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PENALTY METHOD AND EXTRAPOLATION
FOR AXISYMMETRIC ELLIPTIC PROBLEMS
WITH DIRICHLET BOUNDARY CONDITIONS

IVAN HLAVACEK

(Received August 10, 1989)

Summary. A second order elliptic problem with axisymmetric data is solved in a finite element
space, constructed on a triangulation with curved triangles, in such a way, that the (nonhomogene-
ous) boundary condition is fulfilled in the sense of a penalty. On the basis of two approximate
sclutions, extrapolates for both the solution and the boundary flux are defined. Some a priori
error estimates are derived, provided the exact solution is regular enough. The paper extends
some of the results of J. T. King [6], [7].
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AMS Subject class: 65N30, 73K25.

INTRODUCTION

In some cases we need to compute both the solution and the boundary flux of an
elliptic second order Dirichlet problem with a considerable accuracy. For instance,
in the shape optimization the sensitivity analysis sometimes leads to the conclusion
that the gradient of the cost functional can be expressed as a boundary integral
\involving the boundary flux ([3] §3.3.3). Then it seems to be suitable to employ
the method of penalty and extrapolation, proposed by King and Serbin [6], [7],
who introduced the method for second order elliptic equations with non-homogeneous
Dirichlet boundary conditions in N-dimensional domain. It is the aim of the present
paper to extend the method to axisymmetric elliptic problems in R*® and to derive
also a priori error estimates.

In Section 1 we introduce some weighted Sobolev spaces, auxiliary inequalities
and finite element spaces. An elliptic model problem is presented in Section 2 together
with a definition of approximate solution by means of finite elements and a penalty
term. In section 3 we derive some auxiliary error estimates. In Section 4 new ap-
proximations both of the solution and of the boundary flux are defined, extrapolating
two approximate solutions with two different ““weights” of the penalty term. Using
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the auxiliary error estimates, we prove a priori error estimates for them, provided
the data and, consequently, the exact solution are regular enough.

1. SOME PRELIMINARY RESULTS

Let us suppose that a domain @ = R? is generated by the rotation of a bounded
domain D about the axis @ = {x; = x, = 0}. Assume that the domain Q has
a smooth boundary 0Q, so that the boundary dD can be decomposed, as follows:

oD =r,url,

where I'y = 0D n @ and I' = C?(Fig. 1), I is orthogonal to the axis @ and straight
in some neighbourhood of points I n 0.

Fig. 1.

Passing to the cylindrical coordinates (r, 9, z), for which x3 = z, we define the
weighted Sobolev spaces W¥*?(D) of functions u(r, z), with the norm

Ju]
and the seminorm

’ulk,r,D = (L) Z qull!Z rdr dZ)]/2 .
la]=k

wrp = ([p X |Du)? rdrdz)"?, k=0,1,2,...
la| <k

Instead of W{**(D)we shall write L;(D) and define the inner product in L2(D) by the
integral
(u,v)g = [puvrdrdz.

In a similar way, we introduce the space LX(T") with the inner product
{u, vy = [puords, u,veLX(T)

and the associated norm |[uo, r = Cu, ud'/2
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Note that a function U(x, x,, x3) is axisymmetric in Q if and only if
U(rcos 9, rsin 9, z) = u(r, z) .
Then
UeW"(Q)<ue W) *(D)

(seee.g.[9] — Sect. 2).

There exists a continuous mapping G: W}*(D) - L(I') such that Gu = u|,
for any u € C'(D).

(The proof can be found e.g. in [5] — Section 1.)

Moreover, we introduce the following subspace

V={veW(D)|Gv=0}.

Henceforth the “C” will denote a generic positive constant, possibility different at
different places.

For any u € W} *(D) the following Friedrichs inequality holds
(1.1) Cluli,p = |u

%,r,D + Uu“érr .

(This is an immediate consequence of the classical Friedrichs inequality in W' 3(Q),
Q < R seee.g. [8] — Thm. 1.9).

From (1.1) we conclude the following inequality

(1.2) lully o < Cluly,p YueV.

