Lemma. (a) The following implications holds:

LC sC s wC
Lipschitz continuous strongly continuous weakly continuous
U U(*)
uC cC
uniformly continuous completely continuous
B LK C s aC
bounded continuous demicontinuous
fC

conlinuous on finite
dimensional subspaces

l

ic —_ hC

continuous on lines hemicontinuous

The implication () holds only if the space V is reflexive. In the non-reflexive
case there is no relation between sC and cC, see [6], Chapter I part C, nevertheless
sC implies C and B. On finite-dimensional spaces the following concepts coincide:
C=cC=sC=wC=dC =fC and IC = hC. For linear operators we have
¢C =sCand LC =uC =C = B.

(b) The set of operators of each of the introduced continuities forms a linear
space, i.e.

Ay, Ay exC =t A, + t,A,exC Vi, t,eR.

(c) The sum of two operators of different but comparable continuities forms an
operator of the “weaker” continuity.

The proof follows from the definitions and properties of the strong and weak
convergences.
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Remark. In general, all definitions define mutually different sets of operators.
For example, a ¢C operator need not be sC, e.g. A:ue s> (|uf,0,0,...)e /2
Indeed, foru, = {8;,} = (0,...,0,1,0,...) we have u, — 0, but Au, = (1,0,0,...) *
+ 0 = A(0) (the example is taken from [12]). Further, a continuous operator need
not be bounded, e.g. the operator

Aru = (517 525 535 "')E/ZH(ilv 5%’ éga éiu -'-)6/2

is continuous but not bounded since for u, = {25,,} we have |[u,| = 2 and || Au,|| =
=,

6.3. Definition (types of monotony and ccercivity).
Let A: V- V' be an operator on a Banach space. We say that the operator A4 is

— strongly monotone
sM iff 3u >0, {Au — Av, u — v) = afju — v”z Yu,veV,

— uniformly monotone
uM iff 3a: R* - R* increasing, lima(t) = 0 for t > 0, and lima(t) = o for

t— o0,
C(Au — Avu — vy = a(|u = o|) |u -] Yu,veV,
— strictly monotone
rM iff <Au — Av, u — v) >0 Yu,veV, u + v,
monotone
M iff CAu — Av, u — vy =20 Yu,veV,
— coercive
{Au, u)
]
— weakly coercive
wK iff lim ”Au” = oo for “u“ — 0.
Moreover, we say that the operator A satisfies the condition
(S)+ iff [up — u, limsup {Au, — Au, u, — u) < 0] =u, > u,
(S) iff [un— u, <Au, — Au, u, — u) - 0] =u, > u,
(S)O lff [un -~ u, Aun - b) <Aum un> hnd <b’ u>] = U, > u,
(P) iff wu,— u=limsup {Au,, u, —u) = 0.

K iff lim = o for |u| - o,

6.4. Remarks.

(a) Monotony (sM, uM, rM, M) has local character in the following sense: if the
inequality holds locally, i.e. for each u, v € U, U € @, where @ is an open covering of
the space V, then the inequality holds for each u, ve V.
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(b) In the definition of uniform monotony we may assume that the function a(r)]t
is nondecreasing. Moreover, if there exists a positive one-sided derivative a’(0,) > 0
then the operator is strongly monotone.

(c) Uniformly monotone operators satisfy the implication
{Au, — Au, u, —uy - 0=u,->u.

The S-conditions weaken this property to weakly convergent sequences. The S-con-
ditions ensure the strong convergence of Galerkin approximations, see Theorem
7.2 (b).

(d) In the definitions of conditions (S), and (S) we can replace (Au, — Au,
. — uy by {Au,, u, — u) since u, — u implies {Au, u, — u) - 0.

(¢) In [16] one can meet a “‘generalized condition (S)” used for non-homogeneous
boundary value problems of type (8.29):

[u, = u in V, v, =0 in W-¥Q), <A(u, + v,) — A(u + v), u, — u) » 0] =
=u, + v, > u + v, where V is a subspace satisfying W;*(Q) = V = W"*(Q).
This condition is satisfied if a bounded operator 4 satisfies condition (S) on W'*(Q).

u

6.5. Lemma. (a) The following implications hold:

sM
strongly monotone

{}
(S)+ 5 uM K

condition

uniformly monotone coercive

U U U

(S) rM wK
| conditidn strictly monotone weakly coercive:
(S M
condition monotone

l

(?)

condilion

(b) The sets of operators M, rM,uM, sM, K form cones, i.e.
Ay, AyexM = A, + A, exM, tAjexM for t>0.
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(c) The sum of two operators of various types of monotony (M, rM,uM, sM)
forms an operator of the stronger monotony. Adding an operator M or rM does
not violate coercivity.

The proof follows from the definitions.

The following concepts contain both continuity and monotony.

6.6. Definition. Let A: V — V' be an operator on a Banach space. We say that
the operator is pseudomonotone iff the following implication holds:

(PM) if u, — u and lim sup {Au,, u, —uy =0
then lim inf {Au,, u, — v) = {Au, u — v)> holds Yoe V.

Further, the operator A satisfies condition
(M) iff [u, = u, Au, — b, lim sup {Au,, u,> = <(b,ud] = Au = b,
(M)o iff [uy — u, Au, — b, {Au,,u,» — {b,uy] = Au = b.

Remark. In the definition of pseudomonotone operators some authors require,
in addition to condition (PM), boundedness or demicontinuity. The condition (M), —
the weakened (M) — seems to be new. In the case of a finite-dimensional space

a continuous operator is pseudomonotone and a locally bounded pseudomonotone
operator is continuous.

6.7. Lemma. Let A: V — V' be an operator on a reflexive Banach space V. Then
the following implications hold:

Monotone and Demicontinuous
hemicontinuous and (S)4

Strongly e (PM) Demicontinuous
continuous pseudomonotone and (S

and moreover bounded/ “ \ ﬂ

[ Demicontinuous | [(P)] (M) | =—= [ (M)s |

Proof. We give proofs of all implications. Most of them are taken from [11]
and [14].

(a) Strongly continuous = (PM)
Let the assumptions of (PM) be satisfied. Due to strong continuity u, — u implies
Au, — Au. Therefore, we have {(Au,,u, — v) - {(Au,u — v), which yields the
assertion of (PM). O
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(b) Demicontinuous and (S), = (PM)
Let the assumptions of (PM) be satisfied. Then the assumptions of (S), are satisfied,
too, and thus (S)+ implies u, = u. Demicontinuity yields Au, — Au. Now we verify
the assertion of (PM):
lim inf {Au,, u, — vy = lim {Au,, u, — uy + lim {Au,, u — v) = {Au,u — v)
since [(Au,,, u, — u>| = “Au,,!] ”u,, - u“ -0. O

(c) Monotone and hemicontinuous = (PM)
Let the assumptions of (PM) hold, i.e. u, > u and

(6.1) lim sup {Au,, u, — u> < 0.
Let ve V. We need to estimate lim inf of the term
<Aum u, — U> = <Aum u, — u> + <Aum u — U> .

The first term on the right-hand side tends to zero since it is majorized by zero in
(6.1) and the monotony yields the opposite bound
{Au,, u, — uy = (Au, u, — u) - 0.

To estimate the second term {Au,,u — v) letusputw = u — t(u — v),t > 0in the
monotony inequality {Au, — Aw, u, — w) =2 0. We obtain <{Au,,u, — u) +
+ t{Au,,u — vy — {Aw,u, — u) — t{Aw,u — vy =2 0. Let us pass to lim inf.
By virtue of (6.1) and u, — u the first and the third terms vanish. Dividing the re-
maining two terms by t > 0 we obtain {Au,, u — v) = {(Aw,u — v). Finally, due
to hemicontinuity we have Aw — Au for t = 0 and the desired inequality follows.

