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A REMARK ON SOLVING LARGE SYSTEMS OF EQUATIONS
IN FUNCTION SPACES

I. BREMER, K. R. SCHNEIDER

(Received June 10, 1989)

Summary. In order to save CPU-time in solving large systems of equations in function spaces
we decompose the large system in subsystems and solve the subsystems by an appropriate method.
We give a sufficient condition for the convergence of the corresponding procedure and apply
the approach to differential algebraic systems.
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1. INTRODUCTION

The simulation of highly integrated circuits in microelectronics requires the
numerical solution of the Cauchy problem for very large systems of differential
algebraic equations. The CPU-time needed for solving such problems by means
of traditional solvers increases superlinearly (O(N”), 1.1 < < 1.5, where N is the
number of nodes of the given circuit [4]) Therefore, the search for methods reducing
the computation time in the process of solving very large systems is an important
recent task. One possibility to reach this aim consists in applying block iterative
methods, usually called relaxation methods. The basic steps of such an approach
are partitioning of the large system and independent solving of the subsystems. This
method is well-known for systems of linear and nonlinear equations [5, 8]. Con-
cerning the Cauchy problem for differential systems describing electrical circuits
the so-called waveform relaxation method has been developed in [3].

In this note we first consider equations in metric spaces with Lipschitz operators
and give a sufficient condition for convergence of relaxation methods. Finally, we
apply this approach to the Cauchy problem for a differential algebraic system.
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2. GENERAL PROBLEM. SUFFICIENT CONDITIONS FOR CONVERGENCE

Let (X, d) be a complete metric space. We consider in X the operator equation
(2.1) K(y)=0

where K maps X into itself. We assume (2.1) to be equivalent to the fixed point
problem :

(2.2) y=T1().

The operator T is not uniquely determined by the operator K. Generally, it depends
also on the numerical procedure used to solve (2.1).

A fundamental step in applying block iteration methods to (2.2) is an appropriate
partitioning, that is, we decompose y and T and get after some possible rearrange-
ment and reassignment

{2.3) x;=T(x), i=1,...,N,
which is equivalent to (2.2). To be able to do this we assume

(A,) There are n complete metric spaces (X;, d,), ..., (X,, d,) such that (X, d) is
the product space of these metric spaces.
Concerning the operators T; we assume

(A;) The operators T, i = 1, ..., N, map X into X;. There are positive constants
ki;;1 <i,j < N,suchthatVx,, X, € X;

ijs

(24) d{(Tx), T(%)) = ‘ikijdj(x,-, %))

Let K be the matrix defined by K = (k;;). We are interested in a condition on K
ensuring the convergence of the iteration scheme

(2.5) =T, k=12...

in some metric space (X, d) for any initial guess x°.
Lemma 2.1. Assume the hypotheses (A,), (A,) hold. Further we suppose that the
spectral radius o(K) of K satisfies

(2.6) oK) < 1.

Then there is a metric d in X such that (2.5) converges in (X, d) for any initial
0
guess x°.

Proof. The matrix K maps the cone R", into itself. If K is not strictly positive,
that is, there are elements in R", which are mapped by K into the boundary of R",,
then K contains zero elements. Under the assumption (2.6) we can replace these zero
entries by a small positive number such that the perturbed matrix K is strictly positive
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and satisfies o(K) = o(K™) < 1.") According to the Frobenius-Perron theory [1, 2, 6]

o(KT) is an eigenvalue of K7 with an eigenvector a = (ay, ..., ay)" in the interior
of R',.

Therefore, we have
(2.8) K'a < K'a=¢(KYa<a.

We use the vector a to define the metric d by
(2.9) d=aud, + ... + aydy,
Thus, from (2.4), (2.5), (2.7) and (2.8) we get

d(x*+1, x4 = d(T(x") T(x*"")) = Zlajdj(Tj(xk)ﬂ Tj(ka])) =

™M=

= o(K) d(x*, x"_') < Q(k)k d(x*, x°) .