Lemma 1.1. Let I" belong to the class C*, being orthogonal to the axis ¢. Then
there exists a positive constant C such that for all ¢ > 0

(1.3) [ollerr = elollg,p + Ce7to|3, . Yoe W!(D).

Proof (see [2] — Lemma 4.1 for functions from W'?(Q), @ < RY). There exists
‘a vector function f = (f,.f,)e[C'(D)]* such that f, = v, [,
Jr, v, are components of the unit outward normal to I') and f,
Then for any positive # we may write

j virds = .[ [_(3_ (fyrv?) + g (fzrvz)} drdz =
r plOr 0z

0 il
= | v? lf,—f-if,—f—ifz rdrdz + 2| v (-'Bf,+a—vfz rdrdz.
D r or 0z p \or 0z

Since f,, f, € C'(D) and

v. on I' (where
0on Iy

Il

\‘f( 2) <o, 0O<o<r

0
_ | 2 fe)

407



we obtain the estimate

ol2, r < 3f]c (nvus,,,D 42 j Tl

>rdr dz) <
< 3|[flc: Galloll,0 + 7o) ,0) ¥ > 0.
Setting 9||f]|c: 7/2 = &, we arrive at (1.3). : Q.E.D.

dv

0z

ov
—|+
or

Assume that a finitc element space X, is available, where h is a (small) parameter,
such that X, = W,}"*(D) and there exists a constant C, independent of u and h,
and a function u; < X, such that

(1.4) lu = wrllorp + hllu — wr]i,p < CHlufs,p

holds for any function u ¢ W$*(D), where s = 2, 3 and for any h (0, 1].

For instance, we can employ spaces of piecewise smooth functions, proposed
by Zlamal [10]. Let the domain D be carved into triangles K, which may have one
curved side, if K is adjacent to an arc of I'. Assume that all triangles, for which
K N 0 + 0, are straight (recall that in some neighbourhood of points I' n @ the
boundary I coincides with a straight segment). Assume moreover, that the family
of triangulations {7}, he (0, 1], is regular in the following sense: there exists
a positive 3, independent of h, such that the interior angles of all triangles K € 7,
are not less than 9,. (Here the angles of a curved triangle are measured as if the arc
were replaced by the chord).

Let us sketch the proof of (1.4).

1° Let U, be the union of triangles having one vertex at a point Q € I', and let
ITy,u be the piecewise quadratic interpolate of u over the union Uj. Since all the
triangles K = U, are straight, we can use Lemma 6.1 of [9] to obtain

(1.5) lu — Mygul v = CR2Juls, u, Yue WP (Uy).

By the same argument, however, one can derive the upper bound Chl“'z,r,ue for all
ue W}*(U,). It is easy to prove that

(1.6) [u = Myguorue < CHlu| s=2,3

s,r,Ug
following a similar line of thoughts.

2° Next let us consider a triangle (possibly curved) K, such that Kn 0 = 0.
Modifying slightly the proof of Lemma 5.2 in [4], we obtain the following assertion:
there exists a positive constant C, independent of K and such that

ro = min r = Chy,
(r,z)eK

where hy is the maximal side of the “straightened” triangle K (with the same vertices).
Since the boundary I' = C3, we have

Ry = max r < ry + hg + Cyhg < 1oy + Crhy,
(r,z)eK
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so that
(1.7) Rofro S 1+ Cyhyfry < C5.

Let IT,u be the function corresponding with the quadratic interpolate on the
reference “unit” triangle — in the sense of Zlamal [10]. Then we have (cf. [10] —
Thm. 1 and the proof)

lu— trgul;c < Chiciullyucr s=2.3; j=0.1,
where [ [; x denotes the norm in W/*(K). Obviously, we have
lulx < g ?]u
so that we may write
(1.8) lu — Irgulf;, x < Ry |lu — ITeul; «
= C4h'\k-j““”s.r,1< >
using (1.7). Combining (1.5), (1.6) and (1.8), we arrive at the condition (1.4).

s,r.K»

< Chi IRy rg P lulypx <

2. MODEL PROBLEM AND THE PENALTY METHOD

We shall consider the following elliptic boundary value problem

) | G 4 ) .
(2.1) ~e a, u +~a,%+ < aza“ =fin D, u=g on I,
or roér 0z 0z

where the coefficients a, and a. belong to C*(D), da,/or = da_[or = 0 for r = 0,
and a constant a, > 0 exists such that

a, = ay, ad.=a, in D,

fe Wh3(D),g e G(X3(D)), where

X3(D) = {ve w2 (D)| Loy (D)}.