O

(d) (PM) and bounded = demicontinuous
Let u, — u. Then {u,} and {Au,} are bounded and we can extract a weakly con-
verging subsequence Au, — b. Since the assumptions of (PM) are satisfied, we have
¢ = liminf {Au,, u, — v) = (Au, u — v). On the other hand,

¢ = lim {Au,,, u, — u> + lim {Au, ,u — v) = {b,u — v).

ny

We have obtained {Au,u — v) < {(b,u — v) Yu e V. Putting v = 2u — v in the last
inequality we get the opposite inequality. Thus the equality b = Au follows. Since
the limit Au of the extracted subsequence Au, is unique, the whole sequence con-
verges weakly to Au, i.e. Au, = Au, which proves demicontinuity. []

()  (PM)=(M)

Let the assumptions of (M) be satisfied. Then the assmptions of (PM) are also
satisfied, since

lim sup {Au,, u, — u) = lim sup (Au,, u,y — lim {Au,,u) <0.
In the chain of inequalities we use the assertion of (PM) and the assumption of (M):

(Au,u — vy < liminf {Au,, u, — v) < lim sup {Au,, u, — vy < <b,u — v).
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We have obtained {Au, u — v) < (b, u — v) Yve V. Analogously as in the previous
implication we obtain Au = b, which proves condition (M). [

(f) The implication (M) = (M), is obvious.

(8) Demicontinuous and (S)o = (M),.
Let the assumptions of (M)0 be satisfied. They are identical with the assumptions
of (S), thus u, — u. Due to demicontinuity we have Au, — Au. Therefore Au = b
and the assertion of condition (M), is proved. [J

(h) The implication (PM) = (P) will be proved by contradiction:
Letu, — uand lim sup {Au,, u, — u) < 0. Then (PM)yields lim inf [Au,, u, — v) =
= (Au,u — v) Yve V. However, putting v = u we obtain lim inf (Au,, u, — u) =
= 0, which is a contradiction. []

In contrast to Lemmas 6.2, 6.5, Lemma 6.7 says nothing about the sum of two
operators.

6.8. Lemma.

(a) The sum of two pseudomonotone operators is a pseudomonotone operator,
i.e. the pseudomonotone operators form a cone.

(b) The sum of two operators satisfying (S), is an operator satisfying (S).,
i.e. the operators satisfying condition (S)+ form a cone.

(c) Adding a strongly continuous operator does not violate the property (S),,
(S), (S)o, (P), (PM), (M) or (M), of the operator.

Remark. Assertion (a) is taken from [12].
Proof. (a) Let A, 4, be pseudomonotone, u, — u and
lim sup {Ayu, + Au,, u, —u) < 0.
By contradiction we prove that
lim sup <4;u,, u, —u) <0 for i=1,2.

Let e.g. lim sup (A,u,, u, — uy = & > 0. We can extract a subsequence {u, } such
that {4,u,,, u, — uy = 6. Then lim sup {4 u,,, u, — uy < —06 and we can apply
(PM) to u, — u and A, which yields liminf (4 u,,u, — v) = {Au,u — v).
Putting v = u we obtain lim inf {4u,,u, — u) =0 which contradicts
lim sup {4u,,u, —uy < —46 <0.

Thus the assumptions of (PM) for A;, 4, are satisfied and the sum of their as-
sertions yields (PM) for A, + A4,. [

(b) Let Ay, A4, satisfy (S), and let u, = u and lim sup {Au, + Au,, u, — u) <
< 0 (we have used Remark 6.4 (d)). We prove by contradiction that
lim sup <A u,, u, — u)> < 0. Let lim sup {A,u,, u, — u) = 0 > 0. We can extract
a subsequence u,, — u such that lim (A4 Uy,, t,, — u) = d. Then

i
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lim sup {A,u,,, u,, — uy < —6 < 0. Applying (S), to u, — u and A, we obtain
u,, — u. We arrive at a contradiction because the last convergence implies
{Ayu,,, w,, — uy = 0.

Thus lim sup {A4,u,, u, — u» < 0 and (S), applied to 4, and u, — u yields the
desired convergence u, = u. []

(c) Let A, be strongly continuous and let A, satisfy condition (X) [(X) = (S),,
(S). (S)o, (P), (PM), (M), (M),]. Let the assumptions of (X) be satisfied for the
operator A; + A,. Since u, — u, the strong continuity of 4, yields A,u, - A u.
Using this strong convergence it is easy to verify that in all cases the assumptions
of (X) are satisfied also for A4,, and further that the assertion of (X) for A, remains
valid also for 4, + A,, which proves the property (X) for 4; + 4,. O

The last lemmas yield further properties for the sum of operators ,e.g.: If A, is
monotone and continuous, 4, strongly continuous then 4; + A, is pseudomonotone.

6.9. Warnings.

(a) The sum of two operators satisfying condition (M) need not satisfy condition
(M). A counter-example was given by Brézis (see [12], Chaper III, 5.2). Let V be
a Hilbert space with an orthonormal base {e;, e,, €3, ...} and let us define operators
Ay u —u (minus identity), A, the projection on the unit ball given by A,(u) =
= uf||u| for |ju| = 1 and A,(u) = u for |u| < 1. Both operators satisfy condition
(M) but their sum A = A; + A, does not. Indeed, for u, = e; + e, we have
u, ~u =e;, Au, = (e, +¢,) (27" — 1) > ,(27"* = 1) = b,

lim sup {Au,, u,> =22 =2 <2712 — | = (b, u),
but Au =0 e, (27" — 1) = b.

(b) Complete continuity is not sufficient for condition (M),. A counter-example
(Petryshyn, Fitzpatrick, see [12], Chaper I1I, 5.3) is a completely continuous operator
(in the same notation) A: u > e, |u| satisfying neither condition (M) nor (M), for
u, = e, since u, —~0=u, Au, =e, — e =b, {Au,u,) = <{ey e,y - 0=
= {e;,0) = (b,u), but Au =0Fe, =b.

We conclude the section with a lemma often used in the applications to problems
with differential operators with monotony in the principal part, see Section 8.

6.10. Lemma. Let V be a reflexive Banach space and let the operator A: V — V'
have the form

Au = B(u, u),

where B: V x V — V' has the following properties:
(a) B(u, v) is hemicontinuous and bounded in u for each veV,

(b) B(u, v) is hemicontinuous in v for each u eV,
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(c¢) B(u, v) is monotone in v, i.e.
(B(u,u) — B(u,v),u —v> 20 Yu,veV,
(d) if u,—u and <B(u,, u,) — B(u,, u), u, — uy -0 then B(u,, v) — B(u, v)
YveV,
(e) if uy = u and B(u,, v) = b in V' then {B(u,, v), u,» - {b, u).

Then the operator A is pseudomonotone.

Remark. The operator with the above properties is called semi-monotone or of
the variational calculus type. The lemma taken from [12] forms the essence of the
proof of the Leray-Lions theorem, see [4], Theorem 29.6.

Proof. Let u, = u and

(6.2) lim sup {Au,,u, — ud <0.
First we prove the relations
(6.3) B(u,, v) = B(u,v) YveV,
(6.4) cp = {B(u,, u,) — Blu,, u), u, — u) > 0.

Let us consider the sequence {B(u,, u)}. Due to (a) it is a bounded sequence and thus
it contains a weakly convergent subsequence B(u,,,u) — b. Using (e) we obtain
{B(u,,, u), tyy = <{b,u). Condition (c) yields the inequality

an = <B(unk3 u - B(unka u)v unk - u> Z 0.

ni

On the other hand, using (6.2) and the previous relations we obtain lim sup ¢, =
= lim sup {Au,,. u, — uy — lim <B(u,,,, u), u, — uy < 0. Thus ¢, — 0 and the
assumptions of (d) are satisfied. The assertion yields B(u,,, v) = B(u,v) Yoe V.
Putting v = u we see that the sequence {B(u,, u)} has a unique limit B(u, u) and
thus the whole sequence convergences to B(u, u), i.e. B(u,, u) — B(u , u). Repeating
the proof for the whole sequence we obtain (6.4) and (6.3).

In the second part of preof we derive two properties: First, since B(u,, w) — B(u, w)
for w e V, condition (e) implies <B(u,, w), u,> = {B(u, w), u) and by virtue of (6.3)
we obtain

(6.5) {B(u,, w), u, —uy >0 VYweV.