Since o(K) < 1 the sequence (2.5) converges in (X, d) for any initial guess x°, q.e.d.

N
K, = o(RT) Y adi(x, 1) =
i=1

1

3. APPLICATION TO DIFFERENTIAL ALGEBRAIC SYSTEMS

To give an application of Lemma 2.1 we consider the initial value problem for
the differential algebraic system

(3.1) d"l = 1i(xr. %20 1),

x; = fo(x1, x5, 1), x(0)=0, te(0,7)
under the assumptions
(H,) fieC(R" x R" x R,R"), f,eC(R" x R" x R, R").

(H,) There are positive constants Iyy, Iy, Iy, I, such that for all (xy,x,),
(%, %,)eR" x R"andforallte R

(3-2) lf1(x1, X2, t) “‘f1()z1, X2, t)] = 111|x1 - ill + llzlxz - le s
Ifz(xp X2, 1) = f5(%y, %y, I)I = lz1lx - ill + lzz]xz - i2| .
(H3) (3.3) L,<1.

Let X, be the space of continuous functions x mapping [0, T] into R" and satisfying
x(0) = 0. X, equipped with the norm

(34) Ix[s == max {e™|x(1)[}

1 KT denotes the transpose of K.
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is a Banach space where « is a (suitable chosen) positive number. Let X, be the space
C([0, T, R™) endowed with the norm ””2 which coincides with the norm [-|,.
Let us introduce operators T;: X, x X, » X;, T,: X, x X, - X defined by

(3.5) Ty(xy, x5) (1) == [§ f1(x4(s), x5(s), s) ds ,
Tilx1, X2) (1) := fa(xi (1), x2(1), 1) -
Then the system (3.1) is equivalent to the system
(3'6) Xy = Tl(xls xz) >
Xy = Ty(xy, xy) .
It is easy to verify that T, and T, satisfy the relations
Ii4 l

S x = %+ 2 xe = s
o o

IIA

(3.7) [Ti(xq, x2) — Ty(%4, £5)|ls

”Tl(xl’ x;) = To(%ys iz)“z

for all (xy, x,), (1, ¥,) € X; x X,. In order to be able to apply Lemma 2.1 we have
to verify the validity of the relation (2.6). Let K be the matrix defined by

IIA

121“x1 - il”l + Izzuxz - iz”z

Iy Ly

K=|o o],
121 122

It is easy to verify that under the condition (3.3) there is a positive number « such
that for o > «, the spectral radius of K is less than one. Applying Lemma 2.1 we
have the following result.

Theorem 3.1. Assume the hypotheses (H,) — (H3) hold. Then the initial value
problem for the differential algebraic system (4.1) has a unique solution for any
given T, which can be approximated by the iteration scheme

AEUE) o= 6 £1(x5(s), x5 (s), s) ds
x5FU(t) = fL(x4(2), x5(1), 1)

where (x{(t), x3(1)) is any initial guess.
An other important application of Lemma 2.1 is concerned with the waveform
relaxation method in circuit analysis (see [7]).
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Souhrn
POZNAMKA K RESENI VELKYCH SOUSTAV ROVNIC
V PROSTORECH FUNKCI
I. BREMER, K. R. SCHNEIDER
S cilem uSetfit as zakladni jednotky pfi feSeni velkych soustav rovnic v prostorech funkei je

dana soustava rozloZena na mensi, které se fe$i vhodnou metodou. Je podana postadujici pod-

minka konvergence prislu§né procedury. Metoda je aplikovana na diferencialni algebraické
soustavy.

Authors® address: DM. 1. Bremer, Dr. K. R. Schneider, Akademie der Wissenschaften der DDR,
Karl-Weierstrass-Institut fiir Mathematik, Mohrenstrasse, 1086 Berlin.

498



		webmaster@dml.cz
	2020-07-02T07:29:24+0200
	CZ
	DML-CZ attests to the accuracy and integrity of this document