~ We introduce the following bilinear form

) ou d
a(u, v) = J( Qu ce a:(u”>zdldz u,ve WH*(D).

0z 0z

Let ug € W!"*(D) be such that Gu, = g. We say that u e W}*(D) is a weak solution
of the problem (2.1) if u — u, € Vand

a(u, v) = (f,v)y YveV.
Since
a(v, v) = aplv|t, p = Cagv|i,, YveV

follows from the Friedrichs inequality (1.2), there exists a unique weak solution
of (2.1).
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If w e W}?(D), we define

o
vy or 0z

and ow[0v 4 € L(I") follows, since both G(dw/ér) and G(ow[dz) belong to L(I).
Henceforth, we assume that the weak solution u of (2.1) is such that

1 0%u

(22) ue W}*(D) and - eLX(D).
r or 0z

Remark 2.1. Defining for any u(r, z), (r, z) € D the axisymmetric function
ﬁ(xh X2, X3) = u((xi + xg)l/l’ X3) ’ (xla X2, X3) eQ >
we have the following relations (cf. [9] — Lemma 2.1, 2.2):

FeW*(Q)=ueW>* (D) and :%c12(D),
T

ie W»3(Q)«>ueW}?*(D) and
Lou

e Wh? (D)= ueX?*D).
r or

Remark 2.2. Sufficient conditions for the regularity in (2.2) arc e.g.:
a,, a, € C¥(D), da,|or = da,/or = 0 for r =0, fe W}*(D), ge G(X*(D)) and the
boundary can be described by means of functions from C*):'. This follows from
Theorem 4.2.2 in [8], if we pass to the Cartesian coordinate system and use Remark
2.1.

Lemma 2.1. Assume that the boundary I' is straight in some neighbourhood
of the points I' 1 0.

Let w, be the solution of (2.1) with f = 0 and g = —0u|dv,. Then w, € W}*(D)
and

(2:3) [willzro = Clulsn

where
2 1/2
Jul.» =(Huf ) :
0,r,D

Proof. 1° We can show that a function w e W2'?(D) exists such that G(w) =
= dufdv,, the corresponding function & (see Remark 2.1) belongs to W??(Q) and

(2.4) lofl2n = Cllufs,p-

To this end, we first decompose u in the following way. Let the part
I'n{(r,z)|r < d} consists of straight segments, orthogonal to the axis 0. Let

1 6%u

ror 0z

2
3.r,D +
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¢ € C*([0, o)) be a function such that ¢(r) = 1 for r e [0, d/2] and ¢(r) = O for
r = d. We denote u; = u¢, u, = (1 — ¢)u,
P, ={(r,z2) I r<el.
Then u, = 0in P,;, n D, so that u, e W**(D) and du,/dv, can be extended into D
by a function
W, = arfr Ouz + a. z(il—lza
or 0z

where f,, /. are functions from C*(D) such that f, = v,, f. = v_ on I' (cf. Lemma 1.1).
Then w, e W}*(D) and G(w,) = du,/dv,. Moreover, we have

(25)  Joalzrn = Clufsrn
18(/()7_ 12 2 1 sz‘ < C”u”Z .
roar 0.r.D d ’\ or 0.0 = 2,r,D

Making use of Remark 2.1, we conclude that the corresponding function
@, € W(Q).