Further, due to (6.4) the sequences {{B(u,. u,), u, — u>} and {{B(u,, u), u, — u)}
have the same limits. However, the second sequence tends to zero due to (6.5) with
w = u. Thus we have

(6.6) {A(u,), 4, — u) > 0.

Finally, we prove the assertion of (PM). Let v € V. We start with the inequality (c)
which yields B(u,, u,) — B(u,, w), u, — w) = 0. Putting w = u + (v — u) with
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t > 0 we obtain
(Auy, uy — u) + t<Au,, u — v) 2
2 (B(u,, W), t, — ud + t{B(u,, w), u — v).

We pass to lim inf. The term (Au,, u, — u) can be omitted due to (6.2). Thanks to
(6.5) we have <B(u,, w), u, — u) — 0. Dividing the remaining two terms by ¢t > 0
and using (6.3) we obtain

liminf (Au,, u — v) = (B(u, w), u — v),
and using (b) for > 0 we conclude that
(6.7) lim inf (Au,, u — v) = (Au, u — v) .

Since <{Au,, u — vy = {Au,, u, — v> — {Au,, u, — uy we obtain using (6.6),
lim inf (Au,, u — v) = lim inf {Au,, u, — v), which together with (6.7) yields the
desired inequality (PM). The proof is complete. [J

7. FURTHER THEOREMS

In this section we deduce some consequences of the main theorem and some ad-
ditional results. Theorem 7.5 is presented for its elegant proof using the Minty
lemma. Some remarks on variational inequalities and maximal monotone mappings
conclude the section.

By virtue of Lemmas 6.2—6.8 the assumptions of Main Theorem 5.2 can be
replaced by stronger ones, e.g.

7.1. Theerem. Let an operator A: V — V' on a reflexive separable Banach space
satisfv one of the following assumptions:
(a) 4 is coercive, demicontinuous, bounded and satisfies (S)..,
(b) A is strongly monotone, continuous and bounded,
(c) A is continuous, bounded, coercive and A = A, + A,, where A, is monotone
and A, strongly continuous.

Then the assertion of Theorem 5.2 holds.

Let us return to Theorem 5.2. Stronger assumptions yield stronger assertions:

7.2. Theorem. (Supplement to Theorem 5.2.)

Let us consider the problem (5.1) with a bounded operator A on a reflexive
separable Banach space V and its Galerkin approximations (5.2). Let {u,} be
a bounded sequence of solutions to the problem (5.2) and {u,,} a weakly convergent
subsequence, u,, — u. Then the following assertions hold:

(a) If A satisfies (M), then u is a solution of (5.1).
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(b) If A satisfies (S), and is demicontinuous, then u is a solution of (5.1)and
u,, — u strongly.

(c) If A is monotone and hemicontinuous, then the set of the solutions A™'b =

= {ueV, Au = b} is nonempty, closed and convex.

(d) 1f A is strictly monotone and hemicontinuous then A™'b is a one-point set,

i.e. the solution is unique.

(e) If A is uniformly monotone then A~ is continuous.

Proof. (a) Since A4 is bounded, {A4u,} is bounded as well and we can extract
a weakly convergent subsequence Au,, — b. The final part of the proof is analogous
to the proof of Theorem 5.2, step 4. [

(b) Demicontinuity and (S), imply (M)o, thus the limit u is a solution, the con-
dition (S), yields the strong convergence u,, — u. [

(c) Monotony and hemicontinuity imply (M),, thus A7'b & 0. Let u,, u,€
€ A™'b. We prove that u = ut; + uyt,€ A™'b for all t;,1,€(0,1), t, + 1, = 1.
Monotony and Au; = b = Au, yield 0 < t,{Au,; — Av, u; — v) + t,{Au, — Av,
u, — vy = (b — Av, u — v). Since the inequality (b — Av, u — v)> = 0 holds for
each ve V we have Au = b. Indeed, putting v = u — sw, s > 0, we V in this ine-
quality we obtain s(b — A(u — sw), w> = 0. Dividing it by s > 0 and passing to
the limit s - 0, we conclude by virtue of hemicontinuity that (b — Au, w) = 0.
Then putting — w instead of w we obtain the opposite inequality, thus <b — Au, w) =
= 0 holds for each w € V. Consequently, Au = b and A~'b is convex.

It remains to prove that A~ 'b is closed. Let Au, = b, u, — u. Then
b — Av, u — v) = lim {Au, — Av, u, — v) = 0 Voe V. By a similar argument as
above we again obtain Au = b, i.e. A7'b is closed. []

(d) See Theorem 3.1. [

(¢) The continuity of A~ follows directly from the definition of uniform monotony.

O

The assumption of coercivity can be omitted if we guarantee boundedness of the
solutions u, to (5.2) — the finite-dimensional approximation of the problem (5.1).
This can be ensured e.g. by means of Theorem 2.2:

7.3. Theorem. Let V be a reflexive separable Banach space, be V', and A:V - V'
a demicontinuous bounded operator satisfying condition (M), and the inequality

{Au — b,uy 20 VueV, |u|=R (R>0).
Then the equation Au = b has a solution and we apply Theorem 7.2.

Although the theory of monotone operators was developed for nonvariational
problems, the property of monotony is used also for potential operators, see e.g.
[4], Theorem 26.11.

For monotone operators the main theorem can be proved without the assumptions

of boundedness of the opetator and separability of the space by means of the fol-
lowing lemma:
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7.4. Lemma. (Minty, see [8].) Let A be a monotone hemicontinuous operator
and u € V. Then the following two conditions are equivalent:

(7.1) {Au,v —u) =20 YveV,
(7.2) (Av,v —u) =20 YoeV.

Remark. Lemma 7.4 holds even if we replace the space V by a closed convex
subset K = V, see [8].

Proof. Monotony implies {4v, v — u) = {Au, v — u), which yields the implica-
tion (7.1) = (7.2). Hemicontinuity yields the opposite implication. Let us assume
(7.2). Let we V. Putting v = u + t(w — u), t > 0 in (7.2) we obtain
CA(u + t(w — u), t((w — u)) 2 0. After dividing by > 0 we pass to the limitt — 0.
Hemicontinuity implies A(u + #(w — u)) = Au and we obtain the inequality (7.1). O]

7.5. Theorem. (Minty-Browder.) Let V be a reflexive Banach space and A: V — V'
a monotone coercive operator continuous on finite-dimensional subsapces.

Then A(V) =V, ie. the equation Au = b has a solution for each beV’.
Moreover, A~ as a multivalued mapping is bounded and A~'b is a closed convex
set for each be V.

Proof. Let be V'. We prove that Au = b as a solution. The operator 4A,u =
= Au — b is also monotone and hemicontinuous. Due to the Minty lemma 7.4 the
following two conditions

(7.3) A, v —uy 20 YoeV,
(7.4) {Ajv, v —uy =0 YoeV
are equivalent for u € V. Let us denote
U(v) = {ueV, <A, v —u) = 0} .

Then the intersection Uy = N{U(v), ve V} is the set of u e V satisfying (7.4) and
. thus (7.3), which implies that u is a solution of 4;u = 0.

We prove that the intersection Uy, is nonempty by means of the following theorem
on nonempty intersection:

Theorem. Let {U,, t€l} be an arbitrary system of closed subsets of a compact
topological space such that the intersection of a finite number of U, is nonempty.
Then also the intersection N{U,, t€l} is nonempty.

]St

step. The coercivity of A implies (see the proof of Theorem 5.2, step 3) the
existence of an increasing function N: R* — R* such that

(7.5) lully < N(J|Auly) YueV.

The constant r = N(||b]|) is an apriori estimate of the solution u, thus the ball B,
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contains all possible solutions. The closed ball B, with the weak topology is a compact
topological space due to the reflexivity of V.

2" step. The halfspaces U(v) are convex and closed, thus they are closed in the
weak topology. The same holds for U,(v) = U(v) n B,.