Next consider u;. Obviously, suppu, = P;n D, du,[dv, = +a.(0u,[0z). Then
the latter derivative can be extended into D by a function

P
W, = a.f. fl
oz
which belongs to W;**(D) and G(w,) = du,/dv,. Moreover,
(26) lowlzrp = Cllufsn,

| s

+

_< 1o(af.0) @
0.r.D papl Ll OF ¢

2u 1z
batp! ! ] rdrgz) s Clul

A

- 0z

since (f.¢)/or = 0in P, , and 1/r |¢a.[or| £ C can be deduced from the assumptions.
\ Then the corresponding function &, e W?* (Q) For the sum o = v, + w,,
we obtain w e W}-*(D),
D 7
G(w) = G(w,) + G(w,) = Ou, , Ouy _ Ou .
vy dvy  dvy
“w“Z.r.D = ”wl”Z.r.D + ||w2NZ.r.D = CH““}.,'.D s

combining (2.5) and (2.6), & = &, + @, € W>*(Q).

2° Instead of (2.1) with f = 0 and g = —du/dv,, let us solve the corresponding
Dirichlet problem in Q. Since the boundary condition is given by the trace of
(—®) e Ww**(Q), the solution Ue W**Q) and

”U”m = C”‘D“z.n
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(see [8] — Thm. 2.2.1). Passing to the cylindrical coordinates, we may set
U(rcos 9, rsin 3, z) = w(r, z) .

Using again [9] — Lemma 2.1, 2.2, we obtain
Iwillarn = @0)7"[U]20 = Cif@]20 =

2 1/2
c, (N«»liz,,.o T ) <
0,r,D

Cs(”“”u.u + H“”é,r,b) s C4||““'3,,r,v >
.5)and (2.6). Q.E.D.

I

‘lé‘vw

ror

IIA

[8S]

by virtue of (

Lemma 2.2. Let p, p € W) *(D), ye Wi*(D),s 2 2,he (0, 1] and y = 1. We define

H.(p) = (|pli.0 + v |P]5,r0)""?
, B B ay 2 1/2
G¢:y) = <I¢ —Viep R — v+ v Th— ) :
0vy 0,r.T.
Then
(27) H},(.\’ - .“I) é Chs_l”.y”s.r‘[) ’

where v, is the element of Z,, approximating y in the sense of (1.4) and
(2.8) ;nf G(¢: ) £ Ch([[y]sp + [u]2.00) -
Xy

Proof. Making use of Lemma 1.1 with ¢ = h~! and (1.4), we may write

H-,z-(." - ) =

= I.\' - ylﬁ.r,l) + Vhal(hﬂ“y - yllé,r.D + Ch”y - yl”%,r.D) =
S +90) |y = wliono + 9072y = wilen £
S (Ch*7 7 + yh*72) ”y

so that (2.7) is verified.
By means of (2.7) and (1.4) we obtain

2
s,r,D >

G;z-(."l + 7wy y) = l)’r + oy thwy =y hwy T Ty — )"If,y,p +

2y P 2
b vy Ty — oy oyt i y"‘hi}i <

vy vy Vallo rr
<3y = wulten #3070 (Wi = wili o + [wi][700) +

+ 3yh! {”\ - J’r“(z),r,r + (th)z HWu - Wln(zm,r +
~2 2

+ 2(;"‘/1)2< . i )} <
WYy llor.r Vallorr

=

3Hf,(_l' - )+ 3(})"/1)2 Hf(w1 — wy) +
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+ Gy (w0 + e + (V]300 =
< C[(h*72 + h?) “)” oo+ W3 + P[], 5] <
. g Chz(”y! s,r,D + ” 7 T D)
Since
inf G,(¢; y) < G, (\, + 97 Thw i y),
¢=In
the estimate (2.8) follows. Q.E.D.

The approximate solution by penalty method is defined as v(y) € X, such that
(2.9) a(u(y), ®) + yh~ ' <o(y) — g, @> = (f, D), VP eZ,.
Remark. Note that (2.9) corresponds with the Ritz-Galerkin approximation

of the boundary value problem (2.1), where the Dirichlet boundary condition is
replaced by the following one

"h +u=q on I'.
ovy

3. SOME ERROR ESTIMATES

In the present section, we shall derive some auxiliary error estimates, which
involve also the solution w,; of the auxiliary problem (2.1) with f =0 and g =
= —dufdv,.