3™ step. It remains to prove that the intersection of a finite number of U,(v) is
nonempty. Let v,,v,,...,v,€V and let V, be the finite-dimensional subspace
generated by {v,, v,, ..., v,}. In the same way as in the proof of Theorem 5.2, step 2
we obtain the existence of a solution u, of the Galerkin approximation of the problem
Au = b on the subspace V,. Due to (7.5) we have | < N(||by,|) < r. Therefore
u, € V, n B, satisfies

u

n Va

(A, v —u,y =20 YoeV,.
Thanks to Lemma 7.4 it also satisfies

(A, v —u,y =20 YveV,.

Therefore the intersection N{U/(v;), i = 1,2, ...,n} = N{U(v;),i =1,2,....,n} 0 B,
is nonempty, since it contains at least the solution u,,.

Using the above theorem on nonempty intersection we conclude that the inter-
section Uy is nonempty, which yields the existence of a solution to the problem
Au = b. Since each U,(v) is a closed convex set, their intersection U, = A7'b is
also a closed convex set in V. Due to (7.5) A™' is a bounded mapping. [J

The theory of monotone operators has applications also in the field of variational
inequalities, see e.g. [8], [12]. As an example we introduce a theorem from [8],
which can be proved similarly to Theorem 7.5 via the remark to Lemma 7.4 and an
existence theorem for finite-dimensional approximations of variational inequalities,

7.6. Theorem. Let K be a nonempty closed convex bounded subset of a reflexive
Banach space V, and A: K —» V' a monotone operator continuous on finite-dimen-
sional subspaces. Then there exists a solution to the problem

Find u € K such that
{Au,v —u) 20 YvekK.

In the end of this section we introduce some remarks on maximal monotone
mappings. The concept is defined for multivalued mappings 4: V' — exp V' whose
domain of definition need not be the whole space V. By exp X we denote the set of
all subsets of X.

7.7. Definition. The set M < V x V' is said to be monotone, iff

by = by, ug —uyy 20 V(uls bl)a (“z, by)eM .

A mapping A:V — exp V' is said to be monotone, if its graph is a monotone set.
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A mapping is maximal monotone if its graph is a maximal monotone set in the
sense of inclusion. .

The following functions are examples of maximal monotone mappings on R: x>, %,
arctg x, f(x) = sign x with f(0) = [ —1, 1] and their inverse functions. Let us present
some assertions taken from [14]:

7.8. Assertions. Let V be a reflexive Banach space.

(a) Let A be a monotone hemicontinuous mapping A: V — V'. Then it is maximal

monotone.

(b) Let A be a maximal monotone mapping A: V — exp V'. Then the inverse

mapping A V' — exp V = exp V" is also maximal monotone.

(¢} The subdifferential of a convex functional ®: V — R is a maximal monotone

mapping.

In []2] one can find definitions of pseudomonotone mappings, mappings of type
(S) and (M) — i.e. mappings satisfying conditions similar to conditions (S), (M)
discussed above — and applications to differential and integral equations. Let us
present an existence theorem ([12], III, Theorem 2.10):

7.9. Theorem. Let V be a strictly convex reflexive Banach space and A: V — exp V'
a ‘maximal monotone coercive mapping. Then A(V) = V.

8. APPLICATION

In this section we give some examples of application of the theory developed in the
previous sections to the solution of boundary value problems for differential equa-
tions. Due to the limited extent of the paper, the reformulation of a differential
equation to an abstract operator equation will be only outlined. For details see e.g.
[4]. where also other examples can be found.

We adopt the following notation for function spaces:

CH(Q) — the space of k-times continuously differentiable functions,

L,(Q) — the Lebesgue space of functions integrable with the p-th power, with a.e.
(almost everywhere) equality — i.e. two functions are equal if they differ at
most on a subset of zero measure — and

WhH(Q), WgP(Q) — Sobolev spaces, see e.g. [4], [10], etc., where Q is a domain
in RY. For an interval on the real line R we write I instead of Q.

Example I. A simple ordinary differential equation
8.1. Classical formulation.

We shall deal with the boundary value problem
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(8.1) —u" +gu)y=f in I=(01)
u(0) = u(1) =0,

where f is a given function, f e L,(I). We shall investigate four cases according to
the type of the function g:

(a) g(¢) = c&, ceR, ¢ >0,

(b) 9(¢) = &,

(¢) g is a continuous nondecreasing function,
(d) g is an arbitrary continuous function.

In order to be able to use the monotone operator theory we need to reformulate
the problem in the form of an operator equation on a Banach space V.

8.2. Function space.

The suitable space is the Sobolev space W, *(I) = Wy(I) often denoted by Hy(I),
which is a reflexive separable Banach space with the norm

lull =[5 + w?) dx]V2.
The space is defined as the completion of the linear set

{ue ([0, 1]), u(0) = u(1) = 0}
in the above norm. It can be proved that Wy(I) is the space of absolutely continuous
functions with zero values on the boundary oI = {0, 1} having a square-integrable
first derivative (absolutely continuous functions have a derivative almost everywhere).
Let us put V = Wy(I).

8.3. Weak formulation.

We multiply equation (8.1) by a function ve V and integrate the equation with
respect to x over 1. Integrating the first term by parts and using the condition v(0) =
= v(1) = 0 we obtain

(8.2) fruvdx + f;g(uw)vdx = [, fodx.

By the weak (often called generalized) formulation of the boundary value problem
(8.1) we understand the problem

(8.3) Find u € V such that (8.2) holds for each ve V.

The weak formulation is in fact the abstract operator equation Au = b, see (3.]).
Indeed, we define the opetator 4 and the functional b by the relations

(Au, vy = [u'v'dx + [;g(u)vdx, u,veV,
<b,v) = [;fvdx, veV.
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8.4. Justification of the weak formulation.
We have to prove that A: u e Vi— Aue V' and b € V'. Since f € L,(I), the function-
al b can be estimated using the Schwarz inequality
[<b, 03| = |[rfodx| < [Jif? dx]"* [f;v* dx]"2 =
= Ifllcllelle. = const. o] -

The functional b is bounded and linear, thus it is continuous, i.e. be V.

Let us deal with the operator A. The form {Au, v) is linear in v. It remains to
verify that Au € V'. The operator A consists of two parts A = A; + Ao. The former
part A, defined by

{Agu, vy = [pu'v dx

maps Vinto V' by virtue of the estimate
<A, 0] = [f;w'e dx| < [Jrw? dx]V2 [f, 02 dx]"® < [y o]

Moreover, one can see that 4, is a linear bounded operator and thus it is continuous.
Since [(Au, u)]'/? = [[; w'* dx]'/? is an equivalent norm on ¥ = W,(I), the linear
operator A, is strongly monotone.

The latter part A, of the operator A is defined by

CAou, vy = [y g(u(x)) v(x) dx.
We need to prove that Aque V' forueV, i.e.
(Agu, vy < const (u) [|v]y, u,veV.

In the linear case (a) the estimate is clear. In the other cases we shall use the imbedding
of Sobolev spaces, see e.g. [4], [10]:

V= WD) C C).
Indeed, the functions of V are absolutely continuous with u(0) = 0 and thus u(x) =
= o u/(s) ds, which implies

()] = §5 () ds < o] ds < [, 0 5] [meas (1))
for all x € I. Consequently

(8.4) m?x [u] < [u]y .

Since in all cases the function g is continuous, g(u(x)) is also bounded. Thus we
obtain the desired estimate

(8:5) [<Aou, v)| = |1 g(u) vdx| < mIax lg(w)| mlax o] < const (u) [|v]y

and the weak formulation (8.3) is justified. Moreover, we have proved that in all
cases the operator A, is bounded and continuous. Indeed, due to continuity of u, g
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and (8.4) the constant in (8.5) depends on the norm |uf,, thus A, is bounded.
Similarly, by the same argument, u, — u in Vimplies |[4u, — Aqu| — 0, ie. 4, is
continuous. Thus A is bounded and continuous.

Let us remark that the mapping u - g(u) is a special case of the so-called Nemyckij
operator, see 8.9.

8.5. Application of the monotone operator theory.

Now we shall investigate the individual cases using the lemmas of Section 6.

(a) The operator A is linear and continuous, thus it is Lipschitz continuous. For
a nonnegative constant ¢ the operator A, is monotone and thus A4 is strongly mono-
tone. Theorem 4.1 yields the existence of a unique solution u. Moreover, we have the
strong convergence (4.5) of the approximative solutions given by (4.4) or the strong
convergence of the Galerkin approximations (5.2) due to Theorem 7.2 (b). Let us
remark that if the constant ¢ is negative, the solution need not exist.

(b) Again the operator A is continuous, bounded and strongly monotone, since 4,
is monotone

{(Agu — Agv, u — vy =Il(u _U)Z(ul +MU+U2)d,\‘ >0.

Theorems 7.1 (b), 7.2 (b) yield the existence of a unique solution and the strong
convergence of the Galerkin approximations.

() Since g is a nondecreasing function, the operator 4, is again monotone and we
have the same result as in the case (b).

(d) Since g may have a decreasing segment, 4, need not be monotone. Therefore
we make use of the fact that A, is strongly continuous. Indeed, let u, — u in V. The
compact imbedding W, *(I) QQ C°(I) (see e.g. [4], [10]) yields u, — u in C°(I).
Since g is continuous, we have g(u,) — g(u) in C°(I). Thus Agu, — Aou in ¥’ which
follows from the estimate [Agu, — Aouly. = sup [, [g(u,) — g(u)] vdx <
= [g(u) = g(u)]co > 0. =t

To obtain the coercivity of 4 we have to add another assumption for g:

(8.6) lim inf g(&) sign & > —o0 .

[]= o
This condition ensures that A, is not ‘‘too negative”, i.e. it does not violate the
coercivity of A.

If the assumption (8.6) is satisfied then Theorem 7.1 (c) yields the existence of
a solution — which need not be unique.

If (8.6) is not satisfied, the operator A need not be coercive and the problem need
not have a solution for some right-hand sides f, see [4], Chapter VI.

Let us remark that the operator A is potential and the problem can be studied
by means of variational methods with similar results, see [4], Theorem 26.13.
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Example II. General ordinary differential equation
8.6. Classical formulation.

We shall consider a nonlinear second order ordinary differential equation in di-
vergent form, with Dirichlet boundary conditions:

8.7) - i [y (x. u(x), w(x)] + aofx, u(x), w(x)) = f(x) on I=(0,1)
u(0) = u(l) =0.
8.7. Weak formulation.

We rewrite the problem in the form of an operator equatiion on a Banach space.
The suitable space is the Sobolev space W;(I) described in 8.2. Putting V' = Wy (I)
we have a reflexive separable Banach space. The equation is in the divergent form,
hence multiplying it by v and integrating the first term by parts we obtain the integral
identity

(8.8) frla(cou,w) v + ag(c,u,u)v]dx = [, fodx.
We define the operator 4: V' — V' by the relation
(8.9) CAu, vy = [ [ay(-, u,u') v + ao(*, u, w')v]dx, u,veV.

We can consider a more general right-hand side f = f, — f{, fo.f; € Ly(I). Since
we admit also discontinuous f;, this case includes the Dirac distribution in f. We
define b € V' by the relation

(8.10) <byvy = [ (fov + f1v')dx, veV.
By the weak formulation of problem (8.7) we understand the problem
(8.11) Find u e V such that
(Au,v) = <{b,v) holds forall veV.

\

8.8. Justification of the weak formulation.

We have to specify the coefficients in such a way that the integrals in the formulation
exist and are finite, in other words that the operator 4 defined by (8.9) really acts
from Vinto V', and be V".

We assume f,, f; € Ly(I). Due to the estimate

[<b. 03] = [Solwa olis + [/1]e. [¥']le, = const. o]y

the functional b: V — R is continuous, i.e. be V',

Let us turn to the operator 4. We have to find conditions general enough and such
that the composed functions a(+,u(+), u'(+)) are measurable, integrable (have
a finite integral) so that A acts from Vinto V’. Let us remark that superposition of
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measurable functions need not be measurable. The problem is solved by the theorem
on Nemyckij operators, see e.g. [4], which gives sufffcient conditions.

8.9. Theorem on the Nemyckij operators.
Let Q be a domain in R" and h(x, £) a function
h: Q2 x R" > R.
(a) Let h satisfy the Carathéodory conditions, i.e.
(8.12) h(x, &) is measurable in x for all fixed &€ R™,
h(x, &) is continuous in & for almost all xe Q.

Then the composed function h(x,u,(x), u(x), ..., u,(x)) is measurable for all
measurable u, u,, ..., u,,.

(b) Let the function h satisfy the Carathéodory conditions (8.12) and let con-
Stants py, Pay -«ey Pms F € [l, o) be given. Then the Nemyckij operator
(8.13) Hiug, g, oo thy > b ug(2), ua(e), ooy un(*))

acts between the spaces
(8.14) H:L,(Q) x L,(Q) x ... x L, (Q) > L(Q)

if and only if h satisfies the growth condition
(8.15) [h(x, &4y &y En)] S g(x) + € X |E|7".
i=1

where g € L(Q) and c is a positive constant.

(b’) The preceding assertion (b) holds even if p; = w0 for some i. Let p; = o
fori=1,2...s;s <mandp,re[l, o) fori=s+1,..,m

Then the assertion (b) holds if we replace (8.15) by the condition

619)  fixc Gl ST IED 0D + X falT,

i=s+1

where g € L(Q) and c(t) is a continuous function.
(¢) If condition (8.15) or (8.15') is satisfied, then the operator H is continuous
and bounded as the mapping (8.14).

8.10. Justification of the weak formulation — continuation.

We adopt a natural assumption that the coefficients a,, a, satisfy the Carathéodory
conditions, i.e.
(8.16) afx, &, &), i = 0,1 are measurable in x for all £ € R? and continuous
in &y, ..., &, for almost all x € I.
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In this case we have in (8.9) integrals faq(+, u, u’) v dx and [a,(, u, u’) v dx. Since
v, v € Ly(I), we need a (-, u, u') € Ly(I), i.e. we need

(u,u')e Ly(I) x Ly(I) > af+,u,u’) e Ly(I) .
Condition (8.15) yields the growth condition
(8.17) lad(x, &0, E)| < a(x) + c(|&o| + &), i=0,1.
where g € Ly(I), ¢ > 0. Indeed, the estimate (8.17) gives
Jadx, s, ] = 9x) + offu()] + W),
which implies the estimate
Jlai(x, u(x), w(x))|* dx < 3[fg* dx + ¢* fu® dx + ¢* fu'? dx] .
Condition (8.17) can be weakened if we take into account that a function from V
is in a better space than L,(I), and use the imbeddings of Sobolev spaces. In our
case VC CI) G L,(I), see (8.4). Since ve L,(I), it is sufficient to require
ao(+. u,u’) e L(I). Thus we need Nemyckij operators
(u.u')e L(I) x Ly(I)+>a,(-,u,u')e Ly(I),
(u,u')e L(I) x Ly(I)+> ao(+,u,u’)e L(I).
Condition (8.15") yields the growth conditions
(8.18) |ay(x. Zo. E0)] = es([€o]) (94(x) + 1€40)
[ao(x, <os ny)l = Co([foi) (g0(x) + |‘§1|2) )
where ¢,(t) are continuous functions and g, € L,(I), g, € Ly(I).
We can conclude: If the coefficients c; satisfy (8.16) and (8.17) or (8.18) then the

operator A maps V into V' and the variational formulation of the problem is
justified.
8.11. Application of the monotone operator theory.

Due to the theorem on Nemyckij operators — assertion (c), the operator A is
continuous and bounded. It remains to deal with the problem of coercivity and
monotony.

Let us assume the coercivity condition in the form

(8-19) ‘H(x, o> Cvl) &t ao(X, €os 61) $o 2 C[fxlz — K V&, ¢ eR
a.e. in I, where ¢ > 0, K € R. Then we have
CAu,uy = [r[a(-su,w)u' + ao(+, u,u)u]dx = ¢ fyu?dx — K.