Theorem 3.1. Let the solution of (2.1) satisfy the assumption (2.2) and let w =
=y 'hw,. Then a positive constant C exists such that

(3.1) C”u(y) —u — w”,_,_D < Ky(u, w) + y_zhznu“;‘,.l, R

(3.2) < () Ky, w)

o,r.I"

Cloy) —g—w+7yp Ihﬂ
vy

. holds for all h e (0, I/2], where

Ky(u, w) = inf {ll// —u—wi,p+

ey
2 }1/2
O,r,I'

Proof. It is easy to see that for all ® € W!-*(D)

a(u, @) = (f. @), + <a“ ,cb>,

ow

+ yh! —g—-—w+7y'h

vy

ov

a(w, @) = y " Tha(wy, @) =y~ 'h <Z—Mﬁ R <P> .

Va
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By means of these relations we derive for e = v(y) — u

A
ale — w, ®) + yh~! <e —w+ y"‘h?i,d)>= 0 VoeZ,.
0v 4

Substituting
P=ec+u—yY=(e—w+w+u—1y)

D =(e—w+y th EK) +(wH+u—y —y"'h ™y,
vy vy

respectively, we obtain

and

q, OW
e—w+y h—
Va

ale — w,e — w) + ph™!

0,r.I

=ale—w,y —u—w)+

+ yh~! <e - w4+ y"h;—w—,l// —u—w+yth fw>

V4 vy
Denoting for brevity y~'i dw[dv, = B, we may write
agle = w|i,p+vh e —w+ B|§, <
Cle = wli,plb —u—w,p+
+9h™ e —w+ Blo,rb—u—w+ B, r =<
< Cyf{agle = w|i,p+ vh e = w + B|§, ;}'* x

e —u—w+ B”(z_,,,,r}”z.

x|y —u—w

Cancelling, we obtain

(3.3) ale — wlf‘,_n + 9 e —w + B[[g” <
scCinf (W —u—wi,p+7h "W —u—w+B[§, )=
yely
= CKj(u, w).

Using the Friedrichs inequality (1.1) and the inequalities (3.3) and
yh™' =2 Vhe(0, 12],
we may write

C“e — w“fy,,,, <

< aple = w|i,p+ vh e —w + B|S,r + ZHB[](Z),,I <
< CiKj(u, w) + 2| B[S r

so that

(3.4) Colle = w] i o < Ki(u, w) + |Blorr -
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Since

0
Al = Cllwlul,r,l) = Cluu”g,r,D

vy llorr

holds by virtue of (2.3), we have
[Bllo.r.r = v721*Ciljulls 0
and (3.1) follows from (3.4).
The estimate (3.2) is an immediate consequence of (3.3).

Corrolary 3.1. Let the assumptions of Theorem 3.1 be satisfied. Then there are
constants C(y), i = 1,2, such that

(3.5) [v(») —u — w)lirp = Ci(y) hznuug,,,l) ,
(3.6) v(y) — g — w(y) + 7y 'h g—g— < Co(y) B |uls 0

hold for h < 1/2.

Proof. Obviously, we have u; + y~*h¢ € Z, for any ¢ € %, so that

K,(u, w) = inf {l“[ + 97 he —u —w|i,p +

deln
2 }1/2
o,r,I"

inf C {tu, L T L
2 1/2
0,r,1:|}

,u, + 9y h¢ —u—w+ )fllz»aE
| an

+ yh~1

IA

IA

Peln
yh [Hm I R 0%
V4

C{H2(u — u;) + (y™'h)* inf G3(¢, w,)}V/? <
¢<n

)

ow

+

¢ —w, +

A

IIA

IIA

C1H1(“ — u;) + Cly“Th inf Gy((ﬁ, w‘) .

beln

Making use of Lemma 2.2 and (2.3), we obtain the estimate
Ki(u, w) £ Ch?[uls,pp + Coy™ "B (|wi]2p + u]2r0) <
< C3h2HuH’3,,,D .
Now (3.5) and (3.6) is a consequence of (3.1) and (3.2), respectively.
4. EXTRAPOLATIONS AND A PRIORI ERROR ESTIMATES
Let y, and y, be two real numbers such that 1 < y, < y,. Then it is readily seen for

aoz)’o/(%—%), a;=1-ae,
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that

(4.1)

ay;'=0.