Since [ fu’? dx]!/? is an equivalent norm on V, the operator 4 is coercive. Concerning
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monotony we distinguish three cases:

(a) Monotone case. The monotony condition

(8.20) [a(x, &o, &1) — as(x, Mo, )] (&1 — my) +
+ [ao(X, ¢o» 51) - ao(X, Nos ’11)] (fo - ’Io) =20
Vo, &1 Mos M €R

a.e. in I implies monotony of the operator A:

(Au — Av, u — 0y = [ {[a,(-, u, u') — a,(-, 0, 0)] (' — v') +
+ [ao(s, u, u') — ao(-,0,v)] (u —v)} dx 20 Vu,veV.

Using Theorem 7.5 we obtain the conclusion:

Let the assumptions (8.16), (1.18), (1.19), (8.20) be satisfied and fo, f, € Ly(I).
Then the problem (8.11) has a solution. The solutions form a nonempty closed
convex subset of V.

(b) The case of the (S), condition. In many important problems monotony is
not satisfied. Instead of it we can assume only strong monotony in the principal part
of the operator, i.e.

(821)  [ay(x, &, &) — as(x, €0 n)] (& — my) Z of&; — ) (x> 0).

Then the operator A4, given by {A,u,v) = [;a,(+,u, u’) v’ dx, satisfies condition
(S)+- Indeed, let u, — u in V and let lim sup {4,u, — A,u, u, — u) < 0. Due to
(8.21) we obtain

s = w7, = i Lan(cs ) — (e w)] (0 — W) dx =

= <A1un - Alu‘: U, — u’> +
+ [ilay(c u,u') — ay(+, up )] (u, — u')dx.

Let us pass to lim sup. Due to the assumption, lim sup of the first term is nonpositive.
Since u, — u in V, the compact imbedding ¥V QG C°(I) yields strong convergence
u, - u in C%(I) and due to the continuity of a,(x, &, &) in &, the second integral
tends to zero. Since ||[u’|[,, is an equivalent norm on V, we obtain [u, — u[; — 0
which proves condition (S)..

Further, we suppose that a, is independent of ¢, i.e.

(8.22) ag = ao(x, &) .

Then the remaining part of 4, the operator 4, (defined by (Ao, v> = [, ao(-, u) vdx,
is strongly continuous. Indeed, u, — u in V implies Hu,, - u“Co — 0 and the con-
tinuity of a, in &, yields Aqu, — Aqu in V', thus A, is strongly continuous.

Due to Lemma 6.8 the sum A also satisfies (S),. Thus using Theorem 7.1 (a)
we reach the following conclusion:
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Let (8.16), (8.18), (8.19), (8.21), (8.22) be satisfied and f,, f1 € Ly(I). Then problem
(8.11) has a solution. Moreover, due to 7.2 (b) the sequence of Galerkin approximate
solutions has a strongly converging subsequence.

(c) Pseudomonotone case. We assume only monotony in the principal part of the
operator A, i.e.

(8.23) [al(x, Eos fl) - a;(X, o» 711)] (f1 - '11) =20 V&, ¢,neR.
Defining the form B: V x V — V' by the relation
(8.24) (B(u,v),wy = [ra,(-,u,v')w dx Vu,v,weV,

it is not difficult to verify that the principal part A, satisfies the assumptions of
Lemma 6.10 and that A, is pseudomonotone. Adding assumption (8.22) we see that
the operator A, is strongly continuous, and using Theorems 6.8 (c), 7.1 (c) we
obtain the existence of a solution:

Let (8.16), (8.18), (8.19), (8.22), (8.23) be satisfied and f,, f, € Ly(I). Then the
problem (8.11) has a solution.

Let us consider the case without (8.22), i.e. a, does depend on ¢,. Since super-
position with a continuous nonlinear function does not preserve weak convergence
in Ly(I), i.e.

fo—f does notimply ¢(f,) = g(f) .

the operator 4, need not be pseudomonotone. Nevertheless, if the inequality (8.23)
is strict for &, = 1, one can prove pseudomonotony of the whole operator 4. We
only outline the proof. Again, we define a form B: V x V— V' by

(8.24) (B(u, v), wy = [j[a,(, u, v')w' + ao(*,u,w')wldx, u,v,weV

and verify the assumptions of Lemma 6.10. The main difficulty appears in property
(d). The crucial step consists in the proof that the assumptions of (d) imply the
pointwise convergence a.e. u,(x) — u/(x); for details see [11], [15].

8.12. Remarks.

(a) If the coefficients a(x, &y, &;) are differentiable in o, &y, then the monotony
condition (8.20) can be rewritten in the form

2 9 0
(8.20) %(x, Eor €)My + [50?; (x, &, &1) + (ggtf (%, Cos é‘)] Moty +
+ g% (x, &, &) Moo Z 0 Vo, &y Mo, My ER -
0

Indeed, using the mean value theorem we can write

[01(X, &os 51) - al(x, Mo, '11)] (51 - '71) +
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+ [ao(x, o, &) — aO(xa o, 1)) (€0 — no) =
:f {@L (9)(51 - ’71 + 3& (9)( - ’70)] (51 —ny)de +

0¢,

da .

[P -+ 2o e - )@ -,
1

where 9 stands for (x,m0 + 1(Eo — Mo), my + 1(&; — ny))- Thus (8.20) yields (8.20)

Similarly we can rewrite (8.21) or (8.23).

(b) The fact that only homogeneous Dirichlet boundary conditions were considered
is not substantial. Other boundary conditions bring only technical difficulties.

(c) The problems with coefficients growing more rapidly than in (8.18) can be
investigated using Sobolev spaces W'”(I) with p > 2 or Orlicz spaces, sec e.g.
[4]. [10].

(d) The above introduced procedure can be applied also to boundary value

problems for differential equations of order 2m, for partial differential equations
and even for systems of equations, see [2], [4], [11], [14].

EXamp]e III. Stationary nonlinear heat-conduction equation
8.13. Classical formulation.

Let Q be a bounded domain in RY with the boundary 0Q divided into two parts
I'y, I';. We shall consider the equation

825) -3y [a(x,u.)ﬁ“—]: fin @

i= 15 ax,«
with mixed boundary conditions

(8.26) u=U, on I,
(8.27) a(x, u)Z—u =g on I,
n

where du/dn is the outward normal derivative, du/on = Y du[ox; n,.

The equation describes the steady state of heat conduction — u(x, f) represents
the temperature at a point x at a time ¢t — in a body occupying the volume Q, with
internal heat sources f. On the boundary the temperature (8.26) or the heat flow
(8.27) is prescribed. The formulation covers both the space and the plane cases
for N=3and N = 2.

The heat conduction properties of the material are described by the function
a(x, &) which corresponds to a nonhomogeneous isotropic material. If the material
is homogeneous then the coefficients do not depend on x. In the case of an anisotropic
material the properties are characterized by a matrix function a,/(x, ¢) and the
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operator in (8.25) is written in the form

Yoo ou
— Z - [aij(x, u) "_:I .
0x;

ij=10X;

This case causes only technical difficulties. If the function a is independent of ¢&
then we have a linear conduction equation, i.e. a linear problem. This case occurs
if the conductivity, the specific mass and the specific heat do not depend on the
temperature u.

8.14. Domain and function space.

First, we have to exclude domains with a ““bad” boundary. It is sufficient to con-
sider domains with a Lipschitz boundary, i.e. with a boundary which can be locally
expressed as the graph of a Lipschitz continuous function in convenient local co-
ordinates. Moreover, each part of the boundary separates the domain Q from its
complement RY — @, see e.g. [4]. Such a boundary has the normal vector almost
everywhere, which is important for the condition (8.27). Further we assume that the
part I'y of the boundary is nonempty and relatively open in 0Q, and that I'y =
=0Q — T,.

The space of functions convenient for our purposes is a subspace of the Sobolev
space W'?(Q). Taking into account the boundary condition (8.26), we define V
as the closure of the set {u € C'(Q), u = 0 on I';} in the norm of the space W''*(Q).
The space V is a reflexive separable Banach space, see [4], [10]. The functions of
WI’Z(Q) can be characterized as functions absolutely continuous on almost all lines
parallel to the coordinate axes and having square-integrable derivatives. The sub-
space V consists of functions with zeros (in the sense of traces) on I'.

8.15. Weak formulation.

We multiply (8.25) by v e V and integrate over Q. Applying the Green theorem to
integrals on the left hand-side and using the boundary condition (8.27) we obtain

N A
(8.28) Y alx, u)ﬂﬂdx =ffv dx + J‘ gvdsS.
0i=1 0x; 0x; o r

The boundary condition (8.27) is implicitly contained in this equality, condition
(8.26) must be added explicitly. Let u, € W'*(Q) be a function with the prescribed
values u, on I'y in the sense of traces. Then we can formulate the problem as follows:

(8.29) Find u € W"?(Q) such that u — uy € Vand the equality (8.28) holds for
each veV.
We define the operator 4: W'3(Q) — [W'*(Q)]' by the relation

(8.30) (Au, vy = J % a(x, u)

a de u,ve WH(Q)
0x; 0x;
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and the functional b: W'*(Q) - R by
(8.31) <b,vy = [ofvdx + [, gvdS.

In accordance with the formulation (8.29) we look for the solution in the set u, +
+ V={u=u*+ uy, u*eV}. Substituting u = u, + u* we reformulate the
problem in the following way:

Find u* € V such that
(8.29) (A*u*, vy = (b, o) VeV,
where A* is defined by A*u* = A(u* + u,).

8.16. Justification of the weak formulation.
Let us assume
(8.32) uge Wh3(Q), feLy(Q), geLy(I,).
Then due to the inequality |[v]|,,r,) < const. [v]y1.29) (the theorem on traces, see
e.g. [4], [10]), b is a continuous linear functional on V:
1<b, 03] = [/ leace [0l eacer + [90acrn (o] acry < const. [o]yizqq -

Let us dea! with the operator A. Since du/dx;, 0v/dx; € Ly(Q) the integral in (8.30)
is finite if a(-, u(+)) € L,(2). Thus we assume that the coefficient a: 2 x R - R
satisfies the Carathéodory condition (see Theorem 8.9 (a)):

(8.33) a(x, &) is measurable in x for each (€ R,
a(x, ¢) is continuous in ¢ for almost each x € Q ,

which ensures that a(+, u(+)) is measurable for measurable u. Further, we assume
that
(8.34) la(x,¢)| S c <o ae. inQ VEeR,
which implies a(-, u(+)) € L,(Q) for each u € L,(2). In fact, due to the imbedding
theorems the values of u € W'3(Q) are in a better space than L,(®), but this does
not enable us to weaken the restriction (8.34).

Let us conclude. If the assumptions of 8.14 and (8.32)—(8.34) are satisfied then
the problems (8.29), (8.29') are well defined.

8.17. Application of the monotone operator theory.

Due to Theorem 8.9 (c) the above introduced assumptions yield, in addition,
boundedness and continuity of the operators A and A*. Further, we assume

(835  a(x.&)za (x>0),

which yields the coercivity of the operators A4 and A*. Indeed, (Au, u) = of Vu[|Z,2)
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and ||Vu| @, is an equivalent norm on V since the functions from V have zero
traces on I'y, where I'y is the set of positive (N — 1)-dimensional measure due to the
assumptions in 8.14.

Let us deal with the monotony of the operator. If the coefficient a(x, ) is not
constant in £, then the operator is not monotone. A counterexample can be con-
structed using the following simple one-dimensional example:

8.18. Example.
Let a(é) assume at least two different values
a() =a; for ¢eld;, i=12,

where J,, J, are disjoint intervals and 0 < a; < a,. Outside J,, J, the function
a(&) may be arbitrary.

We construct two ,,saw” functions uy, u, € W?((0, 1)) such that u; has “teeth”
with slopes +b; and values in J; (uj = +b; ae. in (0,1), ux)e J;) i = 1,2, see
Fig. 3.

N VANV AN VA VA VAV

NAANANAN N

Fig. 3

The constants b, b, are chosen such that b, > b, but a;b, — a,b, < 0. If the
period ¢ is small enough, such functions exist.

The above introduced functions violate the monotony condition. Indeed,
(Auy — Auy, uy — uy) = [o [a(uy) uy — a(uy) ub] (uf — uh)dt = (a;by — ayb,) .
.(by — by) <O.
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8.19. Application of the monotone operator theory — continuation.

Thus the operator is not monotone. However, the assumption (8.35) yields
monotony in the principal part, which makes it possible to prove pseudomonotony
of the operator by using Lemma 6.10. Since we are interested in the operator A*uy =
= A(u + u,), we define the form B: V x ¥V — V' by the relation

(8.36) (B(u,v), w) = [pa(-,u + ug) V(v + up) Vwdx, u,v,weV

and verify the assumptions of Lemma 6.10.
Clearly B(u,u) = A(u + uy) = A*(u). Due to Theorem 8.9 (c) the assumptions
(a), (b) are satisfied, (8.35) implies (c}:
(B(u,u) — B(u, v), u — vy = of|V(u - v)|},0, 2 0.

In the proof of the implication (d) we assume that the continuous coefficient
a(x, ¢) is Lipschitz continuous, i.e.

(8.37) la(x, &) — a(x, n)| = L|¢ - n| .
The assumption is not necessary but it simplifies the proof. Let u, — u in V. Then
u, = u in Ly(Q) strongly due to the compact imbedding W'*(Q) QC L,(Q). Let
ve Vand we C(Q). Then thanks to (8.37) we obtain

<B(u,, v) — B(u, v), wy =
Jala(+,u, + ug) — a(+, u + uo)] V(v + ue) Vwdx <
const. Llu, — |, [V(v + )|, |[Vw]., = 0.

IIA

Since C'(2) is dense in W'?(Q) and B is continuous, the desired convergence
B(u,, v) = B(u, v) follows.

Finally, we prove the implication (e). Let u, — u in V, which implies u, > u
in Ly(Q). In the previous step we have proved B(u,, v) — B(u, v). Hence we have
to estimate

<B(um U)’ Ll"> - <B(u, U)9 u> =

= <{B(u,, v) — B(u,v), u,> + <{B(u,v), u, — u) =

= [ola(:, u, + uo) — a(*, u + uo)] V(v + uo) Vu, dx +

+ fqa(s,u + uo) V(v + ue) V(u, — u)dx .
Clearly, the second integral tends to zero. In the first integral we replace v + u,
by its approximation v* in C'(Q) using the fact that C*(Q) is dense in W'*(Q2) and B
is continuous. Then due to (3.37) and the boundedness of Vu, in L,(2) we obtain
convergence to zero of the first integral and (e) is proved. Thus A* is pseudomonotone
and using Theorem 7.1 (c) we reach the following conclusion:

Let the assumptions of 8.14 and (8.32)—(8.34), (8.35), (8.37) be satisfied. Then
the problem (8.29) has a solution.
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We conclude the section with a general nonlinear second-order partial differential
equation and indicate how to proceed in the case of operators of order 2m. We
introduce only the results for problems with simple boundary conditions. For more
general cases we refer to [4], [11], [15].

Example IV. Partial differential equation — general case

8.20. Formulation of the problem.

Let Q be a bounded domain in RY with a Lipschitz boundary 0Q divided into two
parts Iy, I'y and let us consider the equation

(8.38) - % a—a— [afx, u, Vu)] + ao(x,u, Vu) = f in Q
i=1 0X;

with mixed boundary conditions

(8.39) u=u, on I,

N
(8.40) Yoafx,u,Vuyn, =g on I,.
i=1

8.21. Weak formulation and its justification.

Taking into account the stable boundary condition (8.39) we define the Banach
space V as the closure of the set {u € C'(2), u = 0 on I'y} in the Sobolev space
W*'?(Q). We define the operator A: W'3(Q) - V' by

N A
(8.41) (Au, vy =Y [ai(x, u, Vu) —iﬂ + ao(x, u, Vu) v] dx
i< ox;

and the functional b e V' by
(8.42) (b, vy = [gfvdx + [, gvdS.
. Thus we obtain the weak formulation of the problem (8.38)—(8.40):

(8.43) Find ue W'*(Q) such that u — uye V and <{Au,v) = (b, v) holds
for each ve V.