[\/]_.

i=0
Let us define the following extrapolate of approximate solutions

4.2) u, = 1Za,-v(y,»)

i=0

and the extrapolate of boundary flux approximations
1
(4-3) €y = — Z ayi h_l(U()’i) - g) >
i=0

where v(y;) is the approximate solution by penalty method, defined in (2.9) for
Y=Y

Theorem 4.1. Let the solution of (2.1) ue W>*(D) and 1/r(6%ulor dz) e Li(D).
Then constants C,, C, exist, depending on the parameters y,, y, but not on h and u,
such that

“u — u,,“l,,_,) < C1172”'4ﬂ'3,r,p s

< Coh*|uly,p -
o,r,I’

Proof. By means of (4.1) and (3.5) we may write

1
Uu - “h“Lr.D = ” Z a,-{u - U(?i) + V;II7‘VI}[ll,r,D =
i=0

’
3,r,D*

1
< mf:xl’ai’ Z ”W(J’i) - e(Vi)”l.r,D = Cl(“/o, Y1) hz”“l
i=0, i=0

On the basis of (3.6) and recalling that

prth = —w(y) on T,
0vy
we obtain
ou
— — g, =
vy o,r,I
1 ﬁ -
= | S advh T 00) — g+ el <
i= vy v ) llorr
Lo Z1 o, ow(yy)
= max ]ail ZVih U(V.‘ -9 - W('Vi) + 7y h—— <
i=0,1 i=0 vy o,r,I

IIA

Cavos y1) B [u]3,0 -
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Souhrn

METODA PENALTY A EXTRAPOLACE PRO OSOVE SYMETRICKE ELIPTICKE
ULOHY S DIRICHLETOVOU OKRAJOVOU PODMINKOU

IVAN HLAVACEK

Osové symetricka eliptickda tloha druhého fadu se ¥eSi v prostoru koneénych prvki na troj-
uhelnicich s pripadn€ zakfivenou stranou a to tak, Ze nehomogenni okrajovd podminka je
splnéna pouze priblizné ve smyslu penalty. Na zakladé dvou pribliznych YeSeni, ktera se lisi
pouze vahou u penaltniho €lenu, jsou definovany extrapolace feSeni, resp. vn&jSiho toku (ij.
derivace podle konormaly). Za predpokladu, Ze pfesné feSeni je dostateéné regularni, jsou od-
vozeny apriorni odhady chyby extrapolace.

Pesrome

METOJ WITPA®A M DKCTPAITOJIAUMU 4151 OCECUMMETPUYECKUNX
QJUIUMIITUYECKNX 3AAY C KPAEBBIM YCJIOBUEM JUPUXIIE

IvaN HLAVACEK

OcecumeTpruecKas 3aa4a BTOPOTO TIOPSiAKA PEeLIaeTCsl B NIPOCTPAHCTBE KOHEUHbIX JJIEMEHTOB,
NPUYEM KPAaeBOE YCJIOBUE yIOBIETBOPAETCA B cMbiciie wipada. Ha ocnoBe aByx mpuOamMkKeHHbIX
peueHr i, KOTOPBIE OTIIMYAKOTCS TOJILKO BECOM ITPadHOro YiieHa, ONpeIe/ICHb! IKCTPATIONALMHA 115
pelueHust M AJis BHEWIHero Toka. ITpeamonarasi, YTO TOYHOE DCLUEHME JOCTAaTOYHO pErYVIISPHO,
BbIBEJICHB! aNIPHOPHbBIE OLEHKH ISt OKMOGOK KCTPATLONISLWHI.

Author’s address: Ing. Ivan Hlavdtek, DrSc., Matematicky Ustav CSAV, Zitna 25, 115 67
Praha 1.
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