To justify this formulation we adopt the assumptions
(8.44) uoe WHA(Q), feL,(Q), gelLy(Iy).

According to Theorem 8.9 on Nemyckij operators it is sufficient to suppose that the
coefficients a;: @ x R x R¥ - R, i =0,1,..., N satisfy the Carathéodory con-
ditions (8.33) and the growth conditions

N
(8.45) lai(x, &, E1svvn EN| S 9ulx) + e &5
j=o0
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where g;€ L,(2) and ¢; > 0. The restriction (8.45) can be weakened by using
imbeddings of Sobolev spaces, see [4], Theorem 16.14.

8.22. Application of the theory of monotone operators.

The above introduced assumptions yield also boundedness and continuity of the
operator A. The condition

N N
(8.46) Y afx, &0, Err oo En) & 2 dy Y & + dol — h(x)
i=0 i=1

with dy, d; > 0, he L,(Q) implies the coercivity of the operator. If [[Vu][L2 is an
equivalent norm on V, then we can admit d, = 0. Further, if the monotony condition
is satisfied, i.e.

N
(8-47) _Zo(ai(x, €05 €15 v es 5&) - ai(X, Mos Mys -+ - UN)) (5;‘ - ﬂi) =20,

then the operator is monotone and using Theorem 7.5 we obtain the following result:
Let (8.33), (8.44)—(8.47) be satisfied. Then the problem (8.43) has a solution. The
solutions form a closed convex subset in W'*(Q).

If (8.47) is not satisfied, we can assume only strict monotony in the principal part
of the operator, i.e.

N
(848) ~§l[ai(x’ 603 él’ LS ﬁN) - ai(-xa 60’ MNis «os TIN)] (El - ’71) >0

for (&g, .., En) = (Mys oo 1) -

Then using Lemma 6.10 we can prove the pseudomonotony. For the proof we refer
to [11], [15]. Thus using Theorem 7.1 (c) we obtain the following result

Let (8.33), (8.44)—(8.46) and (8.48) be satisfied. Then the problem (8.43) has
a solution. .

8.23. Remarks.

(a) The same procedure can be applied to systems of equations, see e.g. [11];
one obtains the same results, only the formulae have more indices.

(b) If the coefficients are differentiable, the conditions (8.46)—(8.48) are often
expressed in terms of derivatives, see Remark 8.12 (a).

8.24. The case of the 2m'"-order equation — an outline.

We shall briefly mention the case of the equation

(8.49) Y (=)™ D[a,(x,u, Dyu,...,Du)] =f on Q

laj<m
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with suitable boundary conditions, see e.g. [4] The simplest case is
(8.50) Dgu =0 on 0Q, [f|<m-—1.

We use the notation with multiindices denoted by Greek characters o = (ay, ..., ay),

2,;€{0,1,...,m}, |a| = Yo;, D* means 8'!/ox}' ... 0x§* and D = (D"u, |o] = k).
The suitable Banach space Vis a subspace of the Sobolev space W™*(Q), Wg"*(Q) =

= V < W™?(Q) chosen in accordance with the given boundary conditions; in the

case (8.50) we choose V = Wg"*(Q). The corresponding operator A: W™ Q) —» V'

is defined by

(8.51) {Au, vy = [o (Y. ax,u, Dyu, ..., D,u) D) dx.

laj<m
In order that A be ‘““well” defined, the coefficients a, are supposed to satisfy the
Carathéodory conditions and the growth conditions

65 a8l Sc T 6]+ o) V= (s < m

Again, using imbedding theorems, the restriction (8.52) can be weakened, see [4]
Theorem 16.14. The condition
(8.53) a(x, &) ¢, = dy z &2+ do&d — h(x)
|a]<m la|=m
implies coercivity, the condition
(859 Y [a(ed - alen] G -n) 20
la]<m
ensures monotony of the operator and the existence result follows. It is sufficient to
assume only strict monotony in the principal part, i.e.

(855) [ ,Z_: [aa(xr E; ém) - aac(xv E» nm)] (ia - ’11) >0 Vém * re

where & = (&, |B| < m — 1), &, = (&, |B| = m), which implies pseudomonotony.
However, the proof is rather complicated, see [15].

N HISTORICAL REMARKS

The assumption of monotony for operators in a Hilbert space was used by M.
Golomb already in 1935. The term ‘“monotone mapping” was invented by R. .
Kacurovskij (1960), who also noticed that the differential of a convex functional is
a monotone mapping. The surjectivity of a continuous coercive monotone operator
was proved by G. J. Minty (1962) and F. E. Browder (1963). Pseudomonotone
operators were introduced by H. Brézis (1968) and F. E. Browder (1968), the operators
satisfying condition (M) also by H. Brézis. Hundreds of papers have been devoted
to the theory of monotone operators and its applications, more then 300 items are
quoted in the monogoraph [12] from 1978 (which has been also the main source
for these remarks), further references can be found in [3], [4], [7]. [8], [11]. [14].
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Souhrn

MONOTONNI{ OPERATORY
Prehled zaméfeny na aplikace v diferencidlnich rovnicich

JAN FrRANCU

Clanek se zabyva existenci feSeni rovnic tvaru Au = b s operatorem monoténnim v 3ir§im
smyslu, vCetn& pseudomonotdnnich operatort a operatoru spliiyjicich podminky S a M. Prvni
Cast prace ma metodicky charakter a vrcholi dukazem existence feSeni rovnice na reflexivnim
separabilnim.prostoru s ohrani¢enym demispojitym koercivnim operatorem spliiujicim podminku
(M),. Druha ¢ast ma piehledovy charakter, srovnava ruzné druhy spojitosti a monotonie a uvadi
fadu dalSich vysledki. PouZiti této teorie pro dukaz existence FeSeni okrajovych uloh pro oby&ejné
a parcialni diferencialni rovnice je ilustrovano na prikladech.
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. Pe3iome

MOHOTOHHEBIE OITEPATOPBI
O0630p pe3yabTaTOB NPUMEHSIOLMXCS B TEOpUHU JuddepeHnanbHbIX YpaBHEHHI

JAN FRANCU

PaboTa nocasilieHa npobaeme CylecTBOBaHMs PELIEHUI ypaBHEHU Buga Au = b ¢ onepaTtopom
MOHOTOHHBIM B LIMPOKOM CMBICJIE, BKJIIOYAsi TICEBJOMOHOTOHHBIE ONEPATOPBl U ONEPATOPHI YAO-
BJIETBOpSIOLIME yCiaoBusiM S 1 M. IlepBasi yacTh paGoThl UMEET METOAMYECKMI XapaKTep U 3aKaH-
YHUBAETCA JOKA3ATEILCTBOM CYLICCTBOBAHMS PELUEHHUA [JIsl YPBHEHUS B pedieKCHBHOM cenapabeb-
HOM OaHAXOBOM MpPOCTPAHCTBE C OrPAHWYECHHBIM IOJYHETPEPHIBHBIM KO3PUMTUBHBIM ONIEPATOPOM
YIOBNETBOPSIOIMM ycioBmto (M),. Bo BTOPOi yacTu 0630pHOT0 XapaKkTepa CPaBHUBAIOTCS Pa3iIn-
HBI€ THIIBI HENPEPHIBHOCTH M MOHOTOHHOCTH a TAK)XE NPUBOJUTCS PSJI TIOCIEAYIOIIUX PE3yIbTaATOB.
TIpuMeHeHHEe 3TOM TEOPHH K J0KA3aTeIbCTBY CYIIECTBOBAHUS PELUCHMI KpPaeBbIX 3a1a4 AJisi OObIK~
HOBEHHBIX Au(depeHUMaTbHbIX YPABHEHHH U YPABHEHH) B YaCTHBIX IPOU3BOAHBIX HILTFOCTPUPYETCS
npuMepaMu.

Author’s address: RNDr. Jan Francu, CSc., katedra matematiky, strojni fakhlta VUT, Tech-
nicka 2, 616 69 Brno.
